
Scheduling Strategies for Optimistic Parallel Execution of
Irregular Programs∗

Milind Kulkarni,
†

Patrick Carribault,
Keshav Pingali

University of Texas, Austin
{milind,pingali}@cs.utexas.edu,

patrick@ices.utexas.edu

Ganesh Ramanarayanan, Bruce Walter

Kavita Bala,
‡

L. Paul Chew
Cornell University, Ithaca, New York

graman@cs.cornell.edu,
bjw@graphics.cornell.edu,
{kb,chew}@cs.cornell.edu

ABSTRACT
Recent application studies have shown that many irregular appli-
cations have a generalized data parallelism that manifests itself as
iterative computations over worklists of different kinds. In general,
there are complex dependencies between iterations. These depen-
dencies cannot be elucidated statically because they depend on the
inputs to the program; thus, optimistic parallel execution is the only
tractable approach to parallelizing these applications.

We have built a system called Galois that supports this style of
parallel execution. Its main features are (i) set iterators for express-
ing worklist-based data parallelism, and (ii) a runtime system that
performs optimistic parallelization of these iterators, detecting con-
flicts and rolling back computations as needed.

Our work builds on the Galois system, and it addresses the prob-
lem of scheduling iterations of set iterators on multiple cores. The
policy used by the base Galois system is to assign an iteration to
a core whenever it needs work to do, but we show in this paper
that this policy is not optimal for many applications. We also ar-
gue that OpenMP-style DO-ALL loop scheduling directives such as
chunked and guided self-scheduling are too simplistic for irregular
programs. These difficulties led us to develop a general schedul-
ing framework for irregular problems; OpenMP-style scheduling
strategies are special cases of this general approach. We also pro-
vide hooks into our framework, allowing the programmer to lever-
age application knowledge to further tune a schedule for a particu-
lar application.

To evaluate this framework, we implemented it as an extension
of the Galois system. We then tested the system using five real-
world, irregular, data-parallel applications. Our results show that
(i) the optimal scheduling policy can be different for different ap-

∗This work is supported in part by NSF grants 0719966, 0702353,
0615240, 0541193, 0509307, 0509324, 0426787 and 0406380, as
well as grants from IBM and Intel Corportation.
†Milind is supported by a DOE HPCS Fellowship.
‡Kavita Bala is supported in part by NSF Career Grant 0644175.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

plications and often leverages application-specific knowledge and
(ii) implementing these schedules in the Galois system is relatively
straightforward.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Frameworks

General Terms
Languages

Keywords
Optimistic Parallelism, Irregular Programs, Scheduling

1. INTRODUCTION
The majority of applications that will run on multicore proces-

sors are irregular applications that manipulate pointer-based data
structures like trees and graphs, rather than regular applications
that deal with arrays and dense matrices. Little is known about
the nature of concurrency in irregular applications, let alone how to
exploit this concurrency effectively on multicore processors.

Recent case studies of irregular programs have shown that many
have a generalized data parallelism that manifests itself as iterative
computations over worklists of various kinds [11]. Consider 2-D
Delaunay mesh refinement [3], an important irregular code used in
graphics and finite-element solvers. The input to the algorithm is an
initial triangulation of a region in the plane, as shown in Figure 1.
Some of the triangles in this mesh may be badly shaped (these are
shown in red in Figure 1); if so, an iterative refinement procedure,
shown in Figure 2, is used to eliminate them from the mesh. At
each step, the refinement procedure (i) picks a bad triangle from
the worklist, (ii) collects a bunch of triangles in the neighborhood
of that bad triangle (called cavity, shown in blue in Figure 1), and
(iii) re-triangulates that cavity. If this re-triangulation creates new
badly-shaped triangles in the cavity, they are added to the worklist.
The shape of the final mesh depends on the order in which bad
triangles are processed, but it can be shown that every processing
order halts, producing a final mesh without badly shaped elements.
From this description, it is clear that bad triangles whose cavities do
not overlap can be processed in parallel. Moreover, since each bad
triangle is processed identically, this is a form of data parallelism.
Abstractly, the worklist implements a set, and the data parallelism
arises from computations performed on each element of that set.



Figure 1: Mesh refinement.
1: Mesh m = /* read in initial mesh */
2: WorkList wl;
3: wl.add(mesh.badTriangles());
4: while (wl.size() != 0) {
5: Element e = wl.get(); //get bad triangle
6: if (e no longer in mesh) continue;
7: Cavity c = new Cavity(e);
8: c.expand();
9: c.retriangulate();
10: mesh.update(c);
11: wl.add(c.badTriangles());
12:}

Figure 2: Pseudocode of the mesh refinement algorithm

Exploiting data parallelism in irregular programs can be more
complex than exploiting data parallelism in array programs. Data
parallelism in array programs usually manifests itself in DO-ALL
loops (i.e., FORTRAN-style DO loops over integer intervals in which
the iterations can be proven statically to be independent). Data par-
allelism in irregular programs often manifests itself in iteration over
sets, but the iterations are not necessarily independent. Although
static analysis techniques such as points-to and shape analysis [6,
18] can be used in some cases to prove independence, there may be
complex dependences between iterations, as in the case of Delau-
nay mesh refinement. Static analysis fails to discover the potential
data parallelism in these cases.

One promising approach is to use speculative or optimistic par-
allel execution. While there is a large body of work in this area [11,
16, 22], the work described in this paper is based on the Galois
system we have previously developed [11]. In this system, data
parallelism is expressed using set iterators, and these iterators can
be executed concurrently by some number of threads that pull el-
ements one at a time from the underlying worklist. To ensure that
the results of concurrent execution are consistent with the sequen-
tial semantics of the program, there is a runtime system that detects
conflicting method accesses made by different concurrently exe-
cuting iterations. If a conflict is detected, one of the conflicting
iterations is rolled back and any side-effects it may have had on
shared objects are undone. This mechanism is explained in further
detail in Section 2.2.

Figure 3 shows the Galois version of Delaunay mesh refinement.
There is no a priori ordering on set elements, so a sequential ex-
ecution of the set iterator is permitted to execute the iterations in
any order. Although the program can be executed sequentially, the
iterator provides a hint to the Galois runtime system that it may be
profitable to execute the iterations in parallel. In the Galois sys-

1: Mesh m = /* read in initial mesh */
2: Worklist wl;
3: wl.add(mesh.badTriangles());
4: for each e in wl do {//optimistic set iterator
5: if (e no longer in mesh) continue;
6: Cavity c = new Cavity(e);
7: c.expand();
8: c.retriangulate();
9: m.update(c);
10: wl.add(c.badTriangles());
11:}

Figure 3: Delaunay mesh refinement using set iterator

tem’s execution model, a master thread begins the execution of the
program. When this master thread encounters an iterator, it en-
lists the assistance of some number of worker threads to execute
iterations concurrently with itself. The assignment of iterations to
threads is under the control of a scheduling policy implemented by
the runtime system; in the current Galois implementation, this as-
signment is done dynamically to ensure load balancing. All threads
are synchronized using barrier synchronization at the end of the it-
erator. As mentioned above, the runtime system takes care of de-
tecting conflicting accesses made to global objects, and recovering
from unsafe accesses. The Galois system has been used success-
fully to parallelize a number of irregular applications [10].

1.1 Scheduling iterations of set iterators
In this paper, we address the problem of scheduling the itera-

tions of Galois set iterators for parallel execution. In principle,
these iterations can be assigned arbitrarily to different cores and
each core has the freedom to execute the iterations mapped to it
in any order. In practice, we have found that even for sequential
execution, the performance of the program is affected dramatically
by the scheduling policy. Consider a sequential execution of De-
launay mesh refinement. If newly created bad triangles (line 10
in Figure 3) are processed immediately, we get the benefits of ex-
ploiting temporal and spatial locality. For this reason, hand-written
implementations of Delaunay mesh refinement use a stack to im-
plement the worklist. A scheduling policy that picks a bad triangle
at random from the current worklist will not exploit locality and
may therefore perform poorly. Just how much performance is lost
depends on the size and shape of the mesh, cache parameters, etc.
but the experiments reported in Section 4 show that the slow-down
over the LIFO schedule can be more than 33% for even moderately
sized meshes. Paradoxically, other applications such as Delaunay
triangulation [5] suffer enormous slow-downs if the schedule tries
to exploit locality. In Section 4, we show that using a locality-aware
schedule for this problem can triple the execution time compared
to using a random schedule!

