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Abstract
Recently, machine learning algorithms have suc-
cessfully entered large-scale real-world indus-
trial applications (e.g. search engines and email
spam filters). Here, the CPU cost during test-
time must be budgeted and accounted for. In
this paper, we address the challenge of balanc-
ing the test-time cost and the classifier accuracy
in a principled fashion. The test-time cost of a
classifier is often dominated by the computation
required for feature extraction—which can vary
drastically across features. We decrease this ex-
traction time by constructing a tree of classifiers,
through which test inputs traverse along individ-
ual paths. Each path extracts different features
and is optimized for a specific sub-partition of
the input space. By only computing features for
inputs that benefit from them the most, our cost-
sensitive tree of classifiers can match the high ac-
curacies of the current state-of-the-art at a small
fraction of the computational cost.

1. Introduction
Machine learning algorithms are widely used in many real-
world applications, ranging from email-spam (Weinberger
et al., 2009) and adult content filtering (Fleck et al., 1996),
to web-search engines (Zheng et al., 2008). As machine
learning transitions into these industry fields, managing
the CPU cost at test-time becomes increasingly important.
In applications of such large scale, computation must be
budgeted and accounted for. Moreover, reducing energy
wasted on unnecessary computation can lead to monetary
savings and reductions of greenhouse gas emissions.

The test-time cost consists of the time required to evaluate a
classifier and the time to extract features for that classifier,
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where the extraction time across features is highly variable.
Imagine introducing a new feature to an email spam filter-
ing algorithm that requires 0.01 seconds to extract per in-
coming email. If a web-service receives one billion emails
(which many do daily), it would require 115 extra CPU
days to extract just this feature. Although this additional
feature may increase the accuracy of the filter, the cost of
computing it for every email is prohibitive. This introduces
the problem of balancing the test-time cost and the clas-
sifier accuracy. Addressing this trade-off in a principled
manner is crucial for the applicability of machine learning.

In this paper, we propose a novel algorithm, Cost-Sensitive
Tree of Classifiers (CSTC). A CSTC tree (illustrated
schematically in Fig. 1) is a tree of classifiers that is care-
fully constructed to reduce the average test-time complex-
ity of machine learning algorithms, while maximizing their
accuracy. Different from prior work, which reduces the to-
tal cost for every input (Efron et al., 2004) or which stages
the feature extraction into linear cascades (Viola & Jones,
2004; Lefakis & Fleuret, 2010; Saberian & Vasconcelos,
2010; Pujara et al., 2011; Chen et al., 2012), a CSTC tree
incorporates input-dependent feature selection into training
and dynamically allocates higher feature budgets for infre-
quently traveled tree-paths. By introducing a probabilis-
tic tree-traversal framework, we can compute the exact ex-
pected test-time cost of a CSTC tree. CSTC is trained with
a single global loss function, whose test-time cost penalty
is a direct relaxation of this expected cost. This principled
approach leads to unmatched test-cost/accuracy tradeoffs
as it naturally divides the input space into sub-regions and
extracts expensive features only when necessary.

We make several novel contributions: 1. We introduce the
meta-learning framework of CSTC trees and derive the ex-
pected cost of an input traversing the tree during test-time.
2. We relax this expected cost with a mixed-norm relax-
ation and derive a single global optimization problem to
train all classifiers jointly. 3. We demonstrate on syn-
thetic data that CSTC effectively allocates features to clas-
sifiers where they are most beneficial and show on large-
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scale real-world web-search ranking data that CSTC sig-
nificantly outperforms the current state-of-the-art in test-
time cost-sensitive learning—maintaining the performance
of the best algorithms for web-search ranking at a fraction
of their computational cost.

2. Related Work
A basic approach to control test-time cost is the use of l1-
norm regularization (Efron et al., 2004), which results in a
sparse feature set, and can significantly reduce the feature
cost during test-time (as unused features are never com-
puted). However, this approach fails to address the fact
that some inputs may be successfully classified by only a
few cheap features, whereas others strictly require expen-
sive features for correct classification.

