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Abstract

Statistical language models estimate the probability of a word occurring
in a given context. The most common language models rely on a discrete
enumeration of predictive contexts (e.g.,n-grams) and consequently fail
to capture and exploit statistical regularities across these contexts. In this
paper, we show how to learn hierarchical, distributed representations of
word contexts that maximize the predictive value of a statistical language
model. The representations are initialized by unsupervised algorithms for
linear and nonlinear dimensionality reduction [14], then fed as input into
a hierarchical mixture of experts, where each expert is a multinomial dis-
tribution over predicted words [12]. While the distributed representations
in our model are inspired by the neural probabilistic language model of
Bengioet al. [2, 3], our particular architecture enables us to work with
significantly larger vocabularies and training corpora. For example, on a
large-scale bigram modeling task involving a sixty thousand word vocab-
ulary and a training corpus of three million sentences, we demonstrate
consistent improvement over class-based bigram models [10, 13]. We
also discuss extensions of our approach to longer multiword contexts.

1 Introduction

Statistical language models are essential components of natural language systems for
human-computer interaction. They play a central role in automatic speech recognition [11],
machine translation [5], statistical parsing [8], and information retrieval [15]. These mod-
els estimate the probability that a word will occur in a given context, where in general
a context specifies a relationship to one or more words that have already been observed.
The simplest, most studied case is that ofn-gram language modeling, where each word is
predicted from the precedingn−1 words. The main problem in building these models is
that the vast majority of word combinations occur very infrequently, making it difficult to
estimate accurate probabilities of words in most contexts.

Researchers in statistical language modeling have developed a variety of smoothing tech-
niques to alleviate this problem of data sparseness. Most smoothing methods are based on
simple back-off formulas or interpolation schemes that discount the probability of observed
events and assign the “leftover” probability mass to events unseen in training [7]. Unfortu-
nately, these methods do not typically represent or take advantage of statistical regularities



among contexts. One expects the probabilities of rare or unseen events in one context to be
related to their probabilities in statistically similar contexts. Thus, it should be possible to
estimate more accurate probabilities by exploiting these regularities.

Several approaches have been suggested for sharing statistical information across contexts.
The aggregate Markov model (AMM) of Saul and Pereira [13] (also discussed by Hofmann
and Puzicha [10] as a special case of the aspect model) factors the conditional probability
table of a word given its context by a latent variable representing context “classes”. How-
ever, this latent variable approach is difficult to generalize to multiword contexts, as the
size of the conditional probability table for class given context grows exponentially with
the context length.

The neural probabilistic language model (NPLM) of Bengioet al. [2, 3] achieved signifi-
cant improvements over state-of-the-art smoothedn-gram models [6]. The NPLM encodes
contexts as low-dimensional continuous vectors. These are fed to a multilayer neural net-
work that outputs a probability distribution over words. The low-dimensional vectors and
the parameters of the network are trained simultaneously to minimize the perplexity of the
language model. This model has no difficulty encoding multiword contexts, but its training
and application are very costly because of the need to compute a separate normalization for
the conditional probabilities associated to each context.

In this paper, we introduce and evaluate a statistical language model that combines the
advantages of the AMM and NPLM. Like the NPLM, it can be used for multiword con-
texts, and like the AMM it avoids per-context normalization. In our model, contexts are
represented as low-dimensional real vectors initialized by unsupervised algorithms for di-
mensionality reduction [14]. The probabilities of words given contexts are represented by
a hierarchical mixture of experts (HME) [12], where each expert is a multinomial distri-
bution over predicted words. This tree-structured mixture model allows a rich dependency
on context without expensive per-context normalization. Proper initialization of the dis-
tributed representations is crucial; in particular, we find that initializations from the results
of linear and nonlinear dimensionality reduction algorithms lead to better models (with
significantly lower test perplexities) than random initialization.

In practice our model is several orders of magnitude faster to train and apply than the
NPLM, enabling us to work with larger vocabularies and training corpora. We present re-
sults on a large-scale bigram modeling task, showing that our model also leads to significant
improvements over comparable AMMs.

2 Distributed representations of words

Natural language has complex, multidimensional semantics. As a trivial example, consider
the following four sentences:

The vase broke. The vase contains water.
The window broke. The window contains water.

The bottom right sentence is syntactically valid but semantically meaningless. As shown by
the table, a two-bit distributed representation of the words “vase” and “window” suffices to
express that a vase is both a container and breakable, while a window is breakable but can-
not be a container. More generally, we expect low dimensionalcontinuousrepresentations
of words to be even more effective at capturing semantic regularities.

