
Bidirectional Lightcuts

Bruce Walter Pramook Khungurn
Cornell University∗

Kavita Bala

+ =

Standard VPL method Bidirectional estimators Our result (BDLC)

PP Photon Map(=time) Bidir Path Trace(=time) Zoom in on path trace Zoom in on our result Close view of cloth
Figure 1: This kitchen scene combines many different phenomena including glossy surfaces, subsurface BSSRDFs (e.g., milk and dragon),
heterogeneous smoke, a highly detailed anisotropic volumetric cloth model (over billion voxel effective resolution, see bottom right), skylight
through three windows and 25 local lights. Computing global illumination in such a scene is extremely challenging and standard VPL
methods cannot capture many of the perceptually important illumination details. Our bidirectional method extends VPL-based techniques to
handle a wider range of such phenomena (top row). A bidirectional path traced result of equal time is extremely noisy (see zoom ins) while
bidirectional lightcuts maintains the low noise and scalability advantages of VPL-based methods. A probabilistic progressive photon map
image (bottom left) of equal time shows visible noise (e.g., from glossy paths) and bias around small features (e.g., very thin cloth, <5mm).

Abstract

Scenes modeling the real-world combine a wide variety of phenom-
ena including glossy materials, detailed heterogeneous anisotropic
media, subsurface scattering, and complex illumination. Predic-
tive rendering of such scenes is difficult; unbiased algorithms are
typically too slow or too noisy. Virtual point light (VPL) based
algorithms produce low noise results across a wide range of perfor-
mance/accuracy tradeoffs, from interactive rendering to high qual-
ity offline rendering, but their bias means that locally important il-
lumination features may be missing.

We introduce a bidirectional formulation and a set of weighting
strategies to significantly reduce the bias in VPL-based rendering
algorithms. Our approach, bidirectional lightcuts, maintains the
scalability and low noise global illumination advantages of prior
VPL-based work, while significantly extending their generality to
support a wider range of important materials and visual cues. We
demonstrate scalable, efficient, and low noise rendering of scenes
with highly complex materials including gloss, BSSRDFs, and
anisotropic volumetric models.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional

∗email: bjw@graphics.cornell.edu, {pramook,kb}@cs.cornell.edu

Graphics and Realism;

Keywords: bidirectional ray tracing, global illumination

Links: DL PDF

1 Introduction

Advances in the quality and performance of rendering algorithms
have seen an increasing use of accurate rendering algorithms in
real-world applications where predictive rendering is needed. Ex-
ample applications are product design and visualization, furniture

http://doi.acm.org/10.1145/2185520.2185555
http://portal.acm.org/ft_gateway.cfm?id=2185555&type=pdf

showrooms, and apparel visualization. The output of these render-
ing algorithms must match closely real world material appearance
to be useful to the designers using them.

These applications include large and complex representations of
shape, material and lighting, thus stressing existing rendering al-
gorithms beyond the range at which they operate efficiently and
robustly. For example, a scene of a modern interior may include
fabrics such as drapes, sofas, clothes, where volumetric represen-
tations represent yarns at micron resolution; polished metals in ap-
pliances like refrigerators and faucets; wood in furniture and floors;
complex lighting fixtures; and building materials like granite and
marble, characterized by subsurface scattering. Computing the vi-
sually important effects in such scenes is challenging and requires
unified support for light transport with high gloss reflections, sub-
surface scattering, volumetric scattering in anisotropic and isotropic
media, and complex light sources.

For such scenes, designers are faced with unsatisfactory choices.
They can choose unbiased Monte Carlo algorithms such as path
tracing and Metropolis light transport, that correctly capture all
phenomena, but practically often produce noisy images even with
very large computation times (requiring hours or days on large clus-
ters [Zhao et al. 2011]). On the other hand, designers can pick from
a range of biased algorithms, that produce low noise results, but are
often limited in the phenomena they can handle within a reasonable
computational budget. In this work we focus on virtual point light
(VPL)-based methods because they span a wide range of accuracy
vs. cost tradeoffs while producing low noise results. But [Křivánek
et al. 2010] show that material perception is negatively impacted by
approximations made by VPL-based rendering algorithms. The key
issue that drives the practical applicability of a rendering algorithm
is the tradeoff between error and efficiency; a practical algorithm
must find the right tradeoff between these competing goals.

In this paper we present a scalable, bidirectional extension of VPL-
based approaches, bidirectional lightcuts (BDLC), that expands
their range of reproducible material effects while keeping the key
advantage of VPL methods: the efficient generation of low noise
images. We extend the generation of virtual sensor points (VPS)
using recursive eye tracing and use weighting functions to com-
bine and optimize the contributions from the points. We find that
standard unbiased weighting heuristics do not work well in this
case, and instead propose a novel path weighting strategy based
on four constraints to control the bias vs. cost tradeoffs. Our strat-
egy has much lower bias than standard VPL rendering, but without
the higher noise levels of strictly unbiased methods. Because our
eye and light paths have different amortized cost, the weights are
also designed to reduce cost. Our system uses an extension of the
scalable multidimensional lightcuts algorithm to efficiently handle
the increased number of VPS points. We also use an augmented
path formulation that integrates surface, volumetric, and subsurface
materials in one unified system.

This paper makes the following contributions:

• A general bidirectional VPL formulation for low-noise ren-
dering with reduced bias that supports a wide range of real-
world materials such as highly glossy materials, complex vol-
umetric models like cloth, and subsurface scattering.

• Bidirectional VPL rendering combined with scalable illumi-
nation algorithms to efficiently reuse light subpaths and mit-
igate the combinatorial performance issues common in bidi-
rectional approaches.

• Novel weighting strategies for handling paths that balance the
noise vs. bias tradeoff for efficient rendering.

The advantages of our approach are that:

• It keeps the strengths of biased VPL algorithms (efficiency
and scalability) while providing results that more closely
match the generality of unbiased algorithms.

• The formulation and weighting strategies are general and in-
dependent of any particular material model.

• We preserve prior scalable rendering (multidimensional light-
cuts) advantages such as unified handling of all illumination
and effects, including direct, indirect, environment illumina-
tion, antialiasing, depth-of-field, and motion-blur.

We show results for a broad range of general materials in complex
models with global illumination, such as shown in Figure 1.

2 Previous Work and Review

Unbiased Monte Carlo rendering algorithms such as bidirectional
path tracing [Lafortune and Willems 1993; Veach and Guibas 1994]
and Metropolis light transport [Veach and Guibas 1997], are gen-
erally considered the gold standard for reference solutions in com-
plex scenes. By randomly sampling transport paths, in theory they
can handle any scene. In practice however, complex scenes often
contain at least some important paths that are hard for a particular
algorithm to find. If such paths exist, unbiased algorithms produce
noisy results that are slow to converge. Many variants exist that
improve the finding of various path types, but no algorithm has yet
been demonstrated to efficiently find all possible important paths.

In many practical applications, biased algorithms may be preferred
as the bias error is often less visually objectionable than noise. Two
of the most commonly used classes of biased algorithms are photon
mapping and VPL-based techniques.

