
Optimistic Parallelism Requires Abstractions ∗

Milind Kulkarni †,
Keshav Pingali

Department of Computer Science,
University of Texas, Austin.

{milind, pingali}@cs.utexas.edu

Bruce Walter, Ganesh Ramanarayanan,
Kavita Bala ‡, L. Paul Chew
Department of Computer Science,

Cornell University, Ithaca, New York.
bjw@graphics.cornell.edu,

{graman,kb,chew}@cs.cornell.edu

Abstract
Irregular applications, which manipulate large, pointer-based data
structures like graphs, are difficult to parallelize manually. Auto-
matic tools and techniques such as restructuring compilers and run-
time speculative execution have failed to uncover much parallelism
in these applications, in spite of a lot of effort by the research com-
munity. These difficulties have even led some researchers to won-
der if there is any coarse-grain parallelism worth exploiting in ir-
regular applications.

In this paper, we describe two real-world irregular applications:
a Delaunay mesh refinement application and a graphics application
that performs agglomerative clustering. By studying the algorithms
and data structures used in these applications, we show that there
is substantial coarse-grain, data parallelism in these applications,
but that this parallelism is very dependent on the input data and
therefore cannot be uncovered by compiler analysis. In principle,
optimistic techniques such as thread-level speculation can be used
to uncover this parallelism, but we argue that current implemen-
tations cannot accomplish this because they do not use the proper
abstractions for the data structures in these programs.

These insights have informed our design of the Galois sys-
tem, an object-based optimistic parallelization system for irregu-
lar applications. There are three main aspects to Galois: (1) a small
number of syntactic constructs for packaging optimistic parallelism
as iteration over ordered and unordered sets, (2) assertions about
methods in class libraries, and (3) a runtime scheme for detecting
and recovering from potentially unsafe accesses to shared memory
made by an optimistic computation.

We show that Delaunay mesh generation and agglomerative
clustering can be parallelized in a straight-forward way using the
Galois approach, and we present experimental measurements to
show that this approach is practical. These results suggest that
Galois is a practical approach to exploiting data parallelism in
irregular programs.

∗ This work is supported in part by NSF grants 0615240, 0541193,
0509307, 0509324, 0426787 and 0406380, as well as grants from the IBM
and Intel Corportations.
† Milind Kulkarni is supported by the DOE HPCS Fellowship.
‡ Kavita Bala is supported in part by NSF Career Grant 0644175

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

1. Introduction
A pessimist sees the difficulty in every opportunity;
an optimist sees the opportunity in every difficulty.

—Sir Winston Churchill

The advent of multicore processors has shifted the burden of
improving program execution speed from chip manufacturers to
software developers. A particularly challenging problem in this
context is the parallelization of irregular applications that deal
with complex, pointer-based data structures such as trees, queues
and graphs. In this paper, we describe two such applications: a
Delaunay mesh refinement code [8] and a graphics application [41]
that performs agglomerative clustering [26].

In principle, it is possible to use a thread library (e.g., pthreads)
or a combination of compiler directives and libraries (e.g., OpenMP
[25]) to write threaded code for multicore processors, but it is well
known that writing threaded code can be very tricky because of the
complexities of synchronization, data races, memory consistency,
etc. Tim Sweeney, who designed the multi-threaded Unreal 3 game
engine, estimates that writing multi-threading code tripled software
costs at Epic Games (quoted in [9]).

Another possibility is to use compiler analyses such as points-
to and shape analysis [5, 32] to parallelize sequential irregular pro-
grams. Unfortunately, static analyses fail to uncover the parallelism
in such applications because the parallel schedule is very data-
dependent and cannot be computed at compile-time, as we argue
in Section 3.

Optimistic parallelization [17] is a promising idea, but current
implementations of optimistic parallelization such as thread-level
speculation (TLS) [37, 39, 45] cannot exploit the parallelism in
these applications, as we discuss in Section 3.

In this paper, we describe the Galois approach to parallelizing
irregular applications. This approach is informed by the following
beliefs.

• Optimistic parallelization is the only plausible approach to par-
allelizing many, if not most, irregular applications.

• For effective optimistic parallelization, it is crucial to exploit
the abstractions provided by object-oriented languages (in par-
ticular, the distinction between an abstract data type and its im-
plementation).

