
Learning visual similarity for product design with convolutional neural networks

Sean Bell Kavita Bala
Cornell University∗

(a) Query 1: Input scene and box

(b) Project into 256D embedding (c) Results 2: use of product in-situ

Convolutional
Neural

Network

Learned
Parameters θ

(a) Query 2: Product

(c) Results 1: visually similar products

Figure 1: Visual search using a learned embedding. Query 1: given an input box in a photo (a), we crop and project into an embedding (b)
using a trained convolutional neural network (CNN) and return the most visually similar products (c). Query 2: we apply the same method to
search for in-situ examples of a product in designer photographs. The CNN is trained from pairs of internet images, and the boxes are collected
using crowdsourcing. The 256D embedding is visualized in 2D with t-SNE. Photo credit: Crisp Architects and Rob Karosis (photographer).

Abstract

Popular sites like Houzz, Pinterest, and LikeThatDecor, have com-
munities of users helping each other answer questions about products
in images. In this paper we learn an embedding for visual search in
interior design. Our embedding contains two different domains of
product images: products cropped from internet scenes, and prod-
ucts in their iconic form. With such a multi-domain embedding, we
demonstrate several applications of visual search including identify-
ing products in scenes and finding stylistically similar products. To
obtain the embedding, we train a convolutional neural network on
pairs of images. We explore several training architectures including
re-purposing object classifiers, using siamese networks, and using
multitask learning. We evaluate our search quantitatively and qualita-
tively and demonstrate high quality results for search across multiple
visual domains, enabling new applications in interior design.

CR Categories: I.3.8 [Computer Graphics]: Applications I.4.8
[Image Processing and Computer Vision]

Keywords: visual similarity, interior design, deep learning, search

∗Authors’ email addresses: {sbell, kb}@cs.cornell.edu

1 Introduction

Home owners and consumers are interested in visualizing ideas for
home improvement and interior design. Popular sites like Houzz,
Pinterest, and LikeThatDecor have large active communities of users
that browse the sites for inspiration, design ideas and recommenda-
tions, and to pose design questions. For example, some topics and
questions that come up are:

• “What is this {chair, lamp, wallpaper} in this photograph?
Where can I find it?”, or, “Find me {chairs, . . .} similar to
this one.” This kind of query may come from a user who sees
something they like in an online image on Flickr or Houzz, a
magazine, or a friend’s home.

• “How has this armchair been used in designer photos?” Users
can search for the usage of a product for design inspiration.

• “Find me a compatible chair matching this table.” For example,
a home owner is replacing furniture in their home and wants
to find a chair that matches their existing table (and bookcase).

Currently, sites like Houzz have active communities of users that an-
swer design questions like these with (sometimes informed) guesses.
Providing automated tools for design suggestions and ideas can be
very useful to these users.

The common thread between these questions is the need to find
visually similar objects in photographs. In this paper we learn a
distance metric between an object in-situ (i.e., a sub-image of a
photograph) and an iconic product image of that object (i.e., a clean
well-lit photograph, usually with a white background). The distance
is small between the in-situ object image and the iconic product
image, and large otherwise. Learning such a distance metric is
challenging because the in-situ object image can have many different
backgrounds, sizes, orientations, or lighting when compared to the
iconic product image, and, it could be significantly occluded by
clutter in the scene.

Convolution

Local response norm.

Max pooling
Average pooling
Concatenate (along depth)

(b)

LegendCNN

or

(a)

Inner product

I x

Figure 2: CNN architectures: (a) GoogLeNet and (b) AlexNet. Ei-
ther CNN consists of a series of simple operations that processes the
input I and produces a descriptor x. Operations are performed left
to right; vertically stacked operations can be computed in parallel.
This is only meant to give a visual overview; see [Szegedy et al.
2015] and [Krizhevsky et al. 2012] for details including kernel sizes,
layer depths, added nonlinearities, and dropout regularization. Note
that there is no “softmax” layer; it has been removed so that the
output is the D-dimensional vector x.

Recently, the area of deep learning using convolutional neural net-
works (CNNs) has made incredible strides in recognizing objects
across a variety of viewpoints and distortions [Szegedy et al. 2015;
Krizhevsky et al. 2012]. Therefore, we build our method around
this powerful tool to learn functions that can reason about object
similarity across wide baselines and wide changes in appearance. To
apply deep learning, however, we need ground truth data to train the
network. We use crowdsourcing to collect matching information be-
tween in-situ images and their corresponding iconic product images
to generate the data needed to train deep networks.

We make the following contributions:

• We develop a crowdsourced pipeline to collect pairings be-
tween in-situ images and their corresponding product images.

• We show how this data can be combined with a siamese CNN
to learn a high quality embedding. We evaluate several differ-
ent training methodologies including: training with contrastive
loss, object classification softmax loss, training with both, and
the effect of normalizing the embedding vector.

• We apply this embedding to image search applications like
finding a product, finding designer scenes that use a product,
and finding visually similar products across categories.

Figure 1 illustrates how our visual search works. On the left are two
types of queries: (1) an object in a scene marked with a box and (2)
an iconic product image. The user sends the images as queries to the
CNN we have learned. The queries map to different locations in our
256D learned embedding (visualized in the middle). A nearest neigh-
bor query in the embedding produces the results on the right, our
visually similar objects. For query 1, we search for iconic products,
and for query 2 we search for usages of a product in designer scenes.
We include complete results for visual search and embeddings in the
supplemental and on our website (http://productnet.cs.cornell.edu).

2 Related Work

There are many bodies of related work; we focus on learning simi-
larity metrics and visual search, and deep learning using CNNs.