There is much previous work that extends single classifiers
to classifier cascades (mostly for binary classification) (Vi-
ola & Jones, 2004; Lefakis & Fleuret, 2010; Saberian &
Vasconcelos, 2010; Pujara et al., 2011; Chen et al., 2012).
In these cascades, several classifiers are ordered into a se-
quence of stages. Each classifier can either reject inputs
(predicting them), or pass them on to the next stage, based
on the prediction of each input. To reduce the test-time
cost, these cascade algorithms enforce that classifiers in
early stages use very few and/or cheap features and reject
many easily-classified inputs. Classifiers in later stages,
however, are more expensive and cope with more difficult
inputs. This linear structure is particularly effective for ap-
plications with highly skewed class imbalance and generic
features. One celebrated example is face detection in im-
ages, where the majority of all image regions do not con-
tain faces and can often be easily rejected based on the re-
sponse of a few simple Haar features (Viola & Jones, 2004).
The linear cascade model is however less suited for learn-
ing tasks with balanced classes and specialized features. It
cannot fully capture the scenario where different partitions
of the input space require different expert features, as all
inputs follow the same linear chain.

Grubb & Bagnell (2012) and Xu et al. (2012) focus on
training a classifier that explicitly trades-off test-time cost
and accuracy. Instead of optimizing the trade-off by build-
ing a cascade, they push the cost trade-off into the con-
struction of the weak learners. It should be noted that, in
spite of the high accuracy achieved by these techniques,
the algorithms are based heavily on stage-wise regression
(gradient boosting) (Friedman, 2001), and are less likely to
work with more general weak learners.

Gao & Koller (2011) use locally weighted regression dur-
ing test time to predict the information gain of unknown
features. Different from our algorithm, their model is
learned during test-time, which introduces an additional

cost especially for large data sets. In contrast, our algo-
rithm learns and fixes a tree structure in training and has
a test-time complexity that is constant with respect to the
training set size.

Karayev et al. (2012) use reinforcement learning to dy-
namically select features to maximize the average preci-
sion over time in an object detection setting. In this case,
the dataset has multi-labeled inputs and thus warrants a dif-
ferent approach than ours.

Hierarchical Mixture of Experts (HME) (Jordan & Jacobs,
1994) also builds tree-structured classifiers. However, in
contrast to CSTC, this work is not motivated by reduc-
tions in test-time cost and results in fundamentally differ-
ent models. In CSTC, each classifier is trained with the
test-time cost in mind and each test-input only traverses a
single path from the root down to a terminal element, ac-
cumulating path-specific costs. In HME, all test-inputs tra-
verse all paths and all leaf-classifiers contribute to the final
prediction, incurring the same cost for all test-inputs.

Recent tree-structured classifiers include the work of Deng
et al. (2011), who speed up the training and evaluation of
label trees (Bengio et al., 2010), by avoiding many binary
one-vs-all classifier evaluations. Differently, we focus on
problems in which feature extraction time dominates the
test-time cost which motivates different algorithmic setups.
Dredze et al. (2007) combine the cost to select a feature
with the mutual information of that feature to build a deci-
sion tree that reduces the feature extraction cost. Different
from this work, they do not directly minimize the total test-
time cost of the decision tree or the risk. Possibly most
similar to our work are (Busa-Fekete et al., 2012), who
learn a directed acyclic graph via a Markov decision pro-
cess to select features for different instances, and (Wang
& Saligrama, 2012), who adaptively partition the feature
space and learn local region-specific classifiers. Although
each work is similar in motivation, the algorithmic frame-
works are very different and can be regarded complemen-
tary to ours.

3. Cost-sensitive classification
We first introduce our notation and then formalize our test-
time cost-sensitive learning setting. Let the training data
consist of inputsD={x1, . . . ,xn} ⊂ Rd with correspond-
ing class labels {y1, . . . , yn} ⊆ Y , where Y = R in the
case of regression (Y could also be a finite set of categor-
ical labels—because of space limitations we do not focus
on this case in this paper).

Non-linear feature space. Throughout this paper, we
focus on linear classifiers but in order to allow non-
linear decision boundaries we map the input into a non-
linear feature space with the “boosting trick” (Fried-
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man, 2001; Chapelle et al., 2011), prior to our optimiza-
tion. In particular, we first train gradient boosted regres-
sion trees with a squared loss penalty (Friedman, 2001),
H ′(xi) =

∑T
t=1 ht(xi), where each function ht(·) is

a limited-depth CART tree (Breiman, 1984). We then
apply the mapping xi → φ(xi) to all inputs, where
φ(xi) = [h1(xi), . . . , hT (xi)]

>. To avoid confusion be-
tween CART trees and the CSTC tree, we refer to CART
trees ht(·) as weak learners.