Photon mapping [Jensen 2001] is a powerful technique that handles
all types of illumination and is especially good for difficult caustics
on diffuse surfaces and in low density media [Jarosz et al. 2011].
Photon mapping traces many light paths to deposit photons in the
scene. A blurring kernel (density estimation) is used to reconstruct
the illumination from the photon density, where the minimum re-
solvable features are limited by the local density. Modern variants
such as [Hachisuka and Jensen 2009; Knaus and Zwicker 2011],
use multi-pass to avoid memory constraints so that the achievable
photon density is limited only by the computational budget. Ren-
dering cost is strongly correlated to the ratio between scene size and
the minimum illumination feature size reconstructed. Thus photon
mapping works best for small scenes or large features, but the ren-
dering cost can be large to reconstruct small features inside a large
scene. For example, the extremely detailed (micron resolution),
high frequency, volumetric cloth models used in some of our exam-
ples can be problematic for photon mapping approaches.

VPL based methods, such as instant radiosity [Keller 1997], also
trace light paths, but deposit virtual point lights rather than pho-
tons. Global illumination is estimated by computing the direct il-
lumination from these VPLs instead of density estimation. VPL
methods can reconstruct detailed illumination using far fewer light
paths than photon mapping, but the cost of evaluating each VPL is
significantly higher. Scalable methods such as [Walter et al. 2005;
Walter et al. 2006; Hašan et al. 2007; Ou and Pellacini 2011] greatly
reduce this cost by adaptively evaluating only a small fraction of the
VPLs to accurately estimate the illumination. VPL methods tend to
be more efficient than photon mapping in larger scenes with de-
tailed illumination, but with the tradeoff that they cannot handle
some types of illumination phenomena, such as caustics, that pho-
ton mapping can. Our goal in this paper is to formulate a new bidi-
rectional VPL method that handles a wider variety of phenomena
than standard VPL methods while retaining their efficiency.

camera

eye

subpath

subpath

light

p1
0

p2
0

p3 0

p2
1

p3
1p4

1
p3

2

p4
2

p5
2

light sourcex0

x1 x2

y0

y1y2

Figure 2: Paths generated by generators used in bidirectional path
tracing. Here, p`

k denotes the path with ` segments where the con-
nection is made at the eye subpath vertex xk.

2.1 Bidirectional Theory Background

The global illumination problem can be formulated as an integral
over the paths, p, by which light can travel from the light sources
to detectors (camera or eye) as:

∫
f (p), where f (p) describes the

path’s contribution to a pixel. Monte Carlo algorithms estimate this
integral by generating paths with some probability p(). Finding
good path generators with reliably low noise in all cases is hard.

Bidirectional path tracing [Veach and Guibas 1995] aims to com-
bine the strengths of multiple different path generators within a sin-
gle algorithm. The algorithm uses the random process of tracing
partial paths starting from the lights and eye, called light and eye
subpaths respectively. Complete paths can be formed by adding
segments connecting a vertex on the eye subpath to a vertex on the
light subpath as in Figure 2. We let p`

k denote the path of length `
(i.e., containing ` segments) generated by connecting eye subpath
vertex xk with light subpath vertex y`−k−1.

The (`,k)-generator uses the above random process to generate
paths p`

k. Its contribution is given by the random variable:

X`
k = w`

k(p
`
k)

f (p`
k)

p`k(p
`
k)

(1)

where p`k(p
`
k) is the probability density of generating p`

k via the
(`,k)-generator. The function w`

k() is the generator’s weighting
function. By convention, if a generator cannot generate a path, then
its weight for that path is zero. Monte Carlo integration tells us that
the expected value of X`

k is E[X`
k] =

∫
w`

k(p) f (p) dp.

The total estimate X is the sum of the contribution of all possible
(`,k)-generators: X = ∑

∞
`=0 ∑

`
k=0 X`

k and its expected value is:

E[X] =
∞

∑
`=1

`

∑
k=0

E[X`
k] =

∞

∑
`=1

`

∑
k=0

∫
w`

k(p) f (p) dp

=
∫ (∞

∑
`=1

`

∑
k=0

w`
k(p)

)
f (p) dp (2)

If the weights sum to one for all possible paths, ∑`,k w`
k(p) = 1,

then this is an unbiased estimator, E[X] =
∫

f (p) dp. Otherwise
the estimator is biased and the bias attributable to a particular path
p depends on one minus its summed weights and can be expressed
as: (1−∑`,k w`

k(p)) f (p).

The choice of the weighting functions strongly affects the efficiency
and variance of the estimator. Ideally, the most efficient generator
for any path should be given the highest weight for that path. Also,
skipping the generation of zero weight paths can reduce cost. Stan-
dard bidirectional path tracing uses unbiased weighting heuristics

such as “balanced” and “power” [Veach and Guibas 1995] based
on the reasonable assumption that generators that have the high-
est probability of sampling a path have low noise. However, these
heuristics still suffer from noise and cost issues because:

1. There are often paths for which none of the bidirectional es-
timators have a sufficiently low variance, especially in scenes
with highly glossy and complex materials, and thus high sam-
pling rates are often still needed.

2. Due to the weighting heuristics used and lack of ‘a priori’
knowledge, all possible generators for a path have to be
checked, even the high variance ones, increasing the cost for
paths that have many potential generators.

In VPL-based methods, the light tracing for VPL generation is
equivalent to the light subpaths in bidirectional path tracing, and the
sensor (a.k.a. gather) point generation is equivalent to the eye sub-
paths but usually limited to length 1. Thus VPL-based rendering
can be viewed as a type of bidirectional method that sets w`

k(p) = 0
if k 6= 1. Moreover their bias, such as from clamping, can be ex-
pressed as constraints on the path weights that cause them to sum
to less than one for some paths.

VPL-based rendering as a variant of bidirectional tracing was first
recognized by [Kollig and Keller 2004], who proposed an unbi-
ased VPL-based algorithm by extending the eye subpath genera-
tion. This is equivalent to including additional path generators with
weights to compensate for the bias from clamping whenever their
summed weights is less than one. They demonstrated that their al-
gorithm was up to 25% faster than standard bidirectional path trac-
ing in two test scenes. However, their focus was on being unbiased,
thus they have the same fundamental noise convergence problems
as standard bidirectional path tracing in scenes with glossy or com-
plex materials. Simplified approximate versions of this approach
have been developed for interactive applications using screen space
[Novák et al. 2011] and volumetric [Engelhardt et al. 2010] approx-
imations, but these are not suitable for high complexity models such
as our kitchen scene with high frequency volumetric cloth.

[Segovia et al. 2006] used bidirectional tracing during VPL gen-
eration process to try to improve the distribution and locations of
the VPLs. [Hašan et al. 2009] used modified VPLs (called VSLs)
to approximate glossy reflection while [Davidovič et al. 2010] use
recursive eye tracing to generate additional “local” VPLs in glossy
regions. These VPLs can nicely reproduce broad glossy reflections
but their visibility approximations make then unsuitable for high
frequency regions such as volumetric cloth. Unlike these methods,
we do not change the VPL generation process, but instead generate
additional virtual point sensors (VPS) to better capture a range of
phenomena including glossy reflections, subsurface, and volumes.

The system of [Dammertz et al. 2010] combines standard VPL-
based, density estimation, and path tracing rendering algorithms.
They partition path space by preclassifying materials as diffuse
or specular/glossy, and assign each path to the most appropriate
method. We believe that decomposing path space and combining
multiple algorithms is the right approach, but in this work we con-
centrate on extending the set of paths and materials that can be effi-
ciently handled by a VPL-based method. Improved hybrid methods
to solve for the remaining missing energy is left for future work.