Learning similarity metrics and visual search. Metric learning
is a rich area of research; see [Kulis 2012] for a survey. One of the
most successful approaches is OASIS [Chechik et al. 2010] which
solves for a bi-linear similarity function given triplet judgements.
In the area of graphics, metric learning has been applied to illus-
tration style [Garces et al. 2014] and font similarity [O’Donovan
et al. 2014]. Complementary to metric learning are attributes, which
assign semantic labels to vector directions or regions of the input

Embedding

Margin (m)

(a) Object in-situ (Iq)

(b) Iconic,
same object (Ip)

(c) Iconic,
different object (In)

Figure 3: Our goal is to learn an embedding such that the object
in-situ (a) and an iconic view of an object (b) map to the same
point. We also want different objects (c) to be separated by at least
a margin m, even if they are similar. Photo credit: Austin Rooke.

feature space. Whittle search uses relative attributes for product
search [Parikh and Grauman 2011; Kovashka et al. 2012], Furniture-
geek [Ordonez et al. 2014] understands fine-grained furniture at-
tributes. In addition to modeling visual similarity, there are many
approaches to solving the instance retrieval problem. For exam-
ple, Girod et al. [2011] use the CHoG descriptor to match against
millions of images of CDs, DVDs, and book covers. Many papers
have built methods around feature representations including Fisher
Vectors [Perronnin and Dance 2007] and VLAD [Jegou et al. 2012].
In contrast to the above approaches that mostly use “hand-tuned”
features, we want to learn features end-to-end directly from input
pixels, using convolutional neural networks.

In industry, there have been examples of instance retrieval for differ-
ent problem domains like books and movies. Proprietary services
like Google Goggles and Amazon Flow attempt to handle any arbi-
trary input image and recognize specific products. Other services like
TinEye.com perform “reverse image search” to find near-duplicates
across the entire internet. In contrast, we focus on modeling a higher
level notion of visual similarity.

Convolutional neural networks (CNNs). A full review of deep
learning and convolutional neural networks is beyond the scope of
this paper; please see [Chatfield et al. 2014]. Here, we cover the
most relevant background, and focus our explanation to how we use
this tool for our problem. CNNs are functions for processing images,
consisting of a number of stages (“layers”) such as convolution,
pooling, and rectification, where the parameters of each stage are
learned to optimize performance on some task, given training data.
While CNNs have been around for many years, with early successes
such as LeNet [LeCun et al. 1989], it is only recently that they have
shown competitive results for tasks such as object classification
or detection. Driven by the success of Krizhevsky et al. [2012]’s
“SuperVision” submission to the ILSVRC2012 image classification
challenge, there has been an explosion of interest in CNNs, with
many new architectures and approaches being presented.

For our work, we focus on two recent successful architectures:
AlexNet (a.k.a. “SuperVision”) [Krizhevsky et al. 2012] and
GoogLeNet [Szegedy et al. 2015]. AlexNet has 5 convolutional
layers and 3 inner product layers, and GoogLeNet has many more
layers. Both networks are very efficient and can be parallelized on
modern GPUs to process hundreds of images per second. Figure 2
gives a schematic of these two networks.

In addition to image classification, CNNs have been applied to many
problems in computer vision and show state-of-the-art performance
in areas including classifying image photography style [Karayev
et al. 2014], recognizing faces [Taigman et al. 2014], and ranking
images by fine-grained similarity [Wang et al. 2014]. CNNs have
been shown to produce high quality image descriptors that can be
used for visual instance retrieval, even if they were trained for object
classification [Babenko et al. 2014; Razavian et al. 2014b].

3 Background: learning a distance metric
with siamese networks

In this section, we provide a brief overview of the theory behind
siamese networks and contrastive loss functions [Hadsell et al. 2006],
and how they may be used to train a similarity metric from real data.

Given a convolutional neural network (such as AlexNet or
GoogLeNet), we can view the network as a function f that maps
each image I into an embedding position x, given parameters θ:
x = f(I; θ). The parameter vector θ contains all the weights and
biases for the convolutional and inner product layers, and typically
contains 1M to 100M values. The goal is to solve for the parameter
vector θ such that the embedding produced through f has desirable
properties and places similar items nearby.

Consider a pair of images (Iq, Ip) that are two views of the same
object, and a pair of images (Iq, In) that show different objects. We
can map these images into our embedding to get xq, xp, xn. If we
had a good embedding, we would find that xq and xp are nearby,
and xq and xn are further apart. This can be formalized as the
contrastive loss function L, which measures how well f is able to
place similar images nearby and keep dissimilar images separated.
As implemented in Caffe [Jia et al. 2014], L has the form:

L(θ) =
∑

(xq,xp)

Lp(xq, xp)

︸ ︷︷ ︸
Penalty for similar images

that are far away

+
∑

(xq,xn)

Ln(xq, xn)

︸ ︷︷ ︸
Penalty for dissimilar
images that are nearby

(1)

Lp(xq, xp) = ||xq − xp||22 (2)

Ln(xq, xn) = max
(
0,m2 − ||xq − xn||22

)
(3)

The loss consists of two penalties: Lp penalizes a positive pair
(xq, xp) that is too far apart, and Ln penalizes a negative pair
(xq, xn) that is closer than a margin m. If a negative pair is al-
ready separated by m, then there is no penalty for that pair and
Ln(xq, xn) = 0.