Distributed representations of words can be derived in several ways. In a given corpus of
text, for example, consider the matrix of bigram counts whose elementCij records the
number of times that wordwj follows word wi. Further, letpij = Cij/

∑
k Cik denote

the conditional frequencies derived from these counts, and let~pi denote theV -dimensional



frequency vector with elementspij , whereV is the vocabulary size. Note that the vectors~pi

themselves provide a distributed representation of the wordswi in the corpus. For large
vocabularies and training corpora, however, this is an extremely unwieldy representation,
tantamount to storing the full matrix of bigram counts. Thus, it is natural to seek a lower
dimensional representation that captures the same information. To this end, we need to map
each vector~pi to somed-dimensional vector~xi, with d � V . We consider two methods in
dimensionality reduction for this problem. The results from these methods are then used to
initialize the HME architecture in the next section.

2.1 Linear dimensionality reduction

The simplest form of dimensionality reduction is principal component analysis (PCA).
PCA computes a linear projection of the frequency vectors~pi into the low dimensional
subspace that maximizes their variance. The variance-maximizing subspace of dimension-
ality d is spanned by the topd eigenvectors of the frequency vector covariance matrix. The
eigenvalues of the covariance matrix measure the variance captured by each axis of the
subspace. The effect of PCA can also be understood as a translation and rotation of the
frequency vectors~pi, followed by a truncation that preserves only their firstd elements.

2.2 Nonlinear dimensionality reduction

Intuitively, we would like to map the vectors~pi into a low dimensional space where se-
mantically similar words remain close together and semantically dissimilar words are far
apart. Can we find a nonlinear mapping that does this better than PCA? Weinbergeret al.
recently proposed a new solution to this problem based on semidefinite programming [14].

Let ~xi denote the image of~pi under this mapping. The mapping is discovered by first
learning theV ×V matrix of Euclidean squared distances [1] given byDij = |~xi − ~xj |2.
This is done by balancing two competing goals: (i) to co-locate semantically similar words,
and (ii) to separate semantically dissimilar words. The first goal is achieved by fixing the
distances between words with similar frequency vectors to their original values. In particu-
lar, if ~pj and ~pk lie within some small neighborhood of each other, then the corresponding
elementDjk in the distance matrix is fixed to the value|~pj − ~pk|2. The second goal is
achieved by maximizing the sum of pairwise squared distancesΣijDij . Thus, we push the
words in the vocabulary as far apart as possible subject to the constraint that the distances
between semantically similar words do not change.

The only freedom in this optimization is the criterion for judging that two words are se-
mantically similar. In practice, we adopt a simple criterion such ask-nearest neighbors in
the space of frequency vectors~pi and choosek as small as possible so that the resulting
neighborhood graph is connected [14].

The optimization is performed over the space of Euclidean squared distance matrices [1].
Necessary and sufficient conditions for the matrixD to be interpretable as a Euclidean
squared distance matrix are thatD is symmetric and that the Gram matrix1 derived from
G = − 1

2HDHT is semipositive definite, whereH = I − 1
V 11T. The optimization can

thus be formulated as the semidefinite programming problem:

Maximize ΣijDij subject to: (i) DT = D, (ii) − 1
2HDH � 0, and

(iii) Dij = |~pi − ~pj |2 for all neighboring vectors ~pi and ~pj .

1Assuming without loss of generality that the vectors~xi are centered on the origin, the dot prod-
uctsGij = ~xi · ~xj are related to the pairwise squared distancesDij = |~xi − ~xj |2 as stated above.
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Figure 1: Eigenvalues from principal component analysis (PCA) and semidefinite embed-
ding (SDE), applied to bigram distributions of the2000 most frequently occuring words in
the corpus. The eigenvalues, shown normalized by their sum, measure the relative variance
captured by individual dimensions.

The optimization is convex, and its global maximum can be computed in polynomial
time [4]. The optimization here differs slightly from the one used by Weinbergeret al. [14]
in that here we only preserve local distances, as opposed to local distances and angles.

After computing the matrixDij by semidefinite programming, a low dimensional embed-
ding ~xi is obtained by metric multidimensional scaling [1, 9, 14]. The top eigenvalues of
the Gram matrix measure the variance captured by the leading dimensions of this embed-
ding. Thus, one can compare the eigenvalue spectra from this method and PCA to ascertain
if the variance of the nonlinear embedding is concentrated in fewer dimensions. We refer
to this method of nonlinear dimensionality reduction as semidefinite embedding (SDE).
Fig. 1 compares the eigenvalue spectra of PCA and SDE applied to the 2000 most frequent
words2 in the corpus described in section 4. The figure shows that the nonlinear embedding
by SDE concentrates its variance in many fewer dimensions than the linear embedding by
PCA. Indeed, Fig. 2 shows that even the first two dimensions of the nonlinear embedding
preserve the neighboring relationships of many words that are semantically similar. By
contrast, the analogous plot generated by PCA (not shown) reveals no such structure.
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Figure 2: Projection of the normalized bigram counts of the 2000 most frequent words
onto the first two dimensions of the nonlinear embedding obtained by semidefinite pro-
gramming. Note that semantically meaningful neighborhoods are preserved, despite the
massive dimensionality reduction fromV = 60000 to d = 2.