Even for the same application, a good sequential scheduling strat-
egy may be bad for parallel execution. For parallel Delaunay mesh
refinement, using a stack (with atomic push and pop operations)
to implement the worklist can double execution time compared to
using the randomized scheduling policy, as we show in Section 4.
This has nothing to do with the overhead of accessing the global
worklist since both scheduling strategies involve the same number
of accesses; instead, it turns out that there is significant misspecu-
lation if the worklist is implemented as a stack.

This discussion shows that the problem of scheduling iterations
of Galois set iterators is considerably more complex than the more
familiar problem of scheduling iterations of DO-ALL loops in reg-
ular programs. In particular, we have found that the relatively sim-
ple scheduling policies in OpenMP for supporting scheduling of
DO-ALL loops [13] are not adequate for scheduling iterations of
Galois set iterators. To ease the implementation of application-
specific schedules, we have designed a general scheduling frame-
work and have used it to implement a number of specific scheduling
policies in the Galois system.

1.2 Organization of paper
The rest of this paper is organized as follows. In Section 2, we

give a high-level description of the Galois system, the basis for our
work. In Section 3, we describe our scheduling framework and dis-
cuss how it is integrated with the Galois system. In Section 4, we
describe experimental results for several real-world irregular appli-
cations: Delaunay mesh refinement [3], Delaunay triangulation [5],



the Boykov-Kolmogorov maxflow algorithm (used in image seg-
mentation) [1], the preflow-push algorithm [4] for maxflow, and
agglomerative clustering [23]. We use our scheduling framework
to evaluate a number of different schedules for each application, il-
lustrating the effects of scheduling on performance and the efficacy
of our framework. We conclude in Section 5 with a discussion of
lessons learnt as well as future research directions.

2. THE GALOIS SYSTEM
In this section, we describe the Galois system at a high level

to provide background for the rest of the paper. The Galois pro-
gramming model [11] is a concurrent, object-based shared-memory
model that can be implemented on top of an object-oriented lan-
guage like Java. The design is based on the belief that program-
mers should write code with well-understood sequential semantics
(we call this the client code), while the complexity of parallel pro-
gramming is hidden within library code and the runtime system.

2.1 Client code
The client code is not explicitly parallel; instead data parallelism

is implicit, and is packaged into two constructs called optimistic set
iterators.

• Set iterator: for each e in Set S do B(e)
The loop body B(e) is executed for each element e of set S.
Since set elements are not ordered, this construct asserts that
in a serial execution of the loop, the iterations can be exe-
cuted in any order. There may be dependences between the
iterations, as in the case of Delaunay mesh generation, but
any serial order of executing iterations is permitted. When
an iteration executes, it may add elements to S.

• Ordered-set iterator: for each e in Poset S do B(e)
This construct iterates over a partially-ordered set (Poset) S.
It is similar to the Set iterator above, except that any execu-
tion order must respect the partial order imposed by the Poset
S.

Figure 3 shows client code for Delaunay mesh refinement. The
well-defined sequential semantics makes it easier to write, under-
stand, and debug the client code. The runtime system exploits the
data-parallelism by speculatively executing iterations of set iter-
ators in parallel, as described in Section 1. The client program
may contain nested iterators, so the current Galois execution model
“flattens” inner iterators, always executing them sequentially. For
ordered set iterators, the runtime system ensures that the iterations
commit in the set order.

2.2 The Galois run-time and class libraries
In this execution model, the key hurdle is ensuring that the paral-

lel execution respects the sequential semantics of the iterators. This
is difficult because each iteration may invoke methods on shared
objects, requiring coordination of concurrent invocations.

The Galois approach lifts the burden of parallelism from the pro-
grammer, placing it instead on the class libraries and the runtime
system. The Galois run-time system detects conflicts through com-
mutativity checks. Intuitively, concurrent accesses by two iterations
to a given object do not conflict if the methods they invoke on that
object commute. This is a property of an object’s interface, and is
expressed through an annotation of its class definition. Commuta-
tivity checks and annotations are discussed in further detail in [11].

We proposed an alternate means of conflict detection in [10],
which leverages partitioned data structures (for example, the mesh
in Delaunay mesh can be geometrically partitioned). If two iter-
ations touch the same partition of a partitioned data structure, a

conflict is triggered and one is rolled back. We call this scheme
partition locking. For example, in Delaunay refinement if two it-
erations each access triangles from the same partition of the mesh,
there is a conflict even if they touch distinct triangles. Partition
locking is less precise than commutativity checking, but we have
found that it can have significantly lower overhead, and several of
the applications studied in Section 4 use this means of conflict de-
tection.

When a conflict is detected, one or more iterations must be rolled
back. To undo the effects of an iteration, the run-time executes
a series of undo methods. Each method of a class in the Galois
system has an associated undo written by the class implementor(for
example, the undo of add(x) in a set is remove(x)). These undo
methods are recorded during execution and used to perform the
rollback when a conflict is detected.

3. SCHEDULING FRAMEWORK
In principle, the iterations of an unordered set iterator can be exe-

cuted in any order, and the runtime system has complete freedom in
how it assigns iterations to processors for execution. However, the
performance of the program may depend critically on the schedul-
ing policy used to execute the loop for the following reasons.

1. Algorithmic effects: In some irregular applications, the schedul-
ing policy can affect the efficiency of an algorithm or data
structure used by the application. For example, a commonly
used algorithm for Delaunay triangulation, described in Sec-
tion 4.2, uses a data structure called the history DAG whose
operations have good expected-case complexity but bad worst-
case complexity (cf the behavior of a binary search tree).
Rewriting the application to use a different algorithm or data
structure is one option, but this may not always be possible.

2. Locality: To promote temporal and spatial locality, it is de-
sirable that iterations that touch the same portion of a global
data structure be assigned to the same core and executed con-
temporaneously. For example, locality is improved in Delau-
nay mesh refinement if bad triangles close to each other in
the mesh are assigned to the same core and are processed
at roughly the same time. Unfortunately, there are also al-
gorithms, such as Delaunay triangulation, in which exploit-
ing locality may trigger worst-case behavior of the underly-
ing data structures(cf inserting sorted elements into a binary
search tree).

3. Conflicts: Iterations that are likely to conflict should not be
scheduled for concurrent execution on different cores. For
example, in Delaunay mesh refinement, bad triangles that are
close to each other in the mesh should not be processed si-
multaneously on different cores since their cavities are likely
to overlap.

4. Load-balancing: The assignment of work to cores should at-
tempt to balance the computation load across cores. This can
be difficult in irregular programs because work is often dy-
namically created, and because load-balancing may conflict
with locality exploitation. For example, in Delaunay mesh
refinement, load-balancing can be accomplished by assign-
ing each core a randomly chosen bad triangle whenever the
core needs work [11]. However, this policy limits locality.

5. Contention and access overhead for global data structures:
Finally, a good scheduling policy may be able to reduce con-
tention and access overhead for global data structures such
as worklists.



3.1 Comparison with scheduling of DO-ALL
loops

These issues make the problem of scheduling set iterators in ir-
regular programs much more complex than the well-studied prob-
lem of scheduling DO-ALL loops in regular programs. DO-ALL
loops are usually used to manipulate dense arrays and are often
written so that executing iterations in standard order exploits spa-
tial locality. There are few if any algorithmic effects to worry about,
and there are no conflicts between different iterations, so the main
concerns are load-balancing, and reducing contention and access
overhead for global data structures. Therefore, simple policies suf-
fice.