To improve the embedding, we adjust θ to minimize the loss func-
tion L, which can be done with stochastic gradient descent with
momentum [Krizhevsky et al. 2012] as follows:

v(t+1) ← µ · v(t) − α · ∂L
∂θ

(
θ(t)
)

(4)

θ(t+1) ← θ(t) + v(t+1) (5)

where µ ∈ [0, 1) is the momentum and α ∈ [0,∞) is the learning
rate. We use mini-batch learning, where L is approximated by only
considering a handful of examples each iteration.

CNN

Lossθ

I1

I2
CNN x2

x1

L

y

Siamese
Network

I1

I2
y
θ

L

Figure 4: Siamese net-
work abstraction.

The remaining challenge is comput-
ing L and ∂L

∂θ
. Hadsell et al. [2006]

showed that an efficient method of com-
puting and minimizingL is to construct
a siamese network which is two copies
of the CNN that share the same param-
eters θ. An indicator variable y selects
whether each input pair I1, I2 is a pos-
itive (y = 1) or negative (y = 0) ex-
ample. This entire structure can now
be viewed as a new bigger network
that consumes inputs I1, I2, y, θ and
outputs L. With this view, it is now
straightforward to apply the backpropagation algorithm [Rumelhart
et al. 1986] and efficiently compute the gradient ∂L

∂θ
.

For all of our experiments, we use Caffe [Jia et al. 2014], which
contains efficient GPU implementations for training CNNs.

CNN

Lossθ

Iq

Ip
CNN

xp

xq
L

Cq Loss

Cp Loss

CNN
Lossθ

Iq

Ip
CNN xp

xq

L

CNN

Lossθ

Iq

Ip
CNN

xp

xq
L

Cq Loss

Cp Loss

L2

L2

CNN LossI C L

(A) Classification (“Cat”) (B) Siamese Embedding (“Siam”)

(C) Siamese Embedding +
Classification (“Siam+Cat”)

(D) Siamese L2 Embedding +
Classification (“Siam+Cat Cos”)

θ

Figure 5: Training architectures. We study the effect of several
training architectures: (A) a CNN that is used for classification
and then re-purposed as an embedding, (B) directly training an
embedding, (C) also predicting the object categories Cq , Cp, and
(D) also normalizing the embedding vectors to have unit L2 length
(since Euclidean distance on normalized vectors is cosine distance).
Loss for classification: softmax loss (softmax followed by cross-
entropy); loss for embedding: contrastive loss.

4 Our approach

For our work, we build a database of millions of products and
scenes downloaded from Houzz.com. We focus on learning a single
embedding that contains two types of images: in-situ examples of
products Iq (cropped sub-images) and iconic product images Ip, as
shown in Figure 3. Rather than hand-design the mapping Iq 7→ xq ,
we use a siamese network, described above, to automatically learn a
mapping that is both high quality and fast to compute.

While siamese architectures [Hadsell et al. 2006] are quite effec-
tive, there are many ways to train the weights for a CNN. We
explore different methods of training an embedding as shown in
Figure 5. Some of these variations have been used before; for ex-
ample, Razavian [2014b] used architecture A for instance retrieval,
Chopra [2005] used B for identity verification, Wang [2014] used
a triplet version of B with L2 normalization for fine-grained visual
similarity, and Weston [2008] used C for MNIST digits and seman-
tic role labeling. We evaluate these architectures on a real-world
internet dataset.

To train our CNN, we explore a new source of training data. We
collect a hundred thousand examples of matching in-situ products
and their iconic images. We use MTurk to collect the necessary
in-situ bounding boxes for each product (Section 5). We then train
multiple CNN architectures using this data and compare different
multitask loss functions and different distance metrics. Finally, we
demonstrate how the learned mapping can be used in visual search
applications both across all object categories and within specific cate-
gories (Section 6). We perform searches in two directions, returning
either product images or in-situ products in scenes.

5 Learning our visual similarity metric

In this section, we describe how we build a new dataset of positive
and negative examples for training, how we use crowdsourcing to
label the extent of each object, and how we train the network. Finally,
we visualize the resulting embedding and demonstrate that we have
learned a powerful visual similarity metric.

5.1 Collecting Training Data

Training the networks requires positive and negative examples of
matching in-situ images and iconic product images. A great resource

(a) Full scene (b) Iconic product images

Figure 6: Example product tags from in-situ objects to their prod-
ucts (Houzz.com), highlighted with blue circles. Two of the five tags
contain iconic photos of the product. Photo credit: Fiorella Design.

Figure 7: MTurk interface. A video of the interface and instructions
are included in the supplemental. Photo credit: Austin Rooke.

for such images exist at websites like Houzz.com; the site contains
millions of photos of both rooms and products. Many of the rooms
contain product tags, where a “pro” user has annotated a product
inside a room. The annotation can include a description, another
photo, and/or a link to where the product may be purchased. For
example, Figure 6 shows an example photo with several tags; two of
which contain links to photos.

Images. To build our database, we recursively browsed pages on
Houzz.com, downloading each photo and its metadata. In total, we
downloaded 7,249,913 product photos and 6,515,869 room photos.
Most products have an object category that is generally correct,
which we later show can be used to improve the training process. Be-
fore we can use the data, we must detect duplicate and near-duplicate
images; many images are uploaded thousands of times, sometimes
with small variations. To detect both near- and exact-duplicates,
we pass the images through AlexNet [Krizhevsky et al. 2012] and
extract the output from the 7th layer (fc7), which has been shown
to be a high quality image descriptor [Babenko et al. 2014]. We
cluster any two images that have nearly identical descriptors, and
then keep only one copy (the one with the most metadata). As a
result, we retained 3,387,555 product and 6,093,452 room photos.