3 Our Approach

Our method uses the bidirectional framework and deeper eye sub-
paths to extend the range of materials that VPL-based rendering can
efficiently support. As shown in Figure 3, standard VPL methods
only trace paths of length one from the camera when creating vir-

light source

camera

VPL

VPS

connection

standard VPL method our bidirectional method

Figure 3: Standard VPL methods use recursive tracing only for
VPL generation but not VPS. Our method uses recursive tracing
for both, creating many more VPSs and potential connections.

tual sensor points (VPS). Using recursive eye tracing, our method
generates more VPSs and more potential connections to the VPLs.
There are now multiple ways to generate the same path, which has
both benefits and potential problems. Segments with high contri-
bution are subject to clamping, which introduces bias; for example,
for segments connecting a VPS and VPL that are too close together,
or segments with large BRDFs due to glossy reflections. Standard
VPL methods have no way to remove this bias except by using more
VPLs to reduce clamping. However, our method can often reduce
the bias by including energy from additional VPSs.

One potential drawback of recursive VPS generation is that it may
introduce noise especially if the VPSs are spread over a large re-
gion. Since low noise is one of the main advantages of VPL-based
methods, this would be undesirable. We estimate the spread of the
eye paths and stop using the VPSs (and terminate their eye sub-
paths) if they become too spread out. This process is encoded in
our weighting heuristics that will be described in Section 4.

The first pass of our algorithm generates the VPLs using exactly
the same methods as in standard VPL methods (i.e., stochastic light
tracing and russian roulette). To compute each pixel, the second
pass generates a set of VPSs using stochastic eye tracing, which is
very similar the VPL generation process. We allow the eye paths to
recurse through multiple bounces. However, we also try to proac-
tively terminate the recursion once it starts producing useless VPSs
(i.e., ones whose weights are guaranteed to be zero). Once all a
pixel’s VPSs are generated, we compute the pixel’s value by esti-
mating the weighted sum of all VPS/VPL pairs. Since there are
commonly 100+ million pairs per pixel, we use the scalable mul-
tidimensional lightcuts algorithm to accurately estimate this sum
while only actually evaluating a small fraction of the pairs.

The largest change between our method and prior VPL methods is
the combination of extended VPS generation and new weighting
strategies to decide how much each VPL/VPS pair contributes. Our
strategy consists of four constraints, each with a specific purpose:

1. The first constraint favors using shorter eye paths whenever pos-
sible. VPLs are shared across all pixels and thus have lower amor-
tized generation cost than VPSs. Thus we prefer to use shorter eye
paths and fewer VPSs when possible.

2. The second constraint implements the clamping that is required
by all VPL methods to control noise from the VPL generation. We
show how to define this consistently for a broad range of materials
including high gloss, subsurface scattering, and volumes.

3. The third constraint limits the directionality of the generated
VPLs. Highly directional VPLs are less useful because they affect
few pixels and are highly likely to be clamped, while they increase
evaluation cost, especially in scalable rendering algorithms.

4. The last constraint is the most sophisticated; it introduces a bias
in the difficult case where none of the path generators have low

light
source

camera

T1,2
T2,3 T3,4ψ

0

ω
1 ψ1

ω2 ψ
2

ω
3 ψ3

ω4

v0

v1

v2

v3

v4

I1,D1(ω),S1,M1(ψ)

I2,D2(ω),S2,M2(ψ)

I3,D3(ω),S3,M3(ψ)

I4,D4(ω),S4,M4(ψ)

Figure 4: A complete path from the camera to a light source. The
path’s components are annotated with associated quantities. Note
that v0 does not have VPS/VPL attributes associated with it as we
never generate a VPS on the camera’s aperture.

noise. This excludes paths that would otherwise be likely to cause
visible noise based on the current rendering settings. This is very
important for complex materials as shown in Figure 8.

Although we use multidimensional lightcuts because it naturally
supports large numbers of both VPS and VPL points, our weighting
strategies can also be used with other VPL methods. If far fewer
VPLs are used though, some parameter adjustments may be needed.

3.1 Bidirectional VPL Formulation

To express our weighting strategies, we need to formulate the path
integral in terms of quantities used in VPL-based rendering. A VPL
can be characterized by its position, an intensity I and a direction-
ality function D(ω) which describes its emission as a function of
direction ω. The intensity is determined by the history of its path
back to the light source, while the directionality depends on the
type of scattering at its location (e.g., BRDF for surface reflection
or phase function for volumetric scattering) and the direction from
which it arrived. Similarly, a VPS, can characterized by its po-
sition, a strength S based on its eye subpath, and a material term
M(ψ) which describes its relative sensitivity to light arriving from
various directions, ψ. We also define a transit term T to account
for factors related to the connecting segment between a VPS-VPL
pair including distance, visibility, and attenuation. More details on
how these terms are defined for various cases and materials is given
in Appendix A. The unweighted contribution of a VPS-VPL pair is
just a product of these terms: SM(ψ)T D(ω) I.

Suppose we connect a VPS to a VPL to form a complete part p of
length `, and the connecting VPS is the kth vertex (k ≥ 1) from the
camera. In order to compute its weighted contribution, we need to
compute its weight w`

k(p). To do so, we introduce some notation.
We number the vertices on this path starting from the camera (v0)
and increasing towards the light as shown in Figure 4. For any j,
we let ψ j denote the direction from v j to vertex v j+1, and let ω j
denote the direction from v j to v j−1.

For the weighting computations, we consider every vertex on the
path as both a potential VPS and VPL location and define the
strength S, material M, intensity I, and directionality D terms at
every vertex. Although vk and vk+1 correspond to the actual VPS
and VPL pair used to generate the path, when computing weights
we also need to consider the possibility that we could have gener-
ated the same path using a different pair. For example if k = 2 then
v2 was the actual VPS we selected, but we could also have gener-
ated the same path by connecting a VPS at v1 to a VPL at v2. The
quantities are designed so that the weighted contribution from any
segment is:

w`
j(p)

f `j (p)
p`j(p)

= w`
j(p)S jM j(ψ j)Tj, j+1D j+1(ω j+1)I j+1 (3)

for any 1≤ j < ` (including j = k which is the one we actually use).

To reduce clutter, we will omit the directional parameters to the
material M j and the directionality D j terms in later equations as
their values can be inferred from context. We will also drop the
path parameter p and its length ` as they are both constant and not
needed within the computation of the weight. Henceforth we will
denote w`

j(p) more simply as just w j.

4 Four Weight Constraints

Given a path p, created by connecting a VPS, at the kth vertex from
the camera, to a VPL, we need to compute the weight wk that is
needed to compute the path’s contribution. In our weighting strat-
egy the weight for a segment depends on the weights for the prior
segments, so we first compute w1, then w2, then w3, and so on
until we reach wk. (Our algorithm always set w0 = 0.) Each w j
is computed based on four weighting constraints (wE

j ,w
C
j ,w

D
j ,w

V
j)

that limit the maximum value of w j. Once we have computed the
four constraints, the actual weight w j is the minimum of all the
constraints, but cannot be less than zero:

w j = max(0,min(wE
j ,w

C
j ,w

D
j ,w

V
j)). (4)

Before describing the constraints, we note that the computation of
w j depends only on previous weights and the quantities stored in v j
and v j+1. Since we only compute the weights w1 through wk, we do
not need any information about vertices beyond the actual VPL lo-
cation, vk+1. As such, VPLs do not need to store their path history,
and our system can treat all VPLs identically regardless of how they
were generated. On the other hand, some information about the eye
path must be stored with each VPS. Our four weighting constraints
are described below.