For example, OpenMP supports three scheduling policies for
DO-ALL loops: static, dynamic, and guided. Static schedules as-
sign iterations to cores in a cyclic (round-robin) fashion before loop
execution begins; to exploit locality, the programmer can specify
that the assignment be done in a block-cyclic fashion in chunks of
c contiguous iterations at a time. Static schedules can lead to load
imbalance if the execution times of iterations vary widely. In dy-
namic scheduling, the system assigns iterations to cores whenever
the core needs work; this is good for load-balancing, but if each
iteration does only a small amount of work, the overhead of assign-
ing iterations dynamically can be substantial. To ameliorate this
problem and to permit locality exploitation, the programmer can
ask the system to hand out chunks of c contiguous iterations at a
time. Guided self-scheduling is a more sophisticated form of dy-
namic scheduling in which the chunk size is decreased gradually
towards the end of loop execution.

These policies are not adequate for irregular codes. Most irreg-
ular codes such as Delaunay mesh refinement create work dynam-
ically, so static scheduling is not useful. There is no a priori or-
dering on the iterations of an unordered set iterator, so chunking is
not well-defined. One interpretation of chunking is the following:
when a core asks for work, the scheduler gives it some number of
elements from the worklist, rather than just a single element. How-
ever, worklist elements are not ordered in any way, so there is no
reason to believe that this kind of chunking promotes locality.

3.2 Our approach
In our framework, a fully defined schedule for a set iterator re-

quires the specification of three scheduling functions (see Figure 4).

1. Clustering: A cluster is a group of iterations all of which are
executed by a single core. The clustering function maps each
iteration to a cluster.

2. Labeling: The labeling function assigns each cluster of iter-
ations to a core. A single core may execute iterations from
several clusters, as shown in Figure 4.

3. Ordering: The ordering function maps the iterations in the
different clusters assigned to a given core to a linear order
that defines the execution order of these iterations.

To understand these scheduling functions, it is useful to con-
sider how the static and dynamic scheduling schemes supported
by OpenMP map to this framework. For a static schedule with
chunk size c, the clustering function partitions the iterations of the
DO-ALL loop into clusters of c contiguous iterations. The labeling
function assigns these clusters to cores in a round-robin fashion, so
each core may end up with several clusters. The ordering function
can be described as cluster-major order since a core executes clus-
ters in lexicographic order, and it executes all iterations in a cluster
before it executes iterations from the next cluster. Notice that for
static schedules of DO-ALL loops, the iteration space, clusters and
the three scheduling functions are known before the loop begins

execution. For dynamic schedules on the other hand, some of these
are defined incrementally as the loop executes. Consider a dynamic
schedule with chunk size c. As in the case of static schedules, the
clustering function partitions iterations into clusters of c contiguous
iterations, and this function is defined completely before the loop
begins execution. However, the labeling function is defined incre-
mentally during loop execution since the assignment of clusters to
cores is done on demand. The ordering function is cluster-major
order, as in the static case. In general therefore, Figure 4 should be
viewed as a post-execution report of scheduling decisions, some of
which may be made before loop execution, while the rest are made
during loop execution.

Scheduling in irregular programs can be viewed as the most gen-
eral case of Figure 4 in which even the iteration space and clus-
ters are defined dynamically. In applications like Delaunay mesh
refinement, elements can be added to the worklist as the loop exe-
cutes, and this corresponds abstractly to the addition of new points
to the iteration space of the loop during execution. It is convenient
to distinguish between the initial iterations of the iteration space,
which exist before loop execution begins, and dynamically created
iterations, which are added to the iteration space as the loop exe-
cutes. The initial iterations may be clustered before loop execution
begins, but the runtime system may decide to create new clusters
for dynamically created iterations, so both the iteration space and
clusters may be defined dynamically.

A clustering/labeling/ordering policy is a systematic procedure
for generating some category of clustering/labeling/ordering func-
tions. For example, a random clustering policy assigns iterations
to clusters randomly, and may produce different assignments of it-
erations to clusters (i.e., different clustering functions) in different
runs. We now describe a number of policies for clustering, label-
ing and ordering that we have found to be useful in our application
studies.

Clustering.
We have implemented the following policies for assigning initial

iterations to clusters.

• Chunking: This policy is defined only for ordered-set itera-
tors, and it is a generalization of OpenMP-style chunking of
DO-ALL loops. The programmer specifies a chunk size c,
and the policy clusters c contiguous iterations at a time.

• Data-centric: In some applications, there is an underlying
global data structure that is accessed by all iterations. Par-
titioning this data structure between the cores often leads to
a natural clustering of iterations; for example, if the mesh in
Delaunay mesh refinement is partitioned between the cores,
the responsibility for refining a bad triangle can be given to
whichever core owns the partition that contains that bad tri-
angle1 [10]. The data-centric policy is similar in spirit to
what is done in High Performance FORTRAN (HPF) [8, 17].
The number of data partitions is specified by the programmer
or is determined heuristically by the system.

• Random: In some applications, it may be desirable to assign
initial iterations to clusters randomly. The number of initial
clusters is specified by the programmer or is chosen heuristi-
cally.

• Unit: Each iteration is in a cluster by itself. This can be
considered to be a degenerate case of random clustering in
which each cluster contains exactly one iteration. This is the
default policy.

1Note that if the cavity of the bad triangle spans multiple partitions,
the core refining that triangle will need to access several partitions.



P0

P1

P0

P1

Clustering Labeling Ordering

Iteration Space Clusters Labeled Clusters Execution Schedule

Figure 4: Scheduling framework

For applications that dynamically create new iterations, the pol-
icy for a new iteration can be chosen separately from the decision
made for the initial iterations. Dynamically created iterations can
be clustered using the Data-centric, Random, and Unit policies de-
scribed above. In addition, we have implemented one policy specif-
ically for dynamically created iterations.

• Inherited: If the execution of iteration i1 creates iteration
i2, i2 is assigned to the same cluster as i1. This particular
policy is interesting because it lends itself to an efficient im-
plementation using iteration-local worklists. Newly created
work gets added to the iteration local worklist, which can be
accessed without synchronization.

An aborted iteration, by default, is treated as a dynamically cre-
ated iteration. For example, if a schedule uses the inherited cluster-
ing policy, an aborted iteration will be assigned to the same cluster
it was in previously, but if it uses the random policy, an aborted
iteration will be assigned to a random cluster.

Labeling.
Labeling policies can be static or dynamic. In static labeling,

every cluster is assigned to a core before execution begins. In dy-
namic labeling, clusters are assigned to cores on demand.

We have implemented the following static labeling policies.

• Round-robin: For ordered-set iterators, clusters can be as-
signed to cores in a round-robin fashion. This is similar to
what is done in OpenMP.

• Data-centric: If clustering is performed using a data-centric
policy, the cluster can be assigned to the same core that own
the corresponding data partition. This promotes locality and
also reduces the likelihood of conflicts because cores work
on disjoint data for the most part.

• Random: Clusters are assigned randomly to cores.

We have also implemented the following dynamic policies.

• Data-centric: This is implemented using over-decomposition
(i.e. the underlying data structure is divided into more parti-
tions than there are cores). Clustering is done using the data-
centric policy. When a core needs work, it is given a data
partition and its associated cluster of iterations. The distri-
bution of code and data can be implemented by a centralized
scheduler or it can be implemented in a decentralized way
using work-stealing.

• Random: Clusters are assigned randomly to cores.
• LIFO/FIFO: These policies can be used when clusters are

created dynamically. For example, LIFO labeling means when
a core needs work it is given the most recently created clus-
ter.

Ordering.
The ordering policy is determined by the following decisions.

1. Given a choice between some number of clusters, which clus-
ter should be chosen for execution? We have implemented
random, lexicographic order (for ordered-set iterators), and
LIFO/FIFO (for dynamically created clusters).

2. Once a cluster is picked, what order should iterations in that
cluster be executed in? We have implemented random, lex-
icographic order (for ordered-set iterators), and LIFO/FIFO
(for dynamically created iterations in the current cluster).

3. When should execution switch between clusters (i.e. how are
clusters interleaved)?

• Cluster-major order: All iterations in the current clus-
ter are executed before those from a different cluster are
executed.