Product tags. Out of the 3,387,555 product photos, 178,712 have
“product tags”, where a “pro” user has marked an object in-situ with
its corresponding iconic product photo. This gives us a single point,
but we want to know the spatial extent of the product in the room.
Further, many of these tags are incorrect or the result of spam. We
use crowdsourcing to (a) provide a tight bounding box around each
tagged in-situ object and (b) clean up invalid tags.

5.1.1 Crowdsourcing object extents

We chose to have workers draw bounding boxes instead of full
polygon segments, as in Microsoft COCO [Lin et al. 2014] or Open-
Surfaces [Bell et al. 2013], since bounding boxes are cheaper to
acquire and we want training data of the same form as our final user

Figure 8: Example sentinel. Left: product image shown to workers.
Center: ground truth box (red) and product tag location (blue circle).
Right: 172 worker responses with bounding box (black) and circle
(red), rendered with 20% opacity. Photo credit: Increation Interiors.

input (bounding boxes).

We designed a single MTurk task where workers are shown an iconic
view of a product on the left, and the product in-situ on the right
(see Figure 7). We show the location of the tag as an animated blue
circle, to focus the worker’s attention on the correct object (e.g., if
there are multiple copies). See the supplemental for a sample video
of the user interface. We then ask the worker to either draw a tight
bounding box around the object, or flag the pair as a mismatched
item (to eliminate spam). Note that workers are instructed to only
flag very obvious mismatches and allow small variations on the
products. Thus, the ground truth tags often have a different color or
material but are otherwise nearly the same product.

The size of the object in-situ in the image can vary considerably
depending on the object, the viewpoint, etc. We collect the extent
of each object in-situ by asking the worker to click five times: (1)
workers first click to set a bounding circle around the object, (2)
then workers click to place a vertical line on the left/right edge of
the object, (3-5) workers place the remaining bounding lines on the
right/left, top, bottom. The initial bounding circle lets us quickly
adjust the zoom level to increase accuracy. This step is critical to let
us handle the very large variation in size of the objects while giving
the workers the visual detail they need to see to provide good input.
We also found in testing that using infinite lines, instead of boxes,
makes it easier to draw a box around oddly shaped items.

In addition, we added “undo” and “go back” buttons to allow workers
to fix mistakes. At the end of the task, workers are shown all of
their bounding boxes on a new page, and can click to redo any item.
These features were used by 60.4% of the workers. Worker feedback
for our interface was unanimously positive.

5.1.2 Quality control

When crowdsourcing on Mechanical Turk, it is crucial to implement
rigorous quality control measures, to avoid sloppy work. Some
workers intentionally submit random results, others do not read the
instructions. We ensure quality results with two methods: sentinels
and duplication [Gingold et al. 2012]. Sentinels ensure that bad
workers are quickly blocked, and duplication ensures that small
mistakes by the remaining good workers are caught.

Sentinels. Sentinels are secret test items randomly mixed into
each task. Users must agree with the ground truth by having an
intersection-over-union (IOU) score of at least 0.7, IOU(A,B) =
|A∩B|
|A∪B| . If users make at least n mistakes and have an accuracy less
than n·10%, 3 ≤ n ≤ 8, we prevent the user from submitting. Thus,
a worker who submits 3 incorrect answers in a row will be blocked
immediately, but we will wait longer before blocking a borderline
worker. We order the sentinels so that the most difficult ones are
presented first, so bad workers will be blocked after submitting just a
few tasks. In total, we have 248 sentinels, and 6 of them are listed in
the instructions with the correct answer. Despite giving away some
of the answers, 11.9% of workers were blocked by our sentinels.

Figure 8 shows the variety of responses obtained for a single sentinel.
Note that this example appears slightly ambiguous, since there are
multiple copies of the chair that the worker could annotate. However,
we have asked the worker to label only the one with the blue dot
(which is animated in the task to make it more salient). It is important
that we get all workers to follow a single convention so that we can
use worker agreement as a measure of success.

Duplication. Even if a worker is reliable, they may be given a
difficult example, or they may make occasional small mistakes.
Therefore, we collect two copies of every bounding box and check
whether the workers agree. If the intersection-over-union (IOU) of
the two boxes is above 0.7, then we choose the box from the worker
with the higher average sentinel score. If the workers disagree, we
collect more boxes (up to 5) until we find a pair of responses that
agrees (IOU ≥ 0.7).

Results With 1,742 workers, we collected 449,107 total responses
which were aggregated to 101,945 final bounding boxes for an
average cost of $0.0251 per final box. An additional 2,429 tags were
“mismatched”, i.e., at least half of the workers labeled mismatch.
Workers were paid $0.05 to label 7 boxes (1 of which is a sentinel)
and spent an average of 17.1 seconds per response.

5.2 Learning a distance metric

From crowdsourcing, we have collected a dataset of positive
examples—the same product in-situ and in an iconic image. We now
describe how we convert this data into a full dataset, how we train
the network, and finally visualize the resulting embedding.

5.2.1 Generating positive and negative training data

The contrastive loss function consists of two types of examples: pos-
itive examples of similar pairs and negative examples of dissimilar
pairs. Figure 9 shows how the contrastive loss works for positive
and negative examples respectively for our domain. The gradient of
the loss function acts like a force (shown as a red arrow) that pulls
together xp and xq and pushes apart xq and xn.