(1) Energy conservation and favoring shorter eye paths

wE
j = 1−

j−1

∑
i=1

wi (5)

This constraint has two goals: (1) to ensure the sum of the connec-
tion weights for a path cannot exceed one, and (2) if given a choice,
to always assign the non-zero weights to the segments closest to the
eye. If the summed weights over all segments for a path is one, then
we have an unbiased estimator for that path. Other constraints may
cause the sum to be less than one (negative bias) but it will never
exceed one (positive bias or excess energy).

In our system, VPLs are shared across all pixels while the VPSs
must be regenerated for each pixel. Thus segments on the light path
have a lowered amortized cost in our system than eye segments, and
it is more cost effective to use connecting segments closer to the eye
when possible. By assigning zero weights to later eye segments,
we can often terminate eye subpaths earlier (see pruning discussion
later in this section) and reduce the cost of VPS generation.

(2) Clamping

wC
j = min

(
Cclamp

M j Tj, j+1 D j+1
, 1
)

(6)

Clamping is required in all VPL-based methods to ensure that the
influence of any single VPL is never large enough to be visible.
Otherwise noise from the stochastic VPL generation method could
cause objectionable visual artifacts in the image. Early VPL meth-
ods used a clamping value based purely on distance but that does
not handle glossy materials. We use a clamping formulation that
is functionally identical to the clamping in [Walter et al. 2006] be-
cause it works across a wide range of materials and is widely used
in VPL rendering.

The constant Cclamp is chosen based on the average VPL inten-
sity Iavg. By design the light particle tracing should produce VPLs
which all have very similar intensities. Currently we use Cclamp =
La/(800 Iavg) where La is the estimated adaptation luminance for
the scene. This is a stricter clamping threshold than used in most
prior work, but is needed for high gloss and dynamic scenes. Static
diffuse scenes can often tolerate higher values for Cclamp as the re-
sulting noise is typically low frequency and less noticeable.

(3) Diffuse VPLs

wD
j = min

(
CD

D j+1
, 1
)

(7)

This constraint’s goal is to limit the illumination from a VPL to only
include the diffuse components of a material. Most VPL-based al-
gorithm include restrictions (sometimes implicitly) on the allowed
directionality of VPLs. The most common is restricting them to
only account for the Lambertian component of a material. How-
ever we want to support a wider range of diffuse materials. Instead
of assuming any particular material model, our constraint limits the
maximum effective value of the VPLs directionality term, D to CD.
The advantage of this formulation is that it works equally well with
non-Lambertian diffuse material models, such as the fiber phase
function in our volumetric cloth examples.

Directionality terms D are normalized to integrate to approximately
one over all directions. The directionality term for a pure Lamber-
tian material is always ≤ 1/π while for glossy materials the max-
imum can easily be in the hundreds or higher. By setting CD to a
suitable intermediate value (we use CD = 1), we can remove most
of the glossy components while preserving the diffuse components
of arbitrary materials in D.

Restricting the VPLs to be diffuse, while not strictly necessary, has
advantages. Glossy, highly directional, VPLs are often ineffective
as they only illuminate a very small region and are very likely to
be clamped anyway due to their large D values. They also make
the VPLs appear less similar, complicating the light clustering and
bounding used in our scalable solver and reducing its performance.

(4) Exclusion of high-variance eye subpaths

wV
j = µ j−

j−1

∑
i=1

wi (8)

This constraint aims to eliminate high noise estimators by introduc-
ing bias if necessary. It is similar in form to the energy conservation
constraint (Equation 5) except that if µ j ≤ 1 it can force the maxi-
mum weight assigned to a path to be less than one (causing negative
bias). Before we can define µ j, we will need to introduce a few new
quantities, but the intuition is that there exist paths for which none
of our bidirectional estimators is very efficient and that could in-
troduce objectionable noise if included. In such cases, accepting
some negative bias is often preferable to the alternatives of produc-
ing noisy images or greatly increased rendering cost. Reducing µ j
on problematic paths, such as caustics, is how we achieve this goal.
The importance of this constraint is demonstrated in Figure 8.

If the early eye segments have low weights, typically due to clamp-
ing, the recursive VPS generation can effectively degenerate into a
form of path tracing with its noise problems, especially if the eye
paths become spread across a large area and broad range of direc-
tions. To avoid this we use heuristics to estimate the spread of the
recursive eye tracing, and exclude their contribution if they spread
too far apart. However we do allow energy even from deeper recur-
sion in some cases such as for sharp glossy reflections and for short
range diffuse effects.

CM = 104

CM = 102

CM = 1

CM = 10−2

Figure 5: The effect of different values of our CM parameter. This
scene contains three surfaces with decreasing gloss sharpness from
left to right. Setting CM too high (e.g., top) excludes energy even
from sharp reflections, while setting it too low (e.g., bottom) results
in objectionable noise from caustics and other problematic paths.
Our results use the somewhat conservative value of CM = 102.

A directional spread term Θ is used to estimate the directional
spread of the recursive eye subpaths. This term sums over each
vertex from the eye and is computed as:

Θ j =
j−1

∑
i=1

√
1

π Mi
with Θ0 = Θ1 = 0 (9)

This term can be intuitively explained as follows: since the mate-
rial term is normalized to integrate to approximately one over the
sphere of directions, it cannot exceed some value a over a solid
angle more than roughly 1/a steradians. For a single bounce, re-
stricting ourselves to directions ψ where M(ψ) ≥ a would ensure
we only recurse for directions within a solid angle less than 1/a. To
estimate the spread potentially through multiple bounces, we esti-
mate the angle of a cone that would subtend the same solid angle
and then sum the angles over each subsequent scattering. For small
angles the corresponding cone angle is Θ =

√
1/(πa), where set-

ting a = M results in our heuristic.

Next we introduce a term Γ to define two behaviors depending on
how large the estimated directional spread Θ is. If the spread is suf-
ficiently small then we allow unrestricted recursive eye tracing by
setting Γ = ∞. However if the spread is too large (for example after
scattering from a diffuse surface), then we set Γ to a small value
that strongly restricts further recursive eye tracing. Specifically we
set Γ j as follows based on these two cases:

Γ j =

{
∞ if Θ j ≤

√
1

π CM

CV otherwise
(10)

where CM corresponds to a level of gloss considered sharp enough
to be reliably computed using recursive eye subpath tracing. We
currently use CM = 100 and CV = 1. The effect of CM on rendered
image quality is illustrated in Figure 5.

The intuition here is that if eye subpaths are contained within a
small solid angle (highly coherent), then we want to set Γ = ∞ to

allow the recursive eye tracing to include features such as sharp
glossy reflections. However, if they have diverged too much we set
Γ to some small value CV that limits the recursive eye tracing to
only include the diffuse material components below this threshold
(in practice one should always set CV ≤ CD). Because we use a
large number of VPLs (1 million), diffuse components will only
be clamped at very short ranges and such recursive tracing will be
limited to short distances.

The final value of µ j is computed from Γ as follows:

µ j =min
(

Γ j

D j+1
,1
)

min
(

Γ j

D j
,

Γ j

M j
,1
) j−1

∏
i=1

min
(

Γi+1

Di
,

Γi+1

Mi
,1
)

If Γ j = ∞, then µ j = 1 and the constraint does not introduce any
bias. When Γ is finite, then µ will decrease whenever the material
M or directionality terms D exceeds Γ, effectively limiting them
to only their diffuse components (≤CV). In this case µ j becomes
somewhat similar to a much more stringent version of the diffuse
VPL constraint. Because µ j is a non-increasing function of j, we
can also easily show that if w j =wV

j then wp =wV
p = 0 for all p> j.