Risk minimization. At each node in the CSTC tree we
propose to learn a linear classifier in this feature space,
H(xi) = φ(xi)

>β with β ∈ RT , which is trained to ex-
plicitly reduce the CPU cost during test-time. We learn
the weight-vector β by minimizing a convex empirical risk
function `(φ(xi)

>β, yi) with l1 regularization, |β|. In ad-
dition, we incorporate a cost term c(β), which we derive
in the following subsection, to restrict test-time cost. The
combined test-time cost-sensitive loss function becomes

L(β) =
∑

i

`(φ(xi)
>β, yi) + ρ|β|

︸ ︷︷ ︸
regularized risk

+ λ c(β)︸︷︷︸
test-cost

, (1)

where λ is the accuracy/cost trade-off parameter, and ρ con-
trols the strength of the regularization.

Test-time cost. There are two factors that contribute to the
test-time cost of each classifier. The weak learner evalua-
tion cost of all active ht(·) (with |βt|> 0) and the feature
extraction cost for all features used in these weak learners.
We assume that features are computed on demand with the
cost c the first time they are used, and are free for future
use (as feature values can be cached). We define an auxil-
iary matrix F ∈ {0, 1}d×T with Fαt = 1 if and only if the
weak learner ht uses feature fα. Let et > 0 be the cost to
evaluate a ht(·), and cα be the cost to extract feature fα.
With this notation, we can formulate the total test-time cost
for an instance precisely as

c(β) =
∑

t

et‖βt‖0
︸ ︷︷ ︸
evaluation cost

+
∑

α

cα

∥∥∥∥∥
∑

t

|Fαtβt|
∥∥∥∥∥

0︸ ︷︷ ︸
feature extraction cost

, (2)

where the l0 norm for scalars is defined as ‖a‖0 ∈ {0, 1}
with ‖a‖0 = 1 if and only if a 6= 0. The first term assigns
cost et to every weak learner used in β, the second term
assigns cost cα to every feature that is extracted by at least
one of such weak learners.

Test-cost relaxation. The cost formulation in (2) is exact
but difficult to optimize as the l0 norms are non-continuous
and non-differentiable. As a solution, throughout this pa-
per we use the mixed-norm relaxation of the l0 norm over
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Figure 1. A schematic layout of a CSTC tree. Each node vk has a
threshold θk to send instances to different parts of the tree and a
weight vector βk for prediction. We solve for βk and θk that best
balance the accuracy/cost trade-off for the whole tree. All paths
of a CSTC tree are shown in color.

sums,

∑

j

∥∥∥∥∥
∑

i

|aij |
∥∥∥∥∥

0

→
∑

j

√∑

i

(aij)2, (3)

described by (Kowalski, 2009). Note that for a single el-
ement this relaxation relaxes the l0 norm to the l1 norm,
‖aij‖0 →

√
(aij)2 = |aij |, and recovers the commonly

used approximation to encourage sparsity (Efron et al.,
2004; Schölkopf & Smola, 2001). We plug the cost-term
(2) into the loss in (1) and apply the relaxation (3) to all l0
norms to obtain

∑

i

`i+ρ|β|
︸ ︷︷ ︸
regularized loss

+λ

(∑

t

et|βt|
︸ ︷︷ ︸

ev. cost penalty

+
∑

α

cα

√∑

t

(Fαtβt)2

︸ ︷︷ ︸
feature cost penalty

)
, (4)

where we abbreviate `i = `(φ(xi)
>β, yi) for simplicity.

While (4) is cost-sensitive, it is restricted to a single linear
classifier. In the next section we describe how to expand
this formulation into a cost-effective tree-structured model.

4. Cost-sensitive tree
We begin by introducing foundational concepts regarding
the CSTC tree and derive a global loss function (5). Similar
to the previous section, we first derive the exact cost term
and then relax it with the mixed-norm. Finally, we describe
how to optimize this function efficiently and to undo some
of the inaccuracy induced by the mixed-norm relaxations.