We have 101,945 pairs of the form: (in-situ bounding box, iconic
product image). This forms all of our positive examples (Iq, Ip). To
build negative examples, we take each in-situ image Iq and pick 80
random product images of the same object category, and 20 random
product images of a different category. We repeat the positive pair
5 times, to give a 1:20 positive to negative ratio. We also augment
the dataset by re-cropping the in-situ images with different amounts
of padding: {0, 8, 16, 32, 48, 64, 80} pixels, measured with respect
to a fixed 256x256 square input shape (for example, 16 pixels of
padding means that 1/8th of each dimension is scene context).

We split all of these examples into training, validation, and test sets,
making sure to separate bounding boxes by photo to avoid any con-
tamination. This results in 63,820,250 training and 3,667,769 pairs.
We hold out 6,391 photos for testing which gives 10,000 unseen test
bounding boxes. After splitting the examples, we randomly shuffle
the pairs within each set.

5.2.2 Training the network

Various parameter choices have to be made when training the CNN.

Selecting the training architecture. As shown earlier in Fig-
ure 5, we explore multiple methods of training the CNN: (A) train-
ing on only category labels (no product tags), (B) training on only
product tags (no category labels), (C) training on both product tags
and category labels, and (D) additionally normalizing the embedding

CNN

CNN
Loss (Ln)

Embedding

Negative (In)

Shared
parameters xq

xn

Query (Iq)

Margin (m)

(b)

CNN

CNN

Loss (Lp)

Positive (Ip)

xq

xp

Query (Iq)

Embedding

(a)

Shared
parameters

Figure 9: Training procedure. In each mini-batch, we include a mix
of (a) positive and (b) negative examples. In each iteration, we take
a step to decrease the loss function; this can be viewed as “forces”
on the points (red arrows). Photo credit: Austin Rooke.

to unit L2 length. In the supplemental we detail the different training
parameters for each architecture (learning rate, momentum, etc.).

Selecting the margin. The margin m, in the contrastive loss
function, can be chosen arbitrarily, since the CNN can learn to
globally scale the embedding proportional to m. The only im-
portant aspect is the relative scale of the margin and the embed-
ding, at the time of initialization. Making the margin too large can
make the problem unstable and diverge; making it too small can
make learning too slow. Therefore, we try a few different margins
m ∈ {1,

√
10,
√
100,
√
1000} and select the one that performs best.

When using L2 normalization (Figure 5(d)), we use m =
√
0.2.

Initializing the network parameters. We are training with
stochastic gradient descent (SGD); the choice of initialization can
have a large impact on both the time taken to minimize the objec-
tive, and on the quality of the final optimum. It has been shown
that for many problem domains [Razavian et al. 2014a], transfer
learning (training the network to a different task prior to the final
task) can greatly improve performance. Thus, we use networks
that were trained on a large-scale object recognition benchmark
(ILSVRC2012), and use the learned weights hosted on the BVLC
Caffe website [Jia et al. 2014] to initialize our networks.

To convert the network used for object classification to one for
embedding, we remove the “softmax” operation at the end of the
network and replace the last layer with an inner product layer with a
D-dimensional output. Since the network was pre-trained on warped
square images, we similarly warp our queries. We try multiple
dimensions D ∈ {256, 1024, 4096}. Later we describe how we
quantitatively evaluate performance and select the best network.

5.2.3 Visualizing the embedding

After the network has converged, we visualize the result by project-
ing our D-dimensional embedding down to two dimensions using
the t-SNE algorithm [Van Der Maaten and Hinton 2008]. As shown
in Figure 10, we visualize our embedding (trained with architecture
D) by pasting each photo in its assigned 2D location.

When visualizing all products on the same 2D plane, we see that

Figure 10: 2D embedding visualization using t-SNE [Van Der Maaten and Hinton 2008]. This embedding was trained using architecture
D and is 256D before being non-linearly projected to 2D. To reduce visual clutter, each photo is snapped to a grid (overlapping photos are
selected arbitrarily). Full embeddings are in the supplemental, including those for a single object category. Best viewed on a monitor.

they are generally organized by object category. Further, when
considering the portion of the plane occupied by a specific category,
the products appear to be generally organized by some notion of
visual style, even though the network was not trained to model
the concept of “style”. The supplementary material includes more
visualizations of embeddings including embeddings computed for
individual object classes. These are best viewed on a monitor.

6 Results and applications

We now qualitatively and quantitatively evaluate the results. We
demonstrate visual search in three applications: finding similar
products, in-situ usages of a product, and visually similar products
across different object categories.

6.1 Visual search

Product search. The main use of our projection Iq 7→ xq is to
look up visually similar images. Figure 11 shows several example
queries randomly sampled from the test set. The results are not cu-
rated and are truly representative of a random selection of our output
results. The query object may be significantly occluded, rotated,
scaled, or deformed; or, the product image may be a schematic rep-
resentation rather than an actual photo; or, the in-situ image is of a
glass or transparent object, and therefore visually very different from
the iconic product image. Nonetheless, we find that our descriptor
generally performs very well. In fact, in some cases our results
are closer than the tagged iconic product image because the ground
truth often shows related items of different colors. Usually when the
search fails, it tends to still return items that are similar in some way.

In the supplemental we show 500 more random uncurated examples
of searches returned from our test set.

In-situ search. Since we have a descriptor that can model both
iconic and in-situ cropped images, we can search in the “reverse”
direction, where the query is a product and the returned results are
cropped boxes in scenes. We use the bounding boxes we already col-
lected from crowdsourcing as the database to search over. Figure 15
shows random examples sampled from the test set. Notice that since
the scenes being searched over are designer photos, this becomes
a powerful technique for exploring design ideas. For example, we
could discover which tables go well with a chair by finding scenes
that contain the chair and then looking for tables in the scenes.