• Switch-on-abort: Iterations are executed from the cur-
rent cluster till some iteration aborts. At that point, ex-
ecution switches to a different cluster.

• Random: Execution switches between clusters at ran-
dom.

3.3 Implementation
Upto this point, we have presented a general conceptual frame-

work for scheduling irregular, data-parallel applications. For the
framework and system to be truly useful, it must be easy for a
programmer to implement application-specific scheduling policies.
Recall that scheduling of iterations from the worklist is handled by
the Galois runtime system. By hiding the worklist in the optimistic
iterator construct, the run-time can provide different scheduling
policies with minimal intervention from the user.

The object that controls scheduling in the Galois run-time system
is the GaloisScheduler. It provides methods which specify how a
thread obtains a new piece of work (essentially performing the ac-
tions of the labeling policy and ordering policy), and how a core
adds new work to the iterator (performing the actions of the clus-
tering policy). By subclassing the GaloisScheduler and selectively
overriding these methods, it is straightforward for a programmer to
implement any schedule he or she desires. Our implementations of
the policies described above use this technique.

Given a set of GaloisScheduler objects that implement different
scheduling policies, the question then becomes how a programmer
can specify which policy to use for his or her program. One way of
setting this policy is through compiler directives similar to OpenMP
pragmas: the data-parallel loop is annotated to indicate the policy
the programmer desires. Unfortunately, this is too restrictive for our
purposes. By limiting the policies to those provided by compiler di-
rectives, programmers lose the ability to specify custom scheduling
policies (which are often necessary, as we see in Section 4.5).

Instead, we take a programmatic approach. When instantiating
the Galois runtime system, a programmer can pass in a particular



GaloisScheduler object to set a scheduling policy. This requires
minimal changes to the user code, comparable to compiler direc-
tives, but retains the full flexibility of the scheduling framework.
The Galois system provides several common policies which pro-
vide acceptable performance for a number of applications (see Sec-
tion 4.6).

4. EVALUATION
We have evaluated our scheduling approach on five irregular ap-

plications. The scheduling framework described in Section 3 can
be used to implement a vast number of policies and it is both infea-
sible and pointless to evaluate all these policies on all benchmarks.
Instead, we studied the algorithms and data structures in these ap-
plications, and determined a number of interesting scheduling poli-
cies for each one. We then implemented these policies in the Galois
system and measured the performance obtained for that application
using each of these policies.

The machine we used in our experiments is a dual-processor,
dual-core 3.0 GHz Xeon system with 16KB of L1 cache per core
and 4MB of L2 cache per processor. This particular system exhibits
performance anomalies due to automatic power management; to
eliminate these, we downclocked the cores to 2 GHz. Our imple-
mentation of the Galois system, as well as the scheduling frame-
work described in this paper, is in Java 1.6. To take into account
variations in parallel execution, as well as the overhead of JIT com-
pilation, each experiment was run 5 times under a single JVM in-
stance, and the fastest execution time was recorded. In an attempt
to minimize the effects of GC on running time, a full GC was per-
formed before each execution. We used Sun’s HotSpot JVM, which
was run with a 2GB heap.

4.1 Delaunay Mesh Refinement
This application is described in Section 1. The input data was

generated using Shewchuk’s Triangle program [20]. It had 100,364
triangles and boundary segments, of which 47,768 were bad.

Scheduling issues.
As discussed in Section 3, the scheduling policy can affect per-

formance because of algorithmic effects, locality, conflicts, load
balancing, and overhead. In mesh refinement, algorithmic effects
are minor: the total number of bad triangles that are created dy-
namically depends on the scheduling policy but the variation in this
number is small. The final mesh depends on the order in which bad
triangles are refined, and although different orders perform differ-
ent amounts of work, the variation in the amount of work is small.
Furthermore, the cost of getting work from the worklist is relatively
small compared to cost of an iteration, so the effect of scheduling
overhead is small. Therefore, the main concerns are locality, con-
flicts, and load balancing.

A significant feature of this application is that when the cavity
of a bad triangle is re-triangulated, a number of new bad triangles
may be created in that cavity. These new triangles will be (i) in
the same region of the mesh as the original bad triangle, and (ii)
near one another in the updated mesh. To exploit temporal and
spatial locality, these new triangles should be processed right away.
However, if these triangles are refined concurrently, their cavities
are likely to overlap and the abort ratio will be high.

Evaluation.
The baseline sequential implementation, called seq in this dis-

cussion, uses a LIFO scheduling policy, implemented using a stack
as the worklist to exploit spatial and temporal locality. In all the

parallel implementations discussed in this section, the mesh is par-
titioned between the cores, and conflict detection is performed us-
ing partition locking rather than commutativity checks, as described
in Section 2. This ensures that all parallel versions use the same
mechanism for conflict checks, so the only difference between them
is the scheduling policy2.

We evaluated four different parallel schedules:

• default – This is the default schedule used by the base Ga-
lois system: the worklist is centralized, and a core is given
one bad triangle, chosen at random, on demand. In terms of
the scheduling framework introduced in Section 3, we can
describe this schedule as follows: it uses the unit clustering
policy for both initial and dynamically generated iterations,
and the labeling policy is dynamic and random. Obviously,
there are no ordering concerns in this policy.

• stack – This policy is similar to default, except that the work-
list is stack-like, so the labeling policy is dynamic and LIFO
rather than random. This policy mimics the scheduling pol-
icy of seq.

• part – This schedule uses data-centric clustering for both ini-
tial iterations and dynamic iterations, with 4 times as many
partitions as processors. The labeling policy is also data-
centric. The cluster interleaving used is switch-on-abort. Within
a cluster, iterations are ordered in a LIFO manner, processing
newer work first. The mesh is partitioned using breadth-first
search, a simplified version of the Kernighan-Lin method [7].

• hist – This schedule uses a random clustering policy for ini-
tial iterations, with each cluster containing 16 elements. Dy-
namically created iterations use inherited clustering; newly
created work is assigned to the cluster that is currently be-
ing processed. The labeling policy is the same as in default.
Because the labeling policy is dynamic, there is no cluster
interleaving. Iteration ordering within a cluster is LIFO.

We compared the parallel implementation using these schedules
with the sequential implementation. Figure 5(a) gives the wallclock
time, in seconds, for seq as well as the four parallel versions on
different numbers of cores. Figure 5(b) shows the speedup of the
five parallel versions relative to sequential execution time. We see
that stack has the worst performance, achieving a speedup of 1.2 on
4 cores, while hist performs the best, achieving a speedup of 3.3.

There are a number of interesting points to note in these results.
First, we note that seq, which is the sequential implementation that
uses LIFO scheduling, and stack, which is the parallel implemen-
tation of LIFO-like scheduling, perform almost identically on one
core; since stack is a parallel code, it has a small additional over-
head even when run on a single core. Both versions exploit locality
and therefore outperform the default version, which uses random-
ized scheduling. The fact that hist also performs well on one core
shows that most of the locality benefits can be obtained by focusing
on one bad triangle from the original mesh at a time, and repeatedly
eliminating all new bad triangles created in its cavity before moving
on to a different bad triangle from the original mesh.

Interestingly, single-core performance does not always translate
to parallel performance. While default is slower than stack on a
single core, it is faster on 4 cores. This is likely due to speculation
conflicts, as discussed before. To investigate this, we measured the
abort ratio, the percentage of executed iterations which are rolled
back. A high abort ratio is indicative of significant mis-speculation

2Note that the scheduling policy does not need to be cognizant of
the data partitioning (for example, bad triangles can still be as-
signed randomly to cores), although we would expect to obtain
some locality benefits if the scheduling policy was data-centric.