CSTC nodes. We make the assumption that instances
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min
β1,θ1,...,β|V |,θ|V |

∑

vk∈V

(
1

n

n∑

i=1

pki `
k
i +ρ|βk|

)

︸ ︷︷ ︸
regularized risk

+λ
∑

vl∈L
pl

[∑

t

et

√∑

vj∈πl

(βjt )
2

︸ ︷︷ ︸
evaluation cost penalty

+
∑

α

cα

√∑

vj∈πl

∑

t

(Fαtβ
j
t )

2

︸ ︷︷ ︸
feature cost penalty

]
(5)

with similar labels can utilize similar features.1 We there-
fore design our tree algorithm to partition the input space
based on classifier predictions. Classifiers that reside deep
in the tree become experts for a small subset of the in-
put space and intermediate classifiers determine the path
of instances through the tree. We distinguish between
two different elements in a CSTC tree (depicted in Fig-
ure 1): classifier nodes (white circles) and terminal ele-
ments (black squares). Each classifier node vk is associ-
ated with a weight vector βk and a threshold θk. Different
from cascade approaches, these classifiers not only classify
inputs using βk, but also branch them by their threshold
θk, sending inputs to their upper child if φ(xi)

>βk > θk,
and to their lower child otherwise. Terminal elements
are “dummy” structures and are not classifiers. They re-
turn the predictions of their direct parent classifier nodes—
essentially functioning as a placeholder for an exit out of
the tree. The tree structure may be a full balanced binary
tree of some depth (eg. figure 1), or can be pruned based
on a validation set (eg. figure 4, left).

During test-time, inputs are first applied to the root node v0.
The root node produces predictions φ(xi)

>β0 and sends
the input xi along one of two different paths, depending
on whether φ(xi)

>β0 > θ0. By repeatedly branching the
test-inputs, classifier nodes sitting deeper in the tree only
handle a small subset of all inputs and become specialized
towards that subset of the input space.

4.1. Tree loss

We derive a single global loss function over all nodes in the
CSTC tree.

Soft tree traversal. Training the CSTC tree with hard
thresholds leads to a combinatorial optimization problem,
which is NP-hard. Therefore, during training, we softly par-
tition the inputs and assign traversal probabilities p(vk|xi)
to denote the likelihood of input xi traversing through
node vk. Every input xi traverses through the root, so
we define p(v0|xi) = 1 for all i. We use the sigmoid
function to define a soft belief that an input xi will tran-
sition from classifier node vk to its upper child vj as
p(vj |xi, vk) = σ(φ(xi)

>βk − θk).2 The probability of

1For example, in web-search ranking, features generated by
browser statistics are typically predictive only for highly relevant
pages as they require the user to spend significant time on the page
and interact with it.

2The sigmoid function is defined as σ(a) = 1
1+exp(−a)

and
takes advantage of the fact that σ(a) ∈ [0, 1] and that σ(·) is

reaching child vj from the root is, recursively, p(vj |xi) =
p(vj |xi, vk)p(vk|xi), because each node has exactly one
parent. For a lower child vl of parent vk we naturally ob-
tain p(vl|xi) =

[
1− p(vj |xi, vk)

]
p(vk|xi). In the follow-

ing paragraphs we incorporate this probabilistic framework
into the single-node risk and cost terms of eq. (4) to obtain
the corresponding expected tree risk and tree cost.

Expected tree risk. The expected tree risk can be obtained
byWg over all nodes V and inputs and weighing the risk
`(·) of input xi at node vk by the probability pki =p(vk|xi),

1

n

n∑

i=1

∑

vk∈V
pki `(φ(xi)

>βk, yi). (6)

This has two effects: 1. the local risk for each node fo-
cusses more on likely inputs; 2. the global risk attributes
more weight to classifiers that serve many inputs.

Expected tree costs. The cost of a test-input is the cumu-
lative cost across all classifiers along its path through the
CSTC tree. Figure 1 illustrates an example of a CSTC tree
with all paths highlighted in color. Every test-input must
follow along exactly one of the paths from the root to a ter-
minal element. LetL denote the set of all terminal elements
(e.g., in figure 1 we have L={v7, v8, v9, v10}), and for any
vl∈L let πl denote the set of all classifier nodes along the
unique path from the root v0 before terminal element vl

(e.g., π9 ={v0, v2, v5}). The evaluation and feature cost of
this unique path is exactly

cl=
∑

t

et

∥∥∥∥∥
∑

vj∈πl

|βjt |
∥∥∥∥∥

0︸ ︷︷ ︸
evaluation cost

+
∑

α

cα

∥∥∥∥∥
∑

vj∈πl

∑

t

|Fαtβjt |
∥∥∥∥∥

0︸ ︷︷ ︸
feature cost

.