Thus once this constraint applies, it effectively terminates the eye
subpath as all subsequent segments have zero weight.

Pruning. The particular form of this constraint has been specially
designed to enable us to proactively prune and terminate eye sub-
paths that are no longer useful. When we generate a sensor point,
we know everything about the path up to v j except for M j and D j
which depend on the light direction ψ j , that is not determined until
we connect it to particular VPLs. This means that we cannot yet
compute w j−1 exactly, and thus sometimes cannot eliminate use-
less VPSs (and eye paths) whose weight will always be zero. How-
ever, if we can prove that w j−1 ≤ wV

j−1, then we can guarantee that
wp = 0 for all p ≥ j and safely terminate the path. This can often
be proven even if we do not know w j−1 exactly yet and eliminates
much potential wasted computation.

5 Scalable Implementation

Now that we know how to compute the weight and contribution for
an individual VPS/VPL pair, we describe how to estimate the sum
of many such pairs. A direct implementation of bidirectional VPL
rendering would use the weights above to evaluate every VPS/VPL
pair. However, in scenes with millions of VPLs and hundreds of
VPS, this pairwise evaluation is prohibitively expensive. Instead
we choose to adapt a scalable VPL rendering algorithm that can
handle such large numbers of VPLs and VPSs.

Formulation. Multidimensional lightcuts can accurately estimate
the sum of many point pairs while only actually evaluating a tiny
fraction of the total pairs. It does so by grouping the points (VPS
and VPL) into clusters that are estimated by evaluating one repre-
sentative pair from the cluster. The set of clusters used is dynam-
ically determined by an error bound driven refinement process to
guarantee that the error from each cluster estimate is below a per-
ceptual threshold (See [Walter et al. 2006] for details).

In its original notation lightcuts estimates the sum over all points in
a sensor set S and light set L as:

∑
〈s,l〉∈S×L

Ss M〈s,l〉V〈s,l〉G〈sl〉Il (11)

We introduced weights to the sum, and modified the terms, so that
we estimate this modified sum:

∑
〈s,l〉∈S×L

w〈s,l〉Ss M〈s,l〉T〈s,l〉D〈s,l〉Il (12)

The first change we made is that we factored out the distance related
terms from G and combined them with the visibility V to create
our new transit term T. Since VG = TD, this refactoring does not
change the sum’s value, but is important to make this formulation
compatible with our weighting strategies. We also added our new
weighting term w for each pair.

Fortunately the lightcuts algorithm is fairly agnostic about the exact
phenomena each point represents, allowing us to add new points
and phenomena easily. The only requirements are that the algo-
rithm must be able to evaluate point pairs, cluster points together,
and bound their maximum possible contribution. Evaluation with
weighting, has already been discussed. For each new type of ma-
terial, we also need to be able to compute corresponding bounds
on their M and D functions. We support the materials from prior
lightcut’s methods (Lambertian, Phong, and Ward) and have added
support for BSSRDF materials and two volumetric phase functions
Henyey-Greenstein and the Gaussian fiber for cloth [Zhao et al.
2011]. Since these are based on similar components as in Phong
and Ward (cosines and half-angles respectively), it was straightfor-
ward to adapt existing methods to bound these new materials.

Bounding functions. To cluster points together we need to be able
to combine bounding functions from all points in a cluster. In prior
work, cube-maps, computed at fixed resolutions, were used for VPS
points (called gather points) to project all M bounds into a com-
mon representation that could easily be combined for clusters. We
also use cube-maps, but use an adaptive quad-tree on each cube-
map face rather than a fixed resolution. This gives tighter bounding
across a wider range of materials, especially sharp gloss.

Lightcuts originaly only supported a very limited set of VPL types
(Lambertian and omnidirectional) that were combined and bounded
using specialized functions (bounding cones). However, that ap-
proach does not generalize easily to support new materials. Instead,
in this paper, we reuse the same cube-map with adaptive quad-tree
approach as we use for bounding M. For each VPL, we compute
and store a cube-map that bounds its D. Then it is simple to com-
pute maxima over multiple cube-maps, allowing us to cluster VPLs
together regardless of type (e.g., we can combine surface and volu-
metric VPLs in a single cluster). This allows us to create VPLs for a
much wider range of materials, however the bounds are not quite as
tight or compact as with the much more specialized methods used
earlier. Thus, there is some performance cost for this generality.

We also want to integrate information about the weights into the
bounding functions. We could use the trivial upper bound of w ≤ 1
but this would be overly conservative causing extra expense and
larger cut sizes. Instead we integrate some weight bounds into the
M and D bounds. For VPLs we integrate the diffuse VPL con-
straint wD directly into the bound by storing an upper bound on
min(D,CD) in their cube-maps. For sensor points, we store infor-
mation about weights from earlier path segments and other infor-
mation needed to compute the weights. If Γ ≤ CD, then we can
often prove the weight has to be less than the diffuse VPL weight,
and can multiply this additional restriction into the upper bound that
we store for M. For each new segment added to an eye subpath, we
also check to see if we can prove that its weight will be zero for all
subsequent segments and if so we terminate the eye subpath.

6 Results

In this section, we present results of applying our approach and
weighting strategies to several scenes. All our code is written in
Java, except for the ray intersection testing which is in C++. The
code is parallelized to use multiple CPU cores but does not use
GPU or SIMD acceleration. All timings are for one machine with
a single Intel Core i7-2600K processor with 4 cores at 3.4GHz

Pass 1 Pass 2 Bidir Path Trace
model VPL gen Standard Bidirectional ≈ Time ≈ Quality

cafe-ball 22s 324s 457s 682s > 11900s
cafe-dragon 21s 338s 724s 7660s
San Miguel 27s 407s 591s 8030s

kitchen 138s 938s 1665s 2203s > 51900s

Figure 6: Timings for result images. The first pass to generate
VPLs is the same in both standard and bidirectional VPL methods.
For each pixel, pass 2 traces 64 eye subpaths to generate VPS points
and uses multidimensional lightcuts to compute the summed contri-
bution of all VPS/VPL pairs. Our bidirectional method has a higher
cost in this pass because it uses deeper eye subpaths and generates
more VPS points per pixel. We also show timings for comparison
bidirectional path traced images configured for equal time or equal
quality (except cafe-ball and kitchen scenes where even the longest
path tracings we ran had objectionable noise artifacts).

and 16GB of main memory. Unless otherwise noted, all results
are for 512×512 images using 1 million VPLs with parameters
CD = CV = 1.0, CM = 100, and Cclamp = La

800 Iavg
where La is the

estimated adaption luminance (brightness of a mid-gray surface)
for the image, and Iavg is the average VPL intensity (by design all
VPLs have roughly equal intensities). Multidimensional lightcuts
was configured to use a 2% error threshold, 64 representatives per
cluster, and a max cut size of 20000. Both standard VPL and our
bidirectional method use 64 eye rays per pixel. Timings for ren-
dering each scene are given in Figure 6. Comparisons are given to
both standard multidimensional lightcuts and a bidirectional path
traced image of equal time or quality. The bidirectional path trac-
ing used multiple importance sampling with the balance heuristic
and optimized with russian roulette.