Schedule 1 core 2 cores 4 cores
Exec. Time Exec. Time Exec. Time Abort Ratio

seq 11.495 — — —
default 15.724 8.754 5.609 19.64%
stack 11.721 9.584 9.603 96.97%
part 11.634 6.255 3.639 5.79%
hist 11.435 6.338 3.508 7.19%

(a) Execution time (in seconds) and abort ratios

1 2 3 4
# of Cores

1

1.5

2

2.5

3

Sp
ee

du
p

hist
part
stack
default

(b) Speedup vs. # of cores

Figure 5: Results for Delaunay mesh refinement

in the program, which may reduce performance. There is no di-
rect correlation between abort ratio and performance: some itera-
tions abort soon after starting (essentially a busy-wait), while others
abort towards the end, resulting in more lost work. The rightmost
column of Figure 5(a) shows the abort ratio for the parallel sched-
ules on 4 cores. From these numbers, we see that stack has a very
high abort ratio, as expected. By processing triangles chosen at
random, default avoids this problem, and the gain in concurrency
outweighs the cost in lost locality.

Both part and hist perform well in terms of locality and spec-
ulation behavior. They both execute iterations in a LIFO manner
within a cluster, and their clustering policies ensure that newly cre-
ated iterations are immediately executed, leading to good locality.
They also both exhibit a low abort ratio. In the case of part, this is
because of reduced mis-speculation. On the other hand, hist uses
the same random scheduling as default to avoid excessive aborts.
Unsurprisingly, the two schedules perform similarly, despite very
different behaviors. We conjecture that hist is a better schedule
than part due to better load-balancing. part uses a static labeling,
so it cannot correct for load imbalance between processors. hist
leverages dynamic labeling to achieve load balance.

4.2 Delaunay Triangulation
The second benchmark we studied is Delaunay triangulation, the

creation of a Delaunay mesh, given a set of input points. In general,
this mesh may have bad triangles, which can be eliminated using
the refinement code discussed in Section 4.1.

Pseudocode for this algorithm is shown in Figure 6. The main
loop iterates over the set of points, inserting a new point into the
current mesh at each iteration to create a new mesh that satisfies
the Delaunay property. When all the points have been inserted,
mesh construction is complete. To insert a point p into the current
mesh, the algorithm determines the triangle t that contains point
p (line 6), then splits t into three new triangles that share point
p as one of their vertices (line 7). These new triangles may not
satisfy the Delaunay property, so a procedure called edge flipping
is used to restore the Delaunay property. Edge flipping examines
each edge of the newly created triangles (lines 9-15); if any edge is
non-Delaunay, the edge is flipped, removing the two non-Delaunay
triangles and replacing them with two new triangles (line 12). The
edges of these newly created triangles are examined in turn (line
13). When this loop terminates, the resulting mesh is once again a
Delaunay mesh.

1: Mesh m = /* initialize with one surrounding triangle */
2: Set points = /* read points to insert */
3: Worklist wl;
4: wl.add(points);
5: for each Point p in wl {
6: Triangle t = m.surrounding(p);
7: Triangle newSplit[3] = m.splitTriangle(t, p);
8: Worklist wl2;
9: wl2.add(edges(newSplit));
10: for each Edge e in wl2 {
11: if (!isDelaunay(e)) {
12: Triangle newFlipped[2] = m.flipEdge(e);
13: wl2.add(edges(newFlipped))
14: }
15: }
16: }

Figure 6: Pseudocode for Delaunay triangulation

To locate the triangle containing a given point, we use a data
structure called the history DAG [5]. Intuitively, this data structure
can be viewed as a ternary search tree. The leaves of the DAG rep-
resent the triangles in the current mesh. When a triangle is split
(line 7), the three new triangles are added to the data structure as
children of the original triangle. The only twist to this intuitive pic-
ture is that when an edge is flipped (line 12), the two new triangles
are children of both old triangles, so the data structure is a DAG
in general, rather than a tree. If the DAG is more or less balanced,
point location can be performed in O(log(N)) time where N is
the number of triangles in the current mesh. However, if the data
structure becomes long and skinny, point location can take O(N)
time, resulting in poor performance. To avoid this worst-case be-
havior, Guibas et al recommend inserting points in random order
rather than in a spatially coherent order.

Opportunities for exploiting parallelism.
This algorithm exhibits nested iterators (over wl and wl2). We

parallelize the outer iterator, as in the default policy of the Galois
system, inserting multiple points in parallel. Inserting a new point
only affects the triangles in its immediate neighborhood, so insert-
ing multiple points in parallel can be profitable, as long as they are
sufficiently far apart in the geometry. Conflicts can occur when two
threads attempt to manipulate the same triangles in the mesh (lines
7 and 13). Notice that this algorithm does not add elements to the
worklist dynamically.

Scheduling issues.
For this application, algorithmic effects are the most important,

since it is critical to avoid worst-cast behavior of the history DAG.
The best sequential implementation (seq) uses a random worklist [5].
In the parallel implementation, we can exploit temporal and spatial
locality if points are inserted in sorted order. Unfortunately, this
can lead to worst-case behavior of the history DAG.

Evaluation.
The input data for our experiments is a set of 75,000 random,

uniformly-distributed points; the final mesh has roughly 150,000
triangles.

We evaluated three different parallel schedules:

• default – The default Galois schedule. Note that this approx-
imates the schedule used by the sequential implementation.

• part – The points are partitioned geometrically. The sched-
ule uses data-centric clustering for the initial iterations, with
8 times as many clusters as cores. The labeling policy is also
data-centric. The ordering is cluster-major; within each clus-
ter, the ordering is random. Intuitively, this scheduling policy



tries to exploit locality when clustering iterations, but it does
not try to exploit locality when executing a given cluster.

• sorted – This schedule is similar to the part schedule except
that the ordering within each cluster is the (geometrically)
sorted order rather than random. Intuitively, this scheduling
policy tries to exploit locality when creating clusters and also
when executing iterations in each cluster.

Figure 7(a) gives the overall execution time on different numbers
of cores, as well as the abort ratio on four cores. Figure 7(b) shows
the speedup relative to seq for the various schedules.

Schedule 1 core 2 cores 4 cores
Exec. Time Exec. Time Exec. Time Abort Ratio

seq 17.623 — — —
default 18.982 11.634 7.284 3.54%
part 17.555 9.174 5.631 0.34%
sorted 49.250 16.770 8,491 0.67%

(a) Execution time (in seconds) and abort ratios

1 2 3 4
# of Cores

0.5

1

1.5

2

2.5

3

Sp
ee

du
p

part
default
sorted

(b) Speedup vs. # of cores

Figure 7: Results for Delaunay triangulation

The sorted schedule exhibits the worst performance of all the
evaluated schedules. Although sorting the points achieves better
locality in the mesh, these results illustrate the tradeoff described
earlier: sorting the points is good for locality but it leads to a poorly
shaped history-DAG and affects algorithmic performance. How-
ever, abandoning locality completely is not the best solution ei-
ther. The best performance is achieved with the part schedule. This
achieves a good balance between locality in the mesh (as each core
focuses on points from a single partition at a time) and random-
ness for the DAG (as the interleaving of different cores’ iterations
is essentially random). With this schedule, we achieve a speedup
of 3.13 on 4 cores.

4.3 Boykov-Kolmogorov maxflow
The Boykov-Kolmogorov algorithm [1] is a maxflow algorithm

tuned for image segmentation problems and based on augmenting
paths (we abbreviate the algorithm as “B-K maxflow”). It performs
a breadth-first walk over the graph to find paths from the source to
the sink in the residual graph. Once an augmenting path has been
found and the flow is updated, the current search tree is updated to
reflect the new flow, and then used as a starting point for computing
the next search tree. The algorithm computes search trees starting
from both the source and the sink.

B-K maxflow is naturally a worklist-style algorithm, as seen in
Figure 8: each node at the frontier of a search tree is on the worklist.
When a node is removed from the worklist, its edges are traversed
to extend the search, and newly discovered nodes are added to the
worklist. If an augmenting path is found, the capacities of all edges
along the path are decremented appropriately. Nodes that are dis-
connected as a result of this augmentation are added back to the
worklist.