This term is analogous to eq. (2), except the cost et of the
weak learner ht is paid if any of the classifiers vj in path
πl use this tree (i.e. assign βjt non-zero weight). Similarly,
the cost cα of a feature fα is paid exactly once if any of
the weak learners of any of the classifiers along πl require
it. Once computed, a feature or weak learner can be reused
by all classifiers along the path for free (as the computation
can be cached very efficiently).

Given an input xi, the probability of reaching terminal ele-
ment vl ∈ L (traversing along path πl) is pli = p(vl|xi).
Therefore, the marginal probability that a training input
(picked uniformly at random from the training set) reaches

strictly monotonic.
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vl is pl =
∑
i p(v

l|xi)p(xi) = 1
n

∑n
i=1 p

l
i. With this no-

tation, the expected cost for an input traversing the CSTC
tree becomes E[cl] =

∑
vl∈L p

lcl. Using our l0-norm re-
laxation in eq. (3) on both l0 norms in cl gives the final
expected tree cost penalty

∑

vl∈L
pl

[∑

t

et

√∑

vj∈πl

(βjt )
2 +
∑

α

cα

√∑

vj∈πl

∑

t

(Fαtβ
j
t )

2

]
,

which naturally encourages weak learner and feature re-use
along paths through the CSTC tree.

Optimization problem. We combine the risk (6) with the
cost penalties and add the l1-regularization term (which
is unaffected by our probabilistic splitting) to obtain the
global optimization problem (5). (We abbreviate the empi-
Wisk at node vk as `ki =`(φ(xi)

>βk, yi).)

4.2. Optimization Details

There are many techniques to minimize the loss in (5). We
use a cyclic optimization procedure, solving ∂L

∂(βk,θk)
for

each classifier node vk one at a time, keeping all other
nodes fixed. For a given classifier node vk, the traversal
probabilities pji of a descendant node vj and the probability
of an instance reaching a terminal element pl also depend
on βk and θk (through its recursive definition) and must be
incorporated into the gradient computation.

To minimize (5) with respect to parameters βk, θk, we use
the lemma below to overcome the non-differentiability of
the square-root terms (and l1 norms) resulting from the l0-
relaxations (3).

Lemma 1. Given any g(x) > 0, the following holds:

√
g(x) = min

z>0

1

2

[
g(x)

z
+ z

]
. (7)

The lemma can be proved as z =
√
g(x) minimizes

the function on the right hand side. Further, it is shown
in (Boyd & Vandenberghe, 2004) that the right hand side is
jointly convex in x and z, so long as g(x) is convex.

For each square-root or l1 term we introduce an auxiliary
variable (i.e., z above) and alternate between minimizing
the loss in (5) with respect to βk, θk and the auxiliary vari-
ables. The former is performed with conjugate gradient
descent and the latter can be computed efficiently in closed
form. This pattern of block-coordinate descent followed by
a closed form minimization is repeated until convergence.
Note that the loss is guaranteed to converge to a fixed point
because each iteration decreases the loss function, which is
bounded below by 0.

Initialization. The minimization of eq. (5) is non-convex
and therefore initialization dependent. However, minimiz-

ing eq. (5) with respect to the parameters of leaf classi-
fier nodes is convex, as the loss function, after substitutions
based on lemma 1, becomes jointly convex (because of the
lack of descendant nodes). We therefore initialize the tree
top-to-bottom, starting at v0, and optimize over βk by min-
imizing (5) while considering all descendant nodes of vk as
“cut-off” (thus pretending node vk is a leaf).

Tree pruning. To obtain a more compact model and to
avoid overfitting, the CSTC tree can be pruned with the
help of a validation set. As each node is a classifier, we can
apply the CSTC tree on a validation set and compute the
validation error at each node. We prune away nodes that,
upon removal, do not decrease the performance of CSTC
on the validation set (in the case of ranking data, we even
can use validation NDCG as our pruning criterion).