Our first example (see Figure 7) is the cafe scene from [Křivánek
et al. 2010] that was used to test the limitations of VPL-based ren-
dering and their effects on image and material perception. They
found that in some cases, especially smooth objects with sharp
gloss, the clamping in VPL rendering algorithms significantly al-
tered the image and user’s perceptions of its material properties.
We use their G0 test object (a sphere) and a material based on their
MS (metal smooth) material except with sharper gloss (ρd ,ρs,α) =
(0.03,0.22,0.015). Their results predict that this combination can-
not be well handled by standard VPL rendering even if using very
large numbers of VPLs, and indeed that is what we observe in Fig-
ure 7. Adding our bidirectional estimators nicely fills in the missing
glossy reflection on the ball and provides a much more accurate por-
trayal of its material. A similar time bidirectional path tracing also
fills in the reflection but has objectionable noise artifacts.

In Figure 8, we show a comparison between bidirectional light-
cuts using our biased weighting strategy and an unbiased weighting
based on the method of [Kollig and Keller 2004]. For the unbiased
strategy we replace our weight constraint wV

j with their proposed
weight constraint: wKK

j = ∏i< j(1− wi). Although both strate-
gies are more accurate than standard VPL rendering, the unbiased
weights result in significantly higher noise and would require much
higher sampling rate and computational cost to converge. In many
cases, accepting some bias can significantly reduce the rendering
cost while preserving most of the energy and visual fidelity.

Our next example shows that our bidirectional method can handle
BSSRDFs which are used to model materials with dense subsurface
scattering such as jade or milk. Figure 9 shows a dragon with expo-
nential falloff BSSRDF material. Because subsurface scattering is
a relatively short range effect, the BSSRDF contribution is strongly
clamped and largely absent in standard VPL methods. However,
our bidirectional method handles it naturally by extending the eye

Standard VPL method Our bidirectional method

Bidirectional difference Bidir Path Trace (similar time)

Figure 7: Cafe scene rendered with standard VPL rendering com-
pared with our bidirectional approach, both using 1 million VPLs.
A difference image between standard VPL and our method is in
lower left. Also shown is a bidirectional path tracing of roughly
equal render time. It closely matches our bidirectional lightcuts
result but contains objectionable noise especially near the ball.

subpath farther and generating sensor points where it exits the BSS-
RDF surface. Our result closely matches a bidirectional path traced
image of similar image quality, while being >10x faster.

The San Miguel scene in Figure 10 is large, with 9.8 million trian-
gles and complex illumination from a sun/sky model. We modified
the original scene by replacing the placemats on one table with ones
using the detailed volumetric cloth model (≈ billion voxel effective
resolution). Because this scene is mostly diffuse, the standard VPL
rendering already captures most of the lighting, but there are places
where local interreflection energy is missing, especially the place-
mats. Our bidirectional method more closely matches the reference.

Our final example is a kitchen scene (see Figure 1) that contains 3.5
million triangles, skylight from three windows and 25 other lights,
and a wide variety of different materials and effects. Nearly all the
surfaces in this scene have gloss components. Several objects in-
cluding the dragon and milk are modeled using BSSRDFs. There
is some heterogeneous smoke near the dragon and the red cloth is
modeled using the anisotropic volumetric cloth model from [Zhao
et al. 2011]. The garbardine cloth data is based on measured data
with a million voxels that is tiled and warped to create an effective
resolution of billions of voxels. The volumetric data is extremely
high frequency (see the close up view) and highly problematic for
any rendering algorithm that assumes local smoothness or homo-
geneity. It also uses a Gaussian fiber phase function that, while far
from being Lambertian, is actually fairly diffuse (max M ≈ 0.6).
This is by far our most challenging scene.

While the standard VPL method reproduces the overall lighting
well, it is missing many of the detailed visual cues that help us un-
derstand the materials. Our bidirectional method does a much better
job of reproducing important cues such as the reflections that make

Unbiased weighting Our method

Zoom in of unbiased weighting Zoom in of our method

Figure 8: Comparison between using our biased weighting and an
unbiased weighting based on the method proposed by Kollig-Keller
Both images use bidirectional lightcuts with 1 million VPLs and 64
eye paths per pixel, however the unbiased weighting results in sig-
nificantly more noise at the same sampling rates. This is because
for difficult paths, such as the weak caustic from the ball onto the
wall, the unbiased method effectively reduces to a form of path trac-
ing which is a high variance estimator. Our biased weights fill in
nearly all the energy missing from standard VPL methods but with-
out the greatly increased noise of the unbiased weights.

the countertop look glossy, the subsurface scattering that makes the
dragon green and the milk white, and the local scattering within the
cloth that produce its bright red color. An equal time bidirectional
path tracing also reproduces these effects but is very noisy.

An equal time probabilistic photon map [Knaus and Zwicker 2011]
image (Figure 1, bottom left) exhibits visible noise (from difficult
glossy paths) and bias where the features are smaller than its kernel
(e.g., very thin volumetric cloth <5mm). This method uses kernel
density estimation for diffuse materials and recursive eye tracing
for non-diffuse. Mixed materials use a random decision to select
the diffuse or non-diffuse component based on their relative albe-
dos. We also tried using density estimation for the glossy compo-
nents, but overall image quality was worse (not shown), and better
automatic material heuristics is an open problem in these methods.
This image used 1000 passes, 2 million photons/pass, α = 2/3, and
an initial radius hand-tuned for best results.

7 Conclusions

In this paper, we have presented a bidirectional formulation of VPL
rendering along with a novel set of weighting strategies to optimize
the new bias vs. noise tradeoffs enabled by this extension. Stan-
dard VPL-based rendering is often very good at capturing the gen-
eral global illumination in complex scenes, but their clamping bias
removes some portions of the illumination. These omissions can
remove visually important cues for material perception and scene
understanding. As shown in our results, our approach allows VPL-
based methods to reproduce a wider range of illumination paths,
thus restoring many of these visual cues such as glossy reflections,
subsurface scattering via BSSRDFs, and short-range interactions in
dense, high frequency media such as volumetric cloth models. To
preserve the low noise and efficiency advantages of VPL methods,
we use a biased weighting strategy unlike most prior bidirectional

Standard VPL method Our bidirectional method

Bidirectional difference Bidir Path Trace (similar quality)

Figure 9: Cafe scene with a BSSRDF/subsurface dragon rendered
with standard VPL rendering compared with our bidirectional ap-
proach. Both versions used 1 million VPLs. A bidirectional path
trace image of similar image quality took >10× longer to compute.

work. This allows us to significantly reduce the bias relative to stan-
dard VPL rendering without introducing the high noise problems
common in purely unbiased methods. Our results show that we are
able to much more closely match path traced reference images but
without their noise problems while paying usually less than twice
the cost of standard, scalable VPL rendering.

Limitations and future work. Although our method broadens
the types of paths that can be handled by VPL rendering, there are
still some types of illumination paths that are still missing, resulting
in a negative bias. One example which our method cannot repro-
duce is caustics such as those from light shining through a glass
ball onto a nearby surface. In future, we would like to explore hy-
brid algorithms similar to the approach of [Dammertz et al. 2010]
to remove this remaining bias. Since in our method, the bias for any
path can easily be computed as (1−∑wk(p)) f (p), it is possible to
solve for part or all of this bias using algorithms such as Metropolis
or caustic photon mapping, that are better suited to such paths.

Deciding how much bias is needed to prevent visible noise is a chal-
lenging problem. Our current heuristics work well in our tests but
do not provide guarantees on low noise. In future, we would like
to explore a wider space of weighting strategies to see if there are
alternatives that might better optimize the bias vs. noise tradeoff or
provide such guarantees.