• Concurrency should be packaged, when possible, within syn-
tactic constructs that make it easy for the programmer to ex-
press what might be done in parallel, and for the compiler and
runtime system to determine what should be done in parallel.
The syntactic constructs used in Galois are very natural and can
be added easily to any object-oriented programming language
like Java. They are related to set iterators in SETL [19].

• Concurrent access to mutable shared objects by multiple threads
is fundamental, and cannot be added to the system as an after-
thought as is done in current approaches to optimistic paral-

Figure 1. A Delaunay mesh. Note that the circumcircle for each of
the triangles does not contain other points in the mesh.

lelization. However, discipline needs to be imposed on concur-
rent accesses to shared objects to ensure correct execution.

We have implemented the Galois approach in C++ on two
shared-memory platforms, and we have used this implementation
to write a number of complex applications including Delaunay
mesh refinement, agglomerative clustering, an image segmentation
code that uses graph cuts [41], and an approximate SAT solver
called WalkSAT [34].

This paper describes the Galois approach and its implementa-
tion, and presents performance results for some of these applica-
tions. It is organized as follows. In Section 2, we present Delaunay
mesh refinement and agglomerative clustering, and describe oppor-
tunities for exploiting parallelism in these codes. In Section 3, we
give an overview of existing parallelization techniques and argue
that they cannot exploit the parallelism in these applications. In
Section 4, we discuss the Galois programming model and run-time
system. In Section 5, we evaluate the performance of our system on
the two applications. Finally, in Section 6, we discuss conclusions
and ongoing work.

2. Two Irregular Applications
To understand the nature of the parallelism in irregular programs,
it is useless to study the execution traces of irregular programs, as
most studies in this area do; instead it is necessary to recall Niklaus
Wirth’s aphorism program = algorithm + data structure [43], and
examine the relevant algorithms and data structures. In this sec-
tion, we describe two irregular applications: Delaunay mesh refine-
ment [8, 31], and agglomerative clustering [26] as used within a
graphics application [41]. These applications perform refinement
and coarsening respectively, which are arguably the two most com-
mon operations for bulk-modification of irregular data structures.
For each application, we describe the algorithm and key data struc-
tures, and describe opportunities for exploiting parallelism.

2.1 Delaunay Mesh Refinement
Mesh generation is an important problem with applications in many
areas such as the numerical solution of partial differential equations
and graphics. The goal of mesh generation is to represent a surface
or a volume as a tessellation composed of simple shapes like trian-
gles, tetrahedra, etc.

Although many types of meshes are used in practice, Delaunay
meshes are particularly important since they have a number of
desirable mathematical properties [8]. The Delaunay triangulation
for a set of points in the plane is the triangulation such that no point
is inside the circumcircle of any triangle (this property is called the
empty circle property). An example of such a mesh is shown in
Figure 1.

In practice, the Delaunay property alone is not sufficient, and
it is necessary to impose quality constraints governing the shape
and size of the triangles. For a given Delaunay mesh, this is ac-
complished by iterative mesh refinement, which successively fixes
“bad” triangles (triangles that do not satisfy the quality constraints)
by adding new points to the mesh and re-triangulating. Figure 2
illustrates this process; the shaded triangle in Figure 2(a) is as-

Figure 2. Fixing a bad element.

1: Mesh m = /* read in initial mesh */
2: WorkList wl;
3: wl.add(mesh.badTriangles());
4: while (wl.size() != 0) {
5: Element e = wl.get(); //get bad triangle
6: if (e no longer in mesh) continue;
7: Cavity c = new Cavity(e);
8: c.expand();
9: c.retriangulate();
10: mesh.update(c);
11: wl.add(c.badTriangles());
12: }

Figure 3. Pseudocode of the mesh refinement algorithm

sumed to be bad. To fix this bad triangle, a new point is added at
the circumcenter of this triangle. Adding this point may invalidate
the empty circle property for some neighboring triangles, so all af-
fected triangles are determined (this region is called the cavity of
the bad triangle), and the cavity is re-triangulated, as shown in Fig-
ure 2(c) (in this figure, all triangles lie in the cavity of the shaded
bad triangle). Re-triangulating a cavity may generate new bad tri-
angles but it can be shown that this iterative refinement process will
ultimately terminate and produce a guaranteed-quality mesh. Dif-
ferent orders of processing bad elements lead to different meshes,
although all such meshes satisfy the quality constraints [8].