Fine-tuning. The relaxation in (3) makes the exact l0 cost
terms differentiable and is well suited to approximate which
dimensions in a vector βk should be assigned non-zero
weights. The mixed-norm does however impact the per-
formance of the classifiers because (different from the l0
norm) larger weights in β incur larger penalties in the loss.
We therefore introduce a post-processing step to correct
the classifiers from this unwanted regularization effect. We
re-optimize all predictive classifiers (classifiers with termi-
nal element children, i.e. classifiers that make final pre-
dictions), while clamping all features with zero-weight to
strictly remain zero.

min
β̄k

∑

i

pki `(φ(xi)
>β̄

k
, yi) + ρ|β̄k|

subject to: β̄kt = 0 if βkt = 0. (8)

The final CSTC tree uses these re-optimized weight vectors
β̄
k for all predictive classifier nodes vk.

5. Results
In this section, we first evaluate CSTC on a carefully con-
structed synthetic data set to test our hypothesis that CSTC
learns specialized classifiers that rely on different feature
subsets. We then evaluate the performance of CSTC on the
large scale Yahoo! Learning to Rank Challenge data set
and compare it with state-of-the-art algorithms.

5.1. Synthetic data

We construct a synthetic regression dataset, sampled from
the four quadrants of the X,Z-plane, where X = Z =
[−1, 1]. The features belong to two categories: cheap fea-
tures, sign(x), sign(z) with cost c=1, which can be used
to identify the quadrant of an input; and four expensive fea-
tures y++, y+−, y−+, y−− with cost c = 10, which repre-
sent the exact label of an input if it is from the correspond-
ing region (a random number otherwise). Since in this syn-
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Figure 2. CSTC on synthetic data. The box at left describes the artificial data set. The rest of the figure shows the CSTC tree built for
the data set. At each node we show a plot of the predictions made by that classifier. After each node we show the weight vector that was
selected to make predictions and send instances to child nodes (if applicable).

thetic data set we do not transform the feature space, we
have φ(x)=x, and F (the weak learner feature-usage vari-
able) is the 6×6 identity matrix. By design, a perfect clas-
sifier can use the two cheap features to identify the sub-
region of an instance and then extract the correct expensive
feature to make a perfect prediction. The minimum fea-
ture cost of such a perfect classifier is exactly c = 12 per
instance. The labels are sampled from Gaussian distribu-
tions with quadrant-specific means µ++, µ−+, µ+−, µ−−
and variance 1. Figure 2 shows the CSTC tree and the pre-
dictions of test inputs made by each node. In every path
along the tree, the first two classifiers split on the two cheap
features and identify the correct sub-region of the input.
The final classifier extracts a single expensive feature to
predict the labels. As such, the mean squared error of the
training and testing data both approach 0.

5.2. Yahoo! Learning to Rank

To evaluate the performance of CSTC on real-world tasks,
we test our algorithm on the public Yahoo! Learning
to Rank Challenge data set3 (Chapelle & Chang, 2011).
The set contains 19,944 queries and 473,134 documents.
Each query-document pair xi consists of 519 features.
An extraction cost, which takes on a value in the set
{1, 5, 20, 50, 100, 150, 200}, is associated with each fea-
ture4. The unit of these values is the time required to eval-

3http://learningtorankchallenge.yahoo.com
4The extraction costs were provided by a Yahoo! employee.

uate a weak learner ht(·). The label yi ∈ {4, 3, 2, 1, 0}
denotes the relevancy of a document to its correspond-
ing query, with 4 indicating a perfect match. In contrast
to Chen et al. (2012), we do not inflate the number of irrel-
evant documents (by counting them 10 times). We measure
the performance using NDCG@5 (Järvelin & Kekäläinen,
2002), a preferred ranking metric when multiple levels of
relevance are available. Unless otherwise stated, we restrict
CSTC to a maximum of 10 nodes. All results are obtained
on a desktop with two 6-core Intel i7 CPUs. Minimizing
the global objective requires less than 3 hours to complete,
and fine-tuning the classifiers takes about 10 minutes.

Comparison with prior work. Figure 3 shows a compar-
ison of CSTC with several recent algorithms for test-time
cost-sensitive learning. We show NDCG versus cost (in
units of weak learner evaluations). The plot shows different
stages in our derivation of CSTC: the initial cost-insensitive
ensemble classifier H ′(·) (Friedman, 2001) from section 3
(stage-wise regression), a single cost-sensitive classifier as
described in eq. (4), the CSTC tree (5) and CSTC tree with
fine-tuning (8). We obtain the curves by varying the accu-
racy/cost trade-off parameter λ (and perform early stopping
based on the validation data, for fine-tuning). For CSTC
tree we evaluate six settings, λ = { 1

3 ,
1
2 , 1, 2, 3, 4, 5, 6}.