The performance of all lightcuts methods is tied to the tightness
of their bounding functions. Thus, adding new materials requires
developing the corresponding bounding functions, though one can
often adapt from existing bounds for similar materials. Scenes
with high occlusion are more expensive because the simple visi-
bility bounds used become very loose in this case. In future, adding
occlusion culling or tightening the visibility bounds could signifi-
cantly improve performance.

Standard VPL method Our bidirectional method

Bidirectional difference Bidir Path Trace (similar quality)

Figure 10: San Miguel scene modified to add red placemats using a
volumetric cloth model. The standard VPL rendering with 1 million
VPLs is already quite close to the reference solution for this mostly
diffuse scene. Our bidirectional method adds some of the missing
local interreflection illumination, especially in the highly detailed
cloth, to more closely match the bidirectional path traced reference
which took more than 10× longer to compute.

Acknowledgements. This work was funded by NSF (CAREER
1041534 and IIS 1011919), Autodesk, and conducted in conjunc-
tion with the Intel Science and Technology Center Visual Comput-
ing. Models courtesy of Guillermo M. Leal Llaguno (San Miguel),
Jaroslav Krivanek (cafe), Autodesk (kitchen), Shuang Zhao (gabar-
dine cloth) and Stanford Computer Graphics Lab (dragon). Also
thanks to Edgar Velazquez-Armendariz and Shuang Zhao for help
in model conversion and coding.

References

ARBREE, A., WALTER, B., AND BALA, K. 2008. Single-pass
scalable subsurface rendering with lightcuts. Computer Graph-
ics Forum 27, 2 (Apr.), 507–516.

DAMMERTZ, H., KELLER, A., AND LENSCH, H. P. A. 2010. Pro-
gressive point-light-based global illumination. Computer Graph-
ics Forum 29, 8, 2504–2515.

DAVIDOVIČ, T., KŘIVÁNEK, J., HAŠAN, M., SLUSALLEK, P.,
AND BALA, K. 2010. Combining global and local virtual lights
for detailed glossy illumination. ACM Trans. Graph. 29 (Decem-
ber), 143:1–143:8.

ENGELHARDT, T., NOVAK, J., AND DACHSBACHER, C. 2010.
Instant multiple scattering for interactive rendering of heteroge-
neous participating media. Tech. Rep. December, KIT - Karl-
sruhe Institut of Technology.

HACHISUKA, T., AND JENSEN, H. W. 2009. Stochastic pro-
gressive photon mapping. ACM Transactions on Graphics 28,
5 (Dec.), 141:1–141:8.

HAŠAN, M., PELLACINI, F., AND BALA, K. 2007. Matrix row-
column sampling for the many-light problem. ACM Transactions
on Graphics 26, 3 (July), 26:1–26:10.

HAŠAN, M., KŘIVÁNEK, J., WALTER, B., AND BALA, K.
2009. Virtual spherical lights for many-light rendering of glossy
scenes. ACM Transactions on Graphics 28, 5 (Dec.), 143:1–
143:6.

JAKOB, W., ARBREE, A., MOON, J. T., BALA, K., AND
MARSCHNER, S. 2010. A radiative transfer framework for ren-
dering materials with anisotropic structure. ACM Transactions
on Graphics 29, 4 (July), 53:1–53:13.

JAROSZ, W., NOWROUZEZAHRAI, D., SADEGHI, I., AND
JENSEN, H. W. 2011. A comprehensive theory of volumet-
ric radiance estimation using photon points and beams. ACM
Transactions on Graphics 30, 1 (Jan.), 5:1–5:19.

JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HANRA-
HAN, P. 2001. A practical model for subsurface light transport.
In Proceedings of ACM SIGGRAPH 2001, 511–518.

JENSEN, H. W. 2001. Realistic image synthesis using photon map-
ping. A. K. Peters, Ltd., Natick, MA, USA.

KELLER, A. 1997. Instant radiosity. In SIGGRAPH ’97, 49–56.

KNAUS, C., AND ZWICKER, M. 2011. Progressive photon map-
ping: A probabilistic approach. ACM Trans. Graph. 30 (May),
25:1–25:13.

KOLLIG, T., AND KELLER, A. 2004. Illumination in the Presence
of Weak Singularities. In Monte Carlo and Quasi-Monte Carlo
Methods, 245–257.

KŘIVÁNEK, J., FERWERDA, J. A., AND BALA, K. 2010. Effects
of global illumination approximations on material appearance.
ACM Transactions on Graphics 29, 4 (July), 112:1–112:10.

LAFORTUNE, E. P., AND WILLEMS, Y. D. 1993. Bi-directional
path tracing. In Compugraphics ’93, 145–153.

NOVÁK, J., ENGELHARDT, T., AND DACHSBACHER, C. 2011.
Screen-space bias compensation for interactive high-quality
global illumination with virtual point lights. In Symposium on
Interactive 3D Graphics and Games, ACM, 119–124.

OU, J., AND PELLACINI, F. 2011. Lightslice: matrix slice
sampling for the many-lights problem. ACM Trans. Graph. 30
(Dec.), 179:1–179:8.

SEGOVIA, B., IEHL, J.-C., MITANCHEY, R., AND PÉROCHE, B.
2006. Bidirectional instant radiosity. In Proceedings of the 17th
Eurographics Workshop on Rendering.

VEACH, E., AND GUIBAS, L. 1994. Bidirectional estimators for
light transport. In Fifth Eurographics Workshop on Rendering.

VEACH, E., AND GUIBAS, L. J. 1995. Optimally combining sam-
pling techniques for monte carlo rendering. In Proceedings of
SIGGRAPH 95, 419–428.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
In SIGGRAPH ’97, 65–76.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K.,
DONIKIAN, M., AND GREENBERG, D. P. 2005. Lightcuts: A
scalable approach to illumination. ACM Transactions on Graph-
ics 24, 3 (Aug.), 1098–1107.

WALTER, B., ARBREE, A., BALA, K., AND GREENBERG, D. P.
2006. Multidimensional lightcuts. ACM Transactions on Graph-
ics 25, 3 (July), 1081–1088.

YUE, Y., IWASAKI, K., CHEN, B.-Y., DOBASHI, Y., AND
NISHITA, T. 2010. Unbiased, adaptive stochastic sampling
for rendering inhomogeneous participating media. ACM Trans.
Graph. 29 (December), 177:1–177:8.

ZHAO, S., JAKOB, W., MARSCHNER, S., AND BALA, K. 2011.
Building volumetric appearance models of fabric using micro ct
imaging. ACM Trans. Graph. 30 (Aug.), 44:1–44:10.

A VPL and VPS Attributes

We model all paths from light sources to sensors as a set of ver-
tices connected by segments (see Figure 4). The vertices represent
points on light sources and sensors as well as locations where im-
portant intermediate scattering events—such as surface reflections
or volume scattering—take place. This path abstraction enables us
to support a wide variety of different lighting phenomena within a
single unified framework.

We write the contribution of a path as a product of three types of
terms: emission e, scattering s, and transit τ . The emission term de-
scribes how much light is being emitted from each source, as well as
the responsivity of each sensor. The scattering term s(v,ψ,ω) de-
scribes how much of the light arriving at a vertex v from direction
ψ leaves in direction ω. The transit term τ(vi,vi+1) accounts for
any changes in the light as it travels from vi+1 to vi. Such changes
include occlusion and volumetric attenuation. Below we give defi-
nitions of s and τ for several common cases.