1: worklist wl = /*initialize with SOURCE and SINK*/
2: for each Node n in worklist {

//n in SourceTree or SinkTree
3: if (n.inSourceTree()) {
4: for each Node a in n.neighbors() {
5: if (a.inSourceTree())
6: continue; //already found
7: else if (a.inSinkTree()) {

//decrement capacity along path
8: int cap = augment(n, a);

//update total flow
9: flow.inc(cap);

//put disconnected nodes onto worklist
10: processOrphans();
11: } else {
12: worklist.add(a);
13: a.setParent(n); //put a into SourceTree
14: }
15: }
16: } else { //n must be in the SinkTree
17: ... //similar to code for when n in Source Tree
18: }
19:}

Figure 8: Pseudocode for B-K maxflow

Opportunities for exploiting parallelism.
As in the other applications, the order in which elements are pro-

cessed from the worklist is irrelevant to proper execution, although
different orders will produce different search trees. Therefore, we
can process nodes in the worklist concurrently, provided there are
no conflicts. Conflicts can occur when concurrent traversals visit
the same node (line 13), or when augmenting paths overlap (line
8).

Scheduling issues.
Unlike Delaunay triangulation and refinement, the iterations in

B-K maxflow do relatively little work. Most perform a single step
of a breadth-first search. Furthermore, augmenting paths in im-
age segmentation problems tend to be short, so even iterations that
perform augmentation are short. The cost of obtaining work from
the worklist, especially in parallel, is a significant concern in this
application, and thus the effect of scheduling on overhead and con-
tention for shared structures is paramount.

Evaluation.
The sequential implementation is a Java port of the original se-

quential C code, which uses a queue for the worklist. The input
data is a 1024x1024 image segmentation problem based on over-
lapping checkerboards. We evaluated five parallel schedules for
this application:

• default – the default schedule.
• queue – this is the same policy as default, except the label-

ing policy uses FIFO labeling. This schedule approximates
the sequential schedule of execution since it will perform an
approximate breadth-first traversal.

• chunked – this is the same policy as queue, except it uses the
random clustering policy, and aims to create clusters of size
16. Dynamically generated iterations are assigned to new,
unlabeled clusters. The ordering within a cluster is random.

• hist – this is the same policy as chunked, except the clustering
function uses the inherited rule for dynamically generated
iterations. Intra-cluster ordering is LIFO ordering. This is
essentially the same schedule as hist in mesh refinement.

• part – This schedule is the same as part in mesh refine-
ment, except the ordering policy uses cluster-major order-
ing and the clustering policy uses the inherited rule for new
work. This clustering policy is key, because in this appli-



cation, data-centric clustering may not assign newly created
work to the current cluster. As the input graph has a grid
structure, the partitioning used for data-centric clustering is
block-based.

Figure 9(a) gives the execution time on different numbers of
cores, as well as the abort ratio on four cores. Figure 9(b) shows
the speedup relative to seq for the parallel schedules. We see that
default performs the worst, actually slowing down compared to se-
quential execution by a factor of 10 on four cores, while part per-
forms the best, achieving a speedup of 2.67x over seq.

Schedule 1 core 2 cores 4 cores
Exec. Time Exec. Time Exec. Time Abort Ratio

seq 384 — — —
default 1166 1759 3191 0.367%
queue 608 1000 1470 0.235%
chunked 508 593 623 0.109%
hist 363 391 404 0.071%
part 421 240 144 0.001%

(a) Execution time (in ms) and abort ratios

1 2 3 4
# of Cores

0

0.5

1

1.5

2

2.5

3

Sp
ee

du
p

part
hist
chunked
queue
default

(b) Speedup vs. # of cores

Figure 9: Results for B-K maxflow

This application illustrates the effects of scheduling overhead on
execution performance. The locality effect of newly created work
manifests itself in better single-core performance for queue over
default. However, both default and queue perform poorly on four
cores, slowing down compared to the same schedule on one core.
This is because accessing the worklist is a significant portion of
each iteration, and if a schedule uses dynamic labeling, the worklist
is global. These accesses are guarded by locks to ensure correct
labeling of clusters, thus resulting in poor performance.

This effect can be mitigated by reducing the overhead of dy-
namic labeling. One approach is demonstrated by chunked: iter-
ations are grouped into clusters, reducing the amount of labeling
that must be done. This reduces execution time, but still has signif-
icant overhead during clustering: newly created work is assigned
to new clusters, thus requiring synchronization to ensure correct
cluster formation. The hist schedule keeps newly created work in
the current cluster, eliminating the need to add and remove newly
created work in the global worklist, which produces better results.

All of the previously discussed schedules rely on dynamic label-
ing to some extent, and this requires synchronization on a global
worklist. By using static labeling, we no longer require a global
worklist and this bottleneck is removed. We see that the part sched-
ule, which uses static labeling and inherited cluster assignment for
new work, is the best performing schedule.

This application demonstrates the need to carefully consider the
overhead implicit in a scheduling decision, as it can have dramatic
effects on application performance.

4.4 Preflow-Push
The preflow-push algorithm [4] is another approach to solving

maxflow. Unlike augmenting-paths algorithms, which iteratively
improve a valid flow until it is maximal, preflow-push algorithms

1: Worklist wl = /* Nodes with excess flow */
2: for each Node u in wl {
3: for each Edge e of Node u {

/* push flow from u along edge e
update capacity of e and excess in u
flow == amount of flow pushed */

4: double flow = Push(u, e);
5: if(flow > 0)
6: worklist.add(e.head);
7: }
8: Relabel(u); // raise u’s height if necessary

// put u back in worklist if still active
9: if(u.excess > 0)

worklist.add(u);
10: }

Figure 10: Pseudocode for preflow-push

work on an ‘invalid’ flow, called a preflow, where nodes can have
excess inflow. Any nodes with excess are called active; by process-
ing these nodes, the preflow is converted into a maximum flow.

The algorithm begins by pushing flow from the source to all of
its neighbors, activating them. The goal is to eliminate the excess
at these nodes by either directing it towards the sink or draining it
back to the source. The basic idea is to maintain a height value at
each node and push flow from higher nodes to lower nodes, all the
way to the sink which is at height 0. Height values act as a lower
bound on distance to the sink node, and are updated as the residual
graph changes during the algorithm.

The basic preflow-push algorithm maintains a single worklist of
active nodes that is processed until empty. Two operations, push
and relabel, are permitted on each active node. A push operation
moves excess flow from a node x at height h to a node y at height
h − 1; this activates node y and adds it to the worklist. A relabel
operation lifts x up until it is high enough to push its excess to
one of its neighbors. The pseudocode for the algorithm is given
in Figure 10. Various heuristics have been proposed to improve
performance, but a full examination of each variant is beyond the
scope of this work, so here we focus on the basic algorithm.

Opportunities for exploiting parallelism.
Like the other algorithms in this paper, the preflow-push worklist

can be processed in any order, making it suitable for parallelization.
The push and relabel operations are both local, involving only an
active node and its immediate neighborhood. Conflicts can occur
if two cores attempt to manipulate the same node via either a push
(line 4) or a relabel (line 8) operation. This algorithm is unique
among our applications in that all successfully completed push and
relabel operations remain valid even if followed immediately by a
conflict. Thus, it is not necessary to undo any preflow-push work
after an abort.

Scheduling issues.
Iterations in preflow-push are the shortest among our example

applications; the push and relabel operations are cheap, and the
regular nature of the graph means that nodes have few neighbors.
The majority of the overhead arises from contention, either in in-
teracting with the global worklist, or in keeping processors isolated
from each other. Furthermore, unlike B-K maxflow, this algorithm
is almost entirely based on newly generated work. Thus it is impor-
tant to have a scheduling policy that can suitably cluster and label
this new work to assign it to the appropriate processor.

Evaluation.
The best performing sequential implementation uses the follow-

ing schedule (inspired by our parallel experiments): when a unit of



work is removed from the main worklist, it is transferred to a sec-
ondary worklist. The algorithm processes the secondary worklist
until exhausted, then returns to the main worklist to get the next
unit of work. We compared this sequential schedule, seq, to the
schedules default, chunked, hist, and part from B-K maxflow, us-
ing a 128x128 instance of the segmentation problem.