In the case of stage-wise regression, which is not cost-
sensitive, the curve is simply a function of boosting iter-
ations.

For competing algorithms, we include Early exit (Cam-

http://learningtorankchallenge.yahoo.com
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bazoglu et al., 2010) which improves upon stage-wise re-
gression by short-circuiting the evaluation of unpromising
documents at test-time, reducing the overall test-time cost.
The authors propose several criteria for rejecting inputs
early and we use the best-performing method “early ex-
its using proximity threshold”. For Cronus (Chen et al.,
2012), we use a cascade with a maximum of 10 nodes.
All hyper-parameters (cascade length, keep ratio, discount,
early-stopping) were set based on a validation set. The
cost/accuracy curve was generated by varying the corre-
sponding trade-off parameter, λ.

As shown in the graph, CSTC significantly improves the
cost/accuracy trade-off curve over all other algorithms. The
power of Early exit is limited in this case as the test-time
cost is dominated by feature extraction, rather than the eval-
uation cost. Compared with Cronus, CSTC has the abil-
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Figure 5. The ratio of features, grouped by cost, that are extracted
at different depths of CSTC (the number of features in each cost
group is indicated in parentheses in the legend). More expensive
features (c ≥ 20) are gradually extracted as we go deeper.

ity to identify features that are most beneficial to different
groups of inputs. It is this ability, which allows CSTC to
maintain the high NDCG significantly longer as the cost-
budget is reduced.

Note that CSTC with fine-tuning only achieves very tiny
improvement over CSTC without it. Although the fine-
tuning step decreases the mean squared error on the test-set,
it has little effect on NDCG, which is only based on the rel-
ative ranking of the documents (as opposed to their exact
predictions). Moreover, because we fine-tune prediction
nodes until validation NDCG decreases, for the majority of
λ values, only a small amount of fine-tuning occurs.

Input space partition. Figure 4 (left) shows a pruned
CSTC tree (λ = 4) for the Yahoo! data set. The number
above each node indicates the average label of theWg in-
puts passing through that node. We can observe that differ-
ent branches aim at different parts of the input domain. In
general, the upper branches focus on correctly classifying
higher ranked documents, while the lower branches target
low-rank documents. Figure 4 (right) shows the Jaccard
matrix of the predictive classifiers (v3, v4, v5, v6, v14) from
the same CSTC tree. The matrix shows a clear trend that
the Jaccard coefficients decrease monotonically away from
the diagonal. This indicates that classifiers share fewer fea-
tures in common if their average labels are further apart—
the most different classifiers v3 and v14 have only 64% of
their features in common—and validates that classifiers in
the CSTC tree extract different features in different regions
of the tree.

Feature extraction. We also investigate the features ex-
tracted in individual classifier nodes. Figure 5 shows the
fraction of features, with a particular cost, extracted at dif-
ferent depths of the CSTC tree for the Yahoo! data. We ob-
serve a general trend that as depth increases, more features
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are being used. However, cheap features (c ≤ 5) are fully
extracted early-on, whereas expensive features (c ≥ 20)
are extracted by classifiers sitting deeper in the tree, where
each individual classifier only copes with a small subset of
inputs. The expensive features are used to classify these
subsets of inputs more precisely. The only feature that has
cost 200 is extracted at all depths—which seems essential
to obtain high NDCG (Chen et al., 2012).

6. Conclusions
We introduce Cost-Sensitive Tree of Classifiers (CSTC), a
novel learning algorithm that explicitly addresses the trade-
off between accuracy and expected test-time CPU cost in
a principled fashion. The CSTC tree partitions the input
space into sub-regions and identifies the most cost-effective
features for each one of these regions—allowing it to match
the high accuracy of the state-of-the-art at a small fraction
of the cost. We obtain the CSTC algorithm by formulating
the expected test-time cost of an instance passing through
a tree of classifiers and relax it into a continuous cost func-
tion. This cost function can be minimized while learning
the parameters of all classifiers in the tree jointly. By mak-
ing the test-time cost vs. accuracy tradeoff explicit we en-
able high performance classifiers that fit into computational
budgets and can reduce unnecessary energy consumption
in large-scale industrial applications. Further, engineers
can design highly specialized features for particular edges-
cases of their input domain and CSTC will automatically
incorporate them on-demand into its tree structure.
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