Surface scattering: When a path vertex lies on a surface, the
scattering function is closely related to the surface material’s BSDF
(Bidirectional Scattering Distribution Function) fs

s(v,ψ,ω) = |ψ·ng| fs(v,ψ,ω) |ω ·ng| (13)

where ng is the geometric surface normal. For example, for a Lam-
bertian surface using shading normal ns and albedo ρ , its BSDF is
fs = (ρ |ψ·ns|)/(π |ψ·ng|) and we get:

slambertian(x,ψ,ω) =
ρ |ψ·ns| |ω·ng|

π
(14)

if both directions lie on the same side of the surface.

In special cases such as mirror reflection, the scattering function
(and BSDF) can include a dirac delta function and have infinite
value. Segments containing such a vertex cannot be connecting
segments in bidirectional methods and are assigned a zero weight.
However, such paths can be handled by tracing the eye or light path
past the mirror and connecting at a different segment.

Volumetric scattering: At a volumetric point, the scattering
function is defined in terms of the phase function fp and scatter-
ing coefficient σs:

s(v,ψ,ω) = σs(ω) fp(v,ψ,ω) (15)

This general formulation holds even for anisotropic media [Jakob
et al. 2010] where σs varies with direction.

Transit in ordinary media: For ordinary media where light trav-
els in straight lines such as air, fog, and anisotropic media, the tran-
sit can be defined in terms of the visibility V along the segment
(usually 0 or 1) and the line integral of the attenuation coefficient
σt along the segment as:

τ(vi,vi+1) =V(vi,vi+1) e−
∫ vi

vi+1
σt(x,ω)dx (16)

For transparent media, σt = 0 and τ is just the visibility V. In some
media, the line integral either cannot be computed or is too expen-
sive. In such cases, Woodcock tracking [Yue et al. 2010] is used
instead. Here, the line integral is replaced by a random variable
that is either zero or one depending on whether the random scatter-
ing point selected by the Woodcock process occurs before the end
of the segment.

Subsurface transport (BSSRDFs) can also be modeled in terms of
paths and the corresponding s and τ are described in Appendix B.
Now we can define the quantities used in our VPL rendering for-
mulation using the above path scattering and transit terms.

Material M and directionality D terms: D describes the direc-
tional pattern of the light emitted from a VPL, and M is the analo-
gous term for sensor points. At a vertex v, we define them as:

M(ψ) =
s(v,ψ,ω)

αM(v,ω)
, αM(v,ω)≈

∫
s(v,ψ,ω) dψ (17)

D(ω) =
s(v,ψ,ω)

αD(v,ψ)
, αD(v,ψ)≈

∫
s(v,ψ,ω) dω (18)

where the α terms are normalization terms that are intended to
approximate the corresponding spherical integrals. For example,
αM(v,ω) = ρ |ω·ng| for a Lambertian surface and αM(v,ω) =
σs(ω) for volumetric scattering.

These normalizing terms can be approximate because canceling α

multipliers exist in the strength S and intensity I terms. Thus, exact
solutions (which are often unknown) are not required. We propose
using approximately normalized M and D terms to make it easier
to reason about the effects of weighting strategies.

Transit term T: The transit term T accounts for all effects that
can occur along the line segment connecting a VPS to a VPL. It
combines τ with a distance factor as follows:

Ti,i+1 =
τ(vi,vi+1)

‖vi−vi+1‖2 (19)

In the special case of lights at infinity (environment map lighting)
or BSSRDF media, we omit the distance term in the denominator.

Strength S and intensity I terms: The strength and intensity
terms depend on the eye and light subpaths used to generate the
VPS and VPLs, respectively. We follow standard convention in
stochastic particle tracing, and the computation of the terms is only
briefly summarized here. The strength is given by:

Si =
ec(v0)

pc(v0)

(
i−1

∏
m=0

s(vm,ψm,ωm)τ(vm,vm+1)

p(ψm) p(vm+1)

)
αM(vi,ψi)

psurvive
(20)

where ec and pc are the area sensitivity and the probability of se-
lecting an initial vertex on the camera, respectively. The product
accounts for all the vertices and segments between the initial vertex
and the current location. It includes the probabilities of selecting
segment directions ψ and of choosing the next vertex, given that
direction. Finally, we multiply by an α term to cancel the one in
the material term M and divide by the probability that the particle
is not killed by the russian roulette used to prune weak particles. A
similar equation determines the intensities of the VPLs.

B BSSRDF in Path-Based Algorithms

A BSSRDF [Jensen et al. 2001] describes light scattering in a
medium where light changes direction and leaves from a different
point on the surface. Thus a BSSRDF is a function of two positions
and two directions, f ss(va,ψa,vb,ωb) and cannot be expressed in
our path notation as a single scattering function s(v,ψ,ω). How-
ever, we can fit it into our formulation by modeling it as two path
vertices plus a special type of segment such that:

|ψ·ng| f ss(vi+1,ψi+1,vi,ωi) |ω·ng|
= s(vi,ψi,ωi)τ(vi,vi+1)s(vi+1,ψi+1,ωi+1). (21)

For example, given a BSSRDF based on a distance falloff function
g(), Lambertian directional behavior, and albedo ρ such that:

f ss(vi+1,ψi+1,vi,ωi) =
ρ

π
g(‖vi−vi+1‖), (22)

we can model this behavior in our framework by setting:

s(vi,ψi,ωi) =

√
ρ

π

∣∣ωi ·ng
i

∣∣ (23)

τ(vi,vi+1) = πg(‖vi−vi+1‖) (24)

s(vi+1,ψi+1,ωi+1) =

√
ρ

π

∣∣ψi+1 ·n
g
i+1

∣∣ (25)

where we keep the scattering functions as similar as possible to
those for Lambertian BSDFs. This τ does not include visibility so
there is no shadowing within this special segment type. Also, note
that it can only connect vertices on the same BSSRDF surface or ob-
ject. Otherwise, these vertices and segments behave similarly to the
more conventional surface or volume ones, and our system required
only small modifications to support them. This formulation allows
path and VPL-based methods to include BSSRDFs without major
algorithmic modifications (e.g., [Arbree et al. 2008] had to extend
point pairs to triplets and required specialized BSSRDF caches).

When generating eye and light subpaths, one may need to randomly
generate new vertices for BSSRDF segments on the same surface
with probability based on a distance function g(). We have devel-
oped a novel ray-based solution to this problem based on uniform
random lines. A brief outline is given below.

We generate two random points and connect them by a line segment
to generate a uniform distribution of lines within the sphere. If we
find all intersections between such a line segment and any surfaces
inside the sphere, the probability density of finding a surface point x
is simply p(x) = 1/(2πr2) where r is the radius of the sphere. Thus
it will uniformly sample all surface points within some distance
r, which would be exactly what we want if our distance function
g() were constant within some distance and zero outside it. The
distance functions used in practice are usually smoothly decreasing
functions of distance, but we can also match such a function by
randomly generating the radius of the sphere as well as the points
on the sphere. In this case the probability of finding a point is:

p(x) =
∫

∞

dx

pr(r)
2πr2 dr (26)

where dx is the distance between x and the center of the sphere and
pr is the probability of choosing a radius. By setting this equal to
our target distance function g() and inverting (analytically or nu-
merically) to generate pr, we can sample points with a distribution
that matches any decreasing distance function. Each segment may
generate zero, one, or multiple points though, so the sampling still
has some variance. The advantages are that it is unbiased, works
with any ray-intersectable surface, and requires no precomputation
or extra storage.