2Though convex, the optimization over distance matrices for SDE is prohibitively expensive for
large matrices. For the results in this paper—on the corpus described in section 4—we solved the
semidefinite program in this section to embed the 2000 most frequent words in the corpus, then used
a greedy incremental solver to embed the remaining58000 words in the vocabulary. Details of this
incremental solver will be given elsewhere. Though not the main point of this paper, the nonlinear
embedding ofV = 60000 words is to our knowledge one of the largest applications of recently
developed spectral methods for nonlinear dimensionality reduction [9, 14].



3 Hierarchical mixture of experts

The model we use to compute the probability that wordw′ follows wordw is known as a
hierarchical mixture of experts (HME) [12]. HMEs are fully probabilistic models, making
them ideally suited to the task of statistical language modeling. Furthermore, like multi-
layer neural networks they can parameterize complex, nonlinear functions of their input.

Figure 3 depicts a simple, two-layer HME. HMEs are tree-structured mixture models in
which the mixture components are “experts” that lie at the leaves of the tree. The interior
nodes of the tree perform binary logistic regressions on the input vector to the HME, and
the mixing weight for a leaf is computed by multiplying the probabilities of each branch
(left or right) along the path to that leaf. In our model, the input vector~x is a function of
the context wordw, and the expert at each leaf specifies a multinomial distribution over
the predicted wordw′. Lettingπ denote a path through the tree from root to leaf, the HME
computes the probability of a wordw′ conditioned on a context wordw as

Pr(w′|w) =
∑

π

Pr(π|~x(w)) · Pr(w′|π). (1)

We can compute the maximum likelihood parameters for the HME using an Expectation-
Maximization (EM) algorithm [12]. The E-step involves computing the posterior probabil-
ity over pathsPr(π|w,w′) for each observed bigram in the training corpus. This can be
done by a recursive pass through the tree. In the M-step, we must maximize the EM aux-
iliary function with respect to the parameters of the logistic regressions and multinomial
leaves as well as the input vectors~x(w). The logistic regressions in the tree decouple and
can be optimized separately by Newton’s method, while the multinomial leaves have a sim-
ple closed-form update. Though the input vectors are shared across all logistic regressions
in the tree, we can compute their gradients and hessians in one recursive pass and update
them by Newton’s method as well.

The EM algorithm for HMEs converges to a local maximum of the log-likelihood, or equiv-
alently, a local minimum of the training perplexity

Ptrain =

∏
ij

Pr(wj |wi)Cij


− 1

C

, (2)

whereC =
∑

ij Cij is the total number of observed bigrams in the training corpus. The
algorithm is sensitive to the choice of initialization; in particular, as we show in the next
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Figure 3: Two-layer HME for bigram modeling. Words are mapped to input vectors; prob-
abilities of next words are computed by summing over paths through the tree. The mapping
from words to input vectors is initialized by dimensionality reduction of bigram counts.



Ptest d
init 4 8 12 16

random 468 407 378 373
PCA 406 364 362 351
SDE 385 361 360 355

Table 1: Test perplexities of HMEs
with different input dimensionalities
and initializations.

Ptest d
m 4 8 12 16
8 435 429 426 428
16 385 361 360 355
32 350 328 320 317
64 336 308 298 294

Table 2: Test perplexities of HMEs
with different input dimensionalities
and numbers of leaves.

section, initialization of the input vectors by PCA or SDE leads to significantly better mod-
els than random initialization. We initialized the logistic regressions in the HME to split
the input vectors recursively along their dimensions of greatest variance. The multinomial
distributions at leaf nodes were initialized by uniform distributions.

For an HME withm multinomial leaves andd-dimensional input vectors, the number of
parameters scales asO(V d + V m + dm). The resulting model can be therefore be much
more compact than a full bigram model overV words.

4 Results

We evaluated our models on the ARPA North American Business News (NAB) corpus.
Our training set contained 78 million words from a 60,000 word vocabulary. In the interest
of speed, we truncated the lowest-count bigrams from our training set. This left us with
a training set consisting of 1.7 million unique bigrams. The test set, untruncated, had 13
million words resulting in 2.1 million unique bigrams.