Cross-category search. When retrieving very large sets of items
for an input query, we found that when items show up from a differ-
ent object category, these items tend to be visually or stylistically
similar to the input query in some way. Despite not training the
descriptor to reason about visual style, the descriptor is powerful
enough to place stylistically similar items nearby in the space. We
can explore this behavior further by explicitly searching only prod-
ucts of a different object category than the query (e.g. finding a table
that is visually similar to a chair). Note that before we can do these
sorts of queries, it is necessary to clean up the category labels on
the dataset, since miscategorized items will show up in every search.
Therefore, we use the “GN Cat” CNN (architecture A) [Szegedy
et al. 2015] to predict a category for every product, and we remove
all labels that either aren’t in the top-20 or have confidence ≤ 1%.
Figure 14 shows example queries across a variety of object cate-
gories. These results are curated, since most queries do not have a

Q
ue

ry
I q

Ta
g
I p

To
p

3

Figure 11: Product search: uncurated random queries from the test set. For each query Iq , we show the top 3 retrievals using our method as
well as the tagged canonical image Ip from Houzz.com. Object categories are not known at test time. Note that sometimes the retrieved results
are closer to the query than Ip.

100 101 102 103

Top k (log scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
e
a
n
 r

e
ca

ll
@

 k

(D) GN Siam+Cat Cos Pad=16
(D) GN Siam+Cat Cos
(C) GN Siam+Cat Euc
(B) GN Siam Euc
(B) AN Siam Euc
(A) GN Cat Cos
(A) GN Cat Euc
(A) AN Cat Cos
(A) AN Cat Euc
(Baseline) GN IN Cos
(Baseline) GN IN Euc
(Baseline) AN IN Cos
(Baseline) AN IN Euc
Random guessing

Figure 12: Quantitative evaluation (log scale). Recall (whether or
not the single tagged item was returned) as a function of the number
of items returned (k). Recall for each query is either 0 or 1, and is
averaged across 10,000 items. “GN”: GoogLeNet, “AN”: AlexNet,

“Euc”: Euclidean distance, “Cos” cosine distance, “Siam”: trained
with a Siamese network, “Cat”: trained with object categories,

“IN”: ImageNet weights (not trained at all), “P=16”: the box is
expanded so that after warping to a square, there are 16 pixels of
padding. Random guessing is flat along the bottom.

distinctive style to them, and thus it is not apparent that anything
has been matched. In the next section, we show a user study that
evaluates to what extent our CNNs return stylistically similar items.

The product search and “in-situ” search are both trained with archi-
tecture D, and “cross-category” search uses architecture B (Figure 5).
In the next section we detail how we quantitatively evaluated each
architecture and selected the best.

6.2 Evaluating the metric

For our dataset, we cannot measure precision, since we only have
a list of image positive pairs (in-situ image Iq and iconic product
image Ip). However, we can measure recall of the product image—
that is, we look at the closest k products to the query Iq and measure
whether or not the tagged product Ip appears in the top k results.
For each query, recall will be either 0 or 1; we average this over our
test set of 10,000 pairs. We plot mean recall for each k in Figure 12.

It is important to note that image Ip is usually not the best match
for Iq , as there is significant redundancy in the product images,
even after accounting for near-duplicates. Often Iq and Ip differ in

0 200 400 600 800 1000

Random guessing
AN IN Euc (Baseline)

AN Cat Euc (A)
GN IN Euc (Baseline)

GN Cat Euc (A)
GN Siam+Cat Euc (C)

AN Siam Euc (B)
GN Siam+Cat Cos Pad=16 (D)

GN Siam Euc (B)

Figure 13: User study for cross-category searches. Number of
times that a user clicked on the prediction from a given algorithm.
Error bars: 95% confidence interval (bootstrap sampling). Naming
conventions are explained in Figure 12.

materials or in color. Nonetheless, a visual similarity metric should
be able to deal with these issues, and place xq and xp reasonably
close together in the embedding (so that its rank is small). So while
a lower rank is better, a rank of 1 is not a reasonable expectation.

Baseline. To evaluate our embedding, we compare how well it
can rank products compared to two high quality image descriptors
for two different CNNs when trained on ImageNet (“IN”). For each
CNN, we use the output from the last hidden layer and call them
“AN IN” (i.e., AlexNet layer fc7) and “GN IN” (i.e., GoogLeNet
layer pool5/7x7 s1). These two architectures are popular and
have become the basis of a wide variety of state-of-the-art algorithms
for image retrieval [Babenko et al. 2014; Razavian et al. 2014b].
We tried applying PCA since it has been shown that it can improve
performance [Razavian et al. 2014b], but we found that it performed
the same as the original descriptors, and thus is not shown.

Distance metrics. We compare two versions of each descriptor:
a Euclidean version (“Euc”) and a L2 normalized version (“Cos”,
since cosine distance is equal to Euclidean distance on normalized
vectors). We evaluated other metrics including L1, Canberra, and
Bray-Curtis dissimilarity on the baseline networks. We found that
other metrics performed either comparably or worse than Cosine,
and thus we only evaluate Cosine for the full dataset. For example,
in Figure 12, “GN Cat Cos” means that we train GoogLeNet with
object categories, and measure cosine distance using the last layer.

Padding. At test time, we experimented with adding different
amounts of padding to the input query. We find that a modest
amount of padding, 16 pixels, is optimal. Since all algorithms
benefit from padding, we only show the effect on the best algorithm.