Schedule 1 core 2 cores 4 cores
Exec. Time Exec. Time Exec. Time Abort Ratio

seq 4.93 —— —— ——
default 32.09 83.62 144.59 12.23%
chunked 25.69 30.64 37.87 22.17%
hist 5.45 4.63 4.83 14.04%
part 5.12 2.64 1.72 <0.01%

(a) Execution time (seconds) and abort ratios

1 2 3 4
# of Cores

0

0.5

1

1.5

2

2.5

3

Sp
ee

du
p

part
hist
chunked
default

(b) Speedup vs. # of cores

Figure 11: Results for Preflow-Push

Preflow-push, even more than B-K maxflow, shows tremendous
sensitivity to scheduling overheads. Computing a maxflow on the
input data requires about 30 million iterations of the main loop.
Unsurprisingly, default performs very poorly, and although chun-
ked does show improvement due to larger iteration clusters, newly
generated work is still handled too slowly to result in speedup.

By using a local worklist to speed up clustering of new work, we
are able to at least match sequential performance, as shown in the
hist schedule. However, the abort ratios here show the importance
of intelligently clustering the iteration space. Thus, the part sched-
ule, which statically clusters iteration space to reduce conflicts and
lower scheduling overhead, achieves the best performance and re-
sults in a 2.86x speedup on 4 cores.

4.5 Agglomerative Clustering
Agglomerative clustering is a commonly used algorithm in data-

mining [21] and other fields3. We use a version from a graphics
application for handling a large numbers of light sources [23]. It
builds a hierarchical representation (a binary tree or dendogram)
from a set of points based on similarity or distance. The input is a
set of points and a metric that assigns a size to any subset of points.
The algorithm then progressively clusters pairs of elements (each
element is subset of input points) that are the most similar (i.e.,
their union has the smallest size), until only one element is left (the
root node of the binary tree). A kdtree is used to efficiently answer
queries for the nearest neighbor of an element. When two elements
are clustered, they are removed from the kdtree and a new element
representing their union is added to the kdtree.

The algorithm described in [11] is a greedy algorithm using an
ordered set, but under some mild conditions on the metric, there is
an equivalent algorithm using an unordered set iterator, shown in

3Our scheduling framework uses the notion of iteration clustering
as described in Section 3. This is an instance of the general notion
of data clustering from data-mining. To disambiguate these related
notions, we will refer to data clusters and iteration clusters in this
section.

1: worklist = new Set(input_points);
2: kdtree = new KDTree(input_points);
3: for each Element a in worklist do {
4: b = kdtree.findNearest(a);
5: if (b == null) break; //stop if a is last element
6: c = kdtree.findNearest(b);
7: if (a == c) {

//create new cluster e that contains a and b
8: Element e = cluster(a,b);
9: kdtree.remove(a);
10: kdtree.remove(b);
11: kdtree.add(e);
12: worklist.remove(b);
13: worklist.add(e);
14: } else { //can’t cluster a yet, try again later
15: worklist.add(a); //add back to worklist
16: }
17: }

Figure 12: Psuedocode for agglomerative clustering

Figure 12. Intuitively, we can cluster two elements together when-
ever we can prove that the ordered greedy algorithm would also
cluster them eventually. If the metric is non-decreasing with re-
spect to set membership and if two elements agree that they are
each other’s best match then it is safe to cluster them immediately.

Opportunities for Parallelism.
The resulting tree is not affected by the order in which the work-

list is processed, allowing elements to be processed in parallel.
Conflicts arise when one thread modifies the kdtree (lines 9 to
11), and this changes the result of another thread’s ongoing nearest
neighbor computations (lines 4 and 6).

Scheduling issues.
Agglomerative clustering builds a binary tree from the bottom

up so a node cannot be created before its children. Specifically, an
element often cannot be clustered until after some other elements
have been processed. A poor schedule can result in repeatedly at-
tempting to cluster elements which cannot be clustered yet (line
15), leading to an explosion in the amount of work done.

Evaluation.
We evaluated three different schedules for this application using

200,000 initial points. The best sequential version uses the same
locality optimizations as the hist schedule below, but without the
conflict checking and synchronization overheads.

• default – The default schedule.
• chain – This schedule improves locality using a programmer-

specified dynamic labeling policy. If an iteration does not
successfully form a data cluster between a and b, the labeling
policy assigns the iteration associated with b to the processor
next, based on a scheduler hint inserted into the iteration at
line 15.

• hist – This schedule is the same as chain, except when a and
b are successfully combined in a data cluster (line 13). In this
case, the schedule assigns the newly created iteration to the
current iteration cluster (as in the inherited clustering policy),
using another scheduler hint. This does not affect iterations
generated by line 15, otherwise the loop would never termi-
nate.

While default achieves good self-relative speedup using more
cores, its performance is poor compared to the best sequential seq.
Due to the scheduling issue discussed above, default executes more
than 13 times as many iterations as seq.

The user-defined labeling function in chain results in a much



Schedule 1 core 2 cores 4 cores
Exec. Time Exec. Time Exec. Time Abort Ratio

seq 4.28 — — —
default 153.41 73.93 47.93 0.27%
chain 12.02 6.68 4.17 0.22%
hist 5.17 2.97 1.89 0.07%

(a) Execution time (in seconds) and abort ratios

1 2 3 4
# of Cores

0

0.5

1

1.5

2

2.5

Sp
ee

du
p

hist
chain
default

(b) Speedup vs. # of cores

Figure 13: Results for agglomerative clustering

more efficient schedule than default, performing about 10 times
fewer iterations. It also exhibits better locality than default, and
hence runs 12 times faster. Finally, hist exploits additional local-
ity due to its clustering of newly created work after a successful
clustering, leading to a real speedup of 2.3 on four cores.

We see that for this application, algorithmic effects dominate the
performance, and the necessary schedule to mitigate these effects is
complex and problem-specific. Our scheduling framework allows
us to specify this kind of complex scheduling.

4.6 Summary of Results
Our experimental results clearly demonstrate it is beneficial to

provide scheduling flexibility across applications — the default Ga-
lois scheduling policy tends to perform poorly. Furthermore, across
different applications the optimal scheduling policy can differ. Ta-
ble 1 summarizes the scheduling policies that we found to perform
the best for each of our applications. The policies are presented as
follows: clustering shows first the policy for initial work, then the
policy for dynamically generated work; labeling specifies dynamic
or static labeling, then the specific policy; and ordering shows first
the cluster interleaving policy, then the intra-cluster ordering pol-
icy.

While every application we evaluated (other than the two maxflow
problems) required a different set of scheduling policies to pro-
duce the best results, there are some common features which can
inform a programmer’s choice of schedules. When dealing with
partitioned data structures, as in all applications other than agglom-
erative clustering, it is beneficial to perform data-centric clustering
and labeling (though this is not the best schedule for mesh refine-
ment, it approaches the optimal schedule in performance). When
new work is created, inherited clustering should be chosen (a slight
modification of this policy was necessary for agglomerative clus-
tering to ensure termination). Cluster-major ordering is useful as it
promotes locality. As these choices seem like natural starting points
for designing a scheduling policy for an application, the Galois sys-
tem provides this policy for programmers to use “out-of-the-box.”

It is possible that even for a single application there is not a par-
ticular scheduling policy that performs the best. In irregular pro-
grams, behavior can be very input dependent. For lack of space,
we have only evaluated each application on a single input set, and
have not investigated this input-dependent variability in schedul-
ing. However, for the general types of inputs we have considered
for each application (e.g. image segmentation problems for B-K

maxflow and preflow-push), we feel that there is likely only small
amounts of variability in the optimal scheduling policy across in-
puts. We leave a full study, which would also consider other types
of inputs which may have significantly different behavior, to future
work.

5. RELATED WORK AND CONCLUSIONS

Related Work.
While data parallelism in regular applications has been stud-

ied extensively, it is only in the last decade or so that parallelism
in irregular applications has been explored. A common hardware
approach is Thread Level Speculation (TLS) [9, 16], which spec-
ulatively executes loop iterations in order. There have also been
software-based approaches to parallelism. In [22], Vachharajani et
al proposed a speculative variant of Decoupled Software Pipelin-
ing (DSWP) [14], which parallelizes loops by executing different
strongly connected components of a loop on different processors –
in essence transforming data parallelism into task parallelism.