4.1 Empirical evaluation

Table 1 reports the test perplexities of several HMEs whose input vectors were initialized
in different ways. The number of mixture components (i.e., leaves of the HME) was fixed
atm = 16. In all cases, the inputs initialized by PCA and SDE significantly outperformed
random initialization. PCA and SDE initialization performed equally well for all but the
lowest-dimensional inputs. Here SDE outperformed PCA, most likely because the first few
eigenvectors of SDE capture more variance in the bigram counts than those of PCA (see
Figure 1).

Table 2 reports the test perplexities of several HMEs initialized by SDE, but with varying
input dimensionality (d) and numbers of leaves (m). Perplexity decreases with increasing
tree depth and input dimensionality, but increasing the dimensionality beyondd = 8 does
not appear to give much gain.

4.2 Comparison to a class-based bigram model

w z w'

Figure 4: Belief network for AMM.

We obtained baseline results from an AMM [13]
trained on the same corpus. The model (Figure 4)
has the form

Pr(w′|w) =
∑

z

Pr(z|w) · Pr(w′|z). (3)

The number of estimated parameters in AMMs
scales as2·|Z|·V , where|Z| is the size of the latent variable (i.e., number of classes)
andV is the number of words in the vocabulary.



parameters (*1000) Ptest(AMM) Ptest(HME) improvement
960 456 429 6%
1440 414 361 13%
2400 353 328 7%
4320 310 308 1%

Table 3: Test perplexities of HMEs and AMMs with roughly equal parameter counts.

Table 3 compares the test perplexities of several HMEs and AMMs with similar numbers
of parameters. All these HMEs hadd = 8 inputs initialized by SDE. In all cases, the HMEs
match or outperform the AMMs. The performance is nearly equal for the larger models,
which may be explained by the fact that most of the parameters of the larger HMEs come
from the multinomial leaves, not from the distributed inputs.

4.3 Comparison to NPLM

The most successful large-scale application of distributed representations to language mod-
eling is the NPLM of Bengioet al.[2, 3], which in part inspired our work. We now compare
the main aspects of the two models.

τ d
m 4 8 12 16
8 1 1 1 1
16 2 2 2 2
32 4 4 4 4
64 9 10 10 10

Table 4: Training timesτ in hours
for HMEs withm leaves.

The NPLM uses softmax to compute the probabil-
ity of a wordw′ given its context, thus requiring a
separate normalization for each context. Estimat-
ing the parameters of this softmax requiresO(V )
computation per observed context and accounts
for almost all of the computational resources re-
quired by the model. Because of this, the NPLM
vocabulary size was restricted to 18000 words,
and even then it required more than 3 weeks us-
ing 40 CPUs to finish 5 epochs of training [2].

By contrast, our HMEs requireO(md) computa-
tion per observed bigram. As Table 4 shows, ac-

tual training times are rather insensitive to input dimensionality. This allowed us to use
a 3.5× larger vocabulary and a larger training corpus than were used for the NPLM, and
still complete training our largest models in a matter of hours. Note that the numbers in
Table 4 do not include the time to compute the initial distributed representations by PCA
(30 minutes) or SDE (3 days), but these computations do not need to be repeated for each
trained model.

The second difference between our model and the NPLM is the choice of initialization.
Bengioet al. [3] report negligible improvement from initializing the NPLM input vectors
by singular value decomposition. By contrast, we found that initialization by PCA or SDE
was essential for optimal performance of our models (Table 1).

Finally, the NPLM was applied to multiword contexts. We have not done these experi-
ments yet, but our model extends naturally to multiword contexts, as we explain in the next
section.

5 Discussion

In this paper, we have presented a statistical language model that exploits hierarchical
distributed representations of word contexts. The model shares the advantages of the
NPLM [2], but differs in its use of dimensionality reduction for effective parameter ini-



tialization and in the significant speedup provided by the HME architecture. We can conse-
quently scale our models to larger training corpora and vocabularies. We have also demon-
strated that our models consistently match or outperform a baseline class-based bigram
model.

The class-based bigram model is nearly as effective as the HME, but it has the major draw-
back that there is no straightforward way to extend it to multiword contexts without ex-
ploding its parameter count. Like the NPLM, however, the HME can be easily extended.
We can form an input vector for a multiword history(w1, w2) simply by concatenating the
vectors~x(w1) and~x(w2). The parameters of the corresponding HME can be learned by
an EM algorithm similar to the one in this paper. Initialization from dimensionality reduc-
tion is also straightforward: we can compute the low dimensional representation for each
word separately. We are actively pursuing these ideas to train models with hierarchical
distributed representations of multiword contexts.
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