Query Iq
Top-1 nearest neighbor from different object categories

Dining chairs Armchairs Rocking chairs Bar stools Table lamps Outdoor lighting Bookcases Coffee tables Side tables Floor lamps Rugs Wallpaper

Figure 14: Style search: example cross-category queries. For each object category (“armchairs”, “rugs”, etc.), we show the closest product of
that category to the input Iq , even though the input (usually) does not belong to that category. We show this for 12 different object categories.
Note that object category is not used to compute the descriptor xq; it is only used at retrieval time to filter the set of products.

The supplemental includes our full padding evaluation.

Training architectures. As shown in Figure 12 the best architec-
ture for image retrieval is D, which is a siamese GoogLeNet CNN
trained on both image pairs and object category labels, with cosine
as the distance metric. For all experiments, we find that GoogLeNet
(GN) consistently outperforms AlexNet (AN), and thus we only
consider variations of C and D using GoogLeNet. Architecture A
is the commonly used technique of fine-tuning a CNN to the target
dataset. It performs better than the ImageNet baselines, but not as
well as any of the siamese architectures B, C, D. It might appear
that C is the best curve (which is missing L2 normalization), but we
emphasize that we show up to k = 1000 only for completeness and
the top few results k < 10 matter the most (where D is the best).

Embedding dimension. We studied the effect of dimension on
architecture C. Using more dimensions makes it easier to satisfy
constraints, but also significantly increases the amount of space and
time required to search. We find that 256, 1024, and 4096 all perform
about the same, and thus use 256 dimensions for all experiments.
See the supplemental for the full curves.

Runtime. One of the key benefits of using CNNs is that computing
Iq 7→ xq is very efficient. Using a Grid K520 GPU (on an Amazon
EC2 g2.2xlarge instance), we can compute xq in about 100 ms,
with most of the time spent loading the image. Even with brute
force lookup (implemented as dense matrix operations), we can rank
xq against all 3,387,555 products in about one second on a single
CPU. This can be accelerated using approximate nearest neighbor
techniques [Muja and Lowe 2014], and is left for future work.

User study. As described in Section 6.1, Figure 14 shows ex-
amples of cross-category searches. Since our siamese CNNs were
trained on image pairs and/or object categories, it is unclear which
(if any) should work as a style descriptor for this type of search.
Therefore, we set up a user study where a user is shown an item of
one category and 9 items of a second category (e.g. one chair in
context, and 9 table product images) and instructed to choose the

best match, stylistically. We run this experiment on MTurk, where
each of the 9 items are generated by a different model (8 models,
plus one random). Each grid of 9 items is shown to 5 users, and only
grids where a majority agree on an answer are kept. The supplemen-
tal contains screenshots of our user study. The results are shown
in Figure 13, and we can see that all methods outperform random
guessing, siamese architectures perform the best, and not training at
all (baseline) performs the worst.

6.3 Discussion, limitations, and future work

There are many avenues to further improve the quality of our em-
bedding, and to generalize our results.

Multitask predictions. We found that traning for object category
along with the embedding performs the best for product search.
Since the embedding and the object prediction are related by fully
connected layers, the two spaces are similar. Thus, we effectively
expand our training set of 86,945 pairs with additional 3,387,555
product category labels. At test time, we currently don’t use the
predicted object category—it is only a regularizer to improve the
embedding. However, we could use the object category and use it to
prune the set of retrieved results, potentially improving precision.

Style similarity vs. image similiarity. While we have not trained
the CNN to model visual style, it seems to have learned a visual
similarity metric powerful enough to place stylistically similar items
nearby in the space. But style similarity and visual similarity are not
the same. Two objects being visually similar often implies that they
are also stylistically similar, but the converse is not true. Thus, if
our embedding were to be used by designers interested in searching
across compatible styles, we would need to explicitly train for this
behavior. In future work, we hope to collect new datasets of style
relationships to explore this behavior.

Active learning. We have a total of 3,387,555 product photos and
6,093,452 scene photos, but only 101,945 known pairs (Iq, Ip). As
a result, dissimilar pairs of images that are not part of our known

relationships may be placed nearby in the space, but there is no
way to train or test for this. A human-in-the-loop approach may be
useful here, where workers filter out false positives while training
progresses. We propose exploring this in the future.

7 Conclusion

We have presented a visual search algorithm to match in-situ images
with iconic product images. We achieved this by using a crowdsourc-
ing pipeline for generating training data, and training a multitask
siamese CNN to compute a high quality embedding of product im-
ages across multiple image domains. We demonstrated the utility of
this embedding on several visual search tasks: searching for prod-
ucts within a category, searching across categories, and searching
for usages of a product in scenes. Many future avenues of research
remain, including: training to understand visual style in products,
and improved faceted query interfaces, among others.

Acknowledgements

This work was supported in part by Amazon AWS for Education,
a NSERC PGS-D scholarship, the National Science Foundation
(grants IIS-1149393, IIS-1011919, IIS-1161645), and the Intel Sci-
ence and Technology Center for Visual Computing. We thank the
Houzz users who gave us permission to reproduce their photos: Crisp
Architects, Rob Karosis, Fiorella Design, Austin Rooke, Increation
Interiors. Credits for thumbnails are in the supplemental.

References

BABENKO, A., SLESAREV, A., CHIGORIN, A., AND LEMPITSKY,
V. S. 2014. Neural codes for image retrieval. In ECCV.

BELL, S., UPCHURCH, P., SNAVELY, N., AND BALA, K. 2013.
OpenSurfaces: A richly annotated catalog of surface appearance.
ACM Trans. on Graphics (SIGGRAPH) 32, 4.