However, both variants of loop parallelization are fundamentally
tied to loop order; TLS requires loop ordering to perform rollback,
while DSWP relies on loop ordering to detect strongly connected
components, and hence extract parallelism. In essence, by taking
a low-level view of data parallelism, they do not allow the abstrac-
tions required to perform scheduling as we propose here. Further-
more, all these systems detect speculative conflicts by examining
the read and write sets of speculatively executed iterations. In con-
trast, we use commutativity properties of method invocations of ab-
stract data types, which allows the use of semantic information in
detecting conflicts. Our experience is that this reduces the number
of reported conflicts dramatically.

In [15], Philbin et al. reordered loops in sequential applications
to improve locality, using information about data accesses. In the
realm of task-parallelism, Chen et al proposed scheduling concur-
rent execution in order to promote cache sharing on CMPs [2].
Both techniques, while different in their approaches, are similar
in spirit to our use of data-centric clustering and labeling functions
to promote locality.

In the past several years, there has been significant interest in
Transactional Memory (TM) as a synchronization technique [12].
However, because TM is a concurrency construct for explicitly par-
allel programs, not a parallelization technique, the type of schedul-
ing we discuss in this paper is meaningless; when using TM, a
thread executes a transaction whenever it encounters one. There is
a second aspect to scheduling which TM does consider: contention
management (i.e. which speculative thread should be rolled back
on a conflict). While there have been several policies proposed in
the literature [19], in our experience we have not found it neces-
sary to use anything other than the Galois default policy: the thread
detecting the conflict rolls back.

Conclusions.
In this paper we presented a general framework for scheduling

data-parallel computation, suited for both regular and irregular ap-
plications. We described how a schedule can be defined through
three policies: clustering, labeling and ordering. We also showed
how the object-oriented nature of the Galois system can be lever-
aged to easily implement our framework. Through an evaluation
of the framework on several real-world applications, we demon-
strated that different schedules can exhibit widely varying perfor-
mance on a given application, and that there is no single, best-
performing schedule across all applications. By extending the Ga-



Scheduling Policy
Application Clustering Labeling Ordering
Mesh refinement random / inherited dynamic / random — / LIFO
Delaunay triangulation data-centric / — static / data-centric cluster-major / random
B-K maxflow data-centric / inherited static / data-centric cluster-major / LIFO
Preflow-push maxflow data-centric / inherited static / data-centric cluster-major / LIFO
Agglomerative clustering unit / custom dynamic / custom — / —

Table 1: Highest-performing scheduling policies for each application

lois system with our scheduling framework, programmers can ex-
plore the space of possible schedules, arriving at the particular sched-
ule that best suits their application.

6. REFERENCES
[1] Yuri Boykov and Vladimir Kolmogorov. An experimental

comparison of min-cut/max-flow algorithms for energy
minimization in vision. International Journal of Computer
Vision (IJCV), 70(2):109–131, 2006.

[2] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios
Liaskovitis, Anastassia Ailamaki, Guy E. Blelloch, Babak
Falsafi, Limor Fix, Nikos Hardavellas, Todd C. Mowry, and
Chris Wilkerson. Scheduling threads for constructive cache
sharing on cmps. In SPAA ’07: Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and
architectures, pages 105–115, New York, NY, USA, 2007.
ACM Press.

[3] L. Paul Chew. Guaranteed-quality mesh generation for
curved surfaces. In SCG ’93: Proceedings of the ninth
annual symposium on Computational geometry, 1993.

[4] Andrew V. Goldberg and Robert E. Tarjan. A new approach
to the maximum-flow problem. J. ACM, 35(4):921–940,
1988.

[5] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir.
Randomized incremental construction of delaunay and
voronoi diagrams. Algorithmica, 7(1):381–413, December
1992.

[6] L. Hendren and A. Nicolau. Parallelizing programs with
recursive data structures. IEEE Transactions on Parallel and
Distributed Systems, 1(1):35–47, January 1990.

[7] B. W. Kernighan and S. Lin. An effective heuristic procedure
for partitioning graphs. The Bell System Technical Journal,
pages 291–308, February 1970.

[8] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber,
Jr. Guy L. Steele, and Mary E. Zosel. The high performance
Fortran handbook. MIT Press, Cambridge, MA, USA, 1994.

[9] Venkata Krishnan and Josep Torrellas. A chip-multiprocessor
architecture with speculative multithreading. IEEE Trans.
Comput., 48(9):866–880, 1999.

[10] Milind Kulkarni, Keshav Pingali, Ganesh Ramanarayanan,
Bruce Walter, Kavita Bala, and L. Paul Chew. Optimistic
parallelism benefits from data partitioning. SIGARCH
Comput. Archit. News, 36(1):233–243, 2008.

[11] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh
Ramanarayanan, Kavita Bala, and L. Paul Chew. Optimistic
parallelism requires abstractions. SIGPLAN Not.
(Proceedings of PLDI 2007), 42(6):211–222, 2007.

[12] Jim Larus and Ravi Rajwar. Transactional Memory
(Synthesis Lectures on Computer Architecture). Morgan &
Claypool Publishers, 2007.

[13] OpenMP. http://www.openmp.org.
[14] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I.

August. Automatic thread extraction with decoupled

software pipelining. In MICRO 38: Proceedings of the 38th
annual IEEE/ACM International Symposium on
Microarchitecture, pages 105–118, Washington, DC, USA,
2005. IEEE Computer Society.

[15] James Philbin, Jan Edler, Otto J. Anshus, Craig C. Douglas,
and Kai Li. Thread scheduling for cache locality. In
Architectural Support for Programming Languages and
Operating Systems, pages 60–71, 1996.

[16] Lawrence Rauchwerger and David A. Padua. The LRPD test:
Speculative run-time parallelization of loops with
privatization and reduction parallelization. IEEE Trans.
Parallel Distrib. Syst., 10(2):160–180, 1999.

[17] A. Rogers and K. Pingali. Process decomposition through
locality of reference. In PLDI ’89: Proceedings of the ACM
SIGPLAN 1989 Conference on Programming language
design and implementation, pages 69–80, New York, NY,
USA, 1989. ACM.

[18] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updating. ACM
Transactions on Programming Languages and Systems,
20(1):1–50, January 1998.

[19] William N. Scherer, III and Michael L. Scott. Advanced
contention management for dynamic software transactional
memory. In PODC ’05: Proceedings of the twenty-fourth
annual ACM symposium on Principles of distributed
computing, pages 240–248, New York, NY, USA, 2005.
ACM.

[20] Jonathan Richard Shewchuk. Triangle: Engineering a 2D
Quality Mesh Generator and Delaunay Triangulator. In
Applied Computational Geometry: Towards Geometric
Engineering, volume 1148 of Lecture Notes in Computer
Science, pages 203–222. Springer-Verlag, 1996.

[21] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar,
editors. Introduction to Data Mining. Pearson Addison
Wesley, 2005.

[22] Neil Vachharajani, Ram Rangan, Easwaran Raman,
Matthew J. Bridges, Guilherme Ottoni, and David I. August.
Speculative decoupled software pipelining. In PACT ’07:
Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques (PACT 2007),
pages 49–59, Washington, DC, USA, 2007. IEEE Computer
Society.

[23] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita
Bala, Michael Donikian, and Donald Greenberg. Lightcuts: a
scalable approach to illumination. ACM Transactions on
Graphics (SIGGRAPH), 24(3):1098–1107, July 2005.

http://www.openmp.org

	Introduction
	Scheduling iterations of set iterators
	Organization of paper

	The Galois system
	Client code
	The Galois run-time and class libraries

	Scheduling Framework
	Comparison with scheduling of DO-ALL loops
	Our approach
	Implementation

	Evaluation
	Delaunay Mesh Refinement
	Delaunay Triangulation
	Boykov-Kolmogorov maxflow
	Preflow-Push
	Agglomerative Clustering
	Summary of Results

	Related Work and Conclusions
	References