CHATFIELD, K., SIMONYAN, K., VEDALDI, A., AND ZISSERMAN,
A. 2014. Return of the devil in the details: Delving deep into
convolutional nets. In BMVC.

CHECHIK, G., SHARMA, V., SHALIT, U., AND BENGIO, S. 2010.
Large scale online learning of image similarity through ranking.
JMLR.

CHOPRA, S., HADSELL, R., AND LECUN, Y. 2005. Learning a
similarity metric discriminatively, with application to face verifi-
cation. In CVPR, IEEE Press.

GARCES, E., AGARWALA, A., GUTIERREZ, D., AND HERTZ-
MANN, A. 2014. A similarity measure for illustration style. ACM
Trans. Graph. 33, 4 (July).

GINGOLD, Y., SHAMIR, A., AND COHEN-OR, D. 2012. Micro
perceptual human computation. TOG 31, 5.

GIROD, B., CHANDRASEKHAR, V., CHEN, D. M., CHEUNG, N.-
M., GRZESZCZUK, R., REZNIK, Y., TAKACS, G., TSAI, S. S.,
AND VEDANTHAM, R., 2011. Mobile visual search.

HADSELL, R., CHOPRA, S., AND LECUN, Y. 2006. Dimensionality
reduction by learning an invariant mapping. In CVPR, IEEE Press.

JEGOU, H., PERRONNIN, F., DOUZE, M., SANCHEZ, J., PEREZ,
P., AND SCHMID, C. 2012. Aggregating local image descriptors
into compact codes. PAMI 34, 9.

JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S., LONG, J.,
GIRSHICK, R., GUADARRAMA, S., AND DARRELL, T. 2014.

Caffe: Convolutional architecture for fast feature embedding.
arXiv:1408.5093.

KARAYEV, S., TRENTACOSTE, M., HAN, H., AGARWALA, A.,
DARRELL, T., HERTZMANN, A., AND WINNEMOELLER, H.
2014. Recognizing image style. In BMVC.

KOVASHKA, A., PARIKH, D., AND GRAUMAN, K. 2012. Whittle-
search: Image search with relative attribute feedback. In CVPR.

KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. 2012.
Imagenet classification with deep convolutional neural networks.
In NIPS.

KULIS, B. 2012. Metric learning: A survey. Foundations and
Trends in Machine Learning 5, 4.

LECUN, Y., BOSER, B., DENKER, J. S., HENDERSON, D.,
HOWARD, R. E., HUBBARD, W., AND JACKEL, L. D. 1989.
Backpropagation applied to handwritten zip code recognition.
Neural computation 1, 4.

LIN, T., MAIRE, M., BELONGIE, S., HAYS, J., PERONA, P., RA-
MANAN, D., DOLLÁR, P., AND ZITNICK, C. L. 2014. Microsoft
COCO: common objects in context. ECCV .

MUJA, M., AND LOWE, D. G. 2014. Scalable nearest neighbor
algorithms for high dimensional data. PAMI.

O’DONOVAN, P., L ĪBEKS, J., AGARWALA, A., AND HERTZMANN,
A. 2014. Exploratory font selection using crowdsourced at-
tributes. ACM Trans. Graph. 33, 4.

ORDONEZ, V., JAGADEESH, V., DI, W., BHARDWAJ, A., AND
PIRAMUTHU, R. 2014. Furniture-geek: Understanding fine-
grained furniture attributes from freely associated text and tags.
In WACV, 317–324.

PARIKH, D., AND GRAUMAN, K. 2011. Relative attributes. In
ICCV, 503–510.

PERRONNIN, F., AND DANCE, C. 2007. Fisher kernels on visual
vocabularies for image categorization. In CVPR.

RAZAVIAN, A. S., AZIZPOUR, H., SULLIVAN, J., AND CARLS-
SON, S. 2014. CNN features off-the-shelf: an astounding baseline
for recognition. Deep Vision (CVPR Workshop).

RAZAVIAN, A. S., SULLIVAN, J., MAKI, A., AND CARLSSON, S.
2014. Visual instance retrieval with deep convolutional networks.
arXiv:1412.6574.

RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. 1986.
Learning internal representations by error-propagation. Parallel
Distributed Processing 1.

SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P., REED, S.,
ANGUELOV, D., ERHAN, D., VANHOUCKE, V., AND RABI-
NOVICH, A. 2015. Going deeper with convolutions. CVPR.

TAIGMAN, Y., YANG, M., RANZATO, M. A., AND WOLF, L. 2014.
Deepface: Closing the gap to human-level performance in face
verification. In CVPR.

VAN DER MAATEN, L., AND HINTON, G. 2008. Visualizing data
using t-SNE. In Journal of Machine Learning.

WANG, J., SONG, Y., LEUNG, T., ROSENBERG, C., WANG, J.,
PHILBIN, J., CHEN, B., AND WU, Y. 2014. Learning fine-
grained image similarity with deep ranking. In CVPR.

WESTON, J., RATLE, F., AND COLLOBERT, R. 2008. Deep
learning via semi-supervised embedding. In ICML.

Product Top 7 retrievals: test scenes predicted to contain this product

Figure 15: In-situ product search: random uncurated queries searching the test set. Here, the query is a product, and the retrievals are
examples of where that product was used in designer images on the web. The boxes were drawn by mturk workers, for use in testing product
search; we are assuming that the localization problem is solved. Also note that the product images (queries) were seen during training, but the
scenes being searched over were not (since they are from the test set). When sampling random rows to display, we only consider items that are
tagged at least 7 times (since we are showing the top 7 retrievals). We show many more in the supplemental.