Figure 3 shows the pseudocode for mesh refinement. The input
to this program is a Delaunay mesh in which some triangles may be
bad, and the output is a refined mesh in which all triangles satisfy
the quality constraints. There are two key data structures used in
this algorithm. One is a worklist containing the bad triangles in the
mesh. The other is a graph representing the mesh structure; each
triangle in the mesh is represented as one node, and edges in the
graph represent triangle adjacencies in the mesh.

Opportunities for Exploiting Parallelism. The natural unit of
work for parallel execution is the processing of a bad triangle. Our
measurements show that on the average, each unit of work takes
about a million instructions of which about 10,000 are floating-
point operations. Because a cavity is typically a small neighbor-
hood of a bad triangle, two bad triangles that are far apart on the
mesh may have cavities that do not overlap. Furthermore, the entire
refinement process (expansion, retriangulation and graph updating)
for the two triangles is completely independent; thus, the two trian-
gles can be processed in parallel. This approach obviously extends
to more than two triangles. If however the cavities of two triangles
overlap, the triangles can be processed in either order but only one
of them can be processed at a time. Whether or not two bad trian-
gles have overlapping cavities depends entirely on the structure of
the mesh, which changes throughout the execution of the algorithm.

How much parallelism is there in Delaunay mesh generation?
The answer obviously depends on the mesh and on the order in
which bad triangles are processed, and may be different at dif-
ferent points during the execution of the algorithm. One study by
Antonopoulos et al. [2] on a mesh of one million triangles found
that there were more than 256 cavities that could be expanded in
parallel until almost the end of execution.

a

b
c

d

e

a

b
c

d

e

a b c d e

(a) Data points (b) Hierarchical clusters (c) Dendrogram

Figure 4. Agglomerative clustering

2.2 Agglomerative Clustering
The second problem is agglomerative clustering, a well-known
data-mining algorithm [26]. This algorithm is used in graphics
applications for handling large numbers of light sources [41].

The input to the clustering algorithm is (1) a data-set, and (2) a
measure of the “distance” between items in the data-set. Intuitively,
this measure is an estimate of similarity — the larger the distance
between two data items, the less similar they are believed to be. The
goal of clustering is to construct a binary tree called a dendrogram
whose hierarchical structure exposes the similarity between items
in the data-set. Figure 4(a) shows a data-set containing points in
the plane, for which the measure of distance between data points
is the usual Euclidean distance. The dendrogram for this data set is
shown in Figures 4(b,c).

Agglomerative clustering can be performed by an iterative al-
gorithm: at each step, the two closest points in the data-set are clus-
tered together and replaced in the data-set by a single new point that
represents the new cluster. The location of this new point may be
determined heuristically [26]. The algorithm terminates when there
is only one point left in the data-set.

Pseudocode for the algorithm is shown in Figure 5. The central
data structure is a priority queue whose entries are ordered pairs of
points <x,y>, such that y is the nearest neighbor of x (we call this
nearest(x)). In each iteration of the while loop, the algorithm
dequeues the top element of the priority queue to find a pair of
points <p,n> that are closer to each other than any other pair of
points, and clusters them. These two points are then replaced by a
new point that represents this cluster. The nearest neighbor of this
new point is determined, and the pair is entered into the priority
queue. If there is only one point left, its nearest neighbor is the
point at infinity.

To find the nearest neighbor of a point, we can scan the entire
data-set at each step, but this is too inefficient. A better approach
is to sort the points by location, and search within this sorted set
to find nearest neighbors. If the points were all in a line, we could
use a binary search tree. Since the points are in higher dimensions,
a multi-dimensional analog called a kd-tree is used [3]. The kd-
tree is built at the start of the algorithm, and it is updated by
removing the points that are clustered, and then adding the new
point representing the cluster, as shown in Figure 5.

Opportunities for Exploiting Parallelism. Since each iteration
clusters the two closest points in the current data-set, it may seem
that the algorithm is inherently sequential. In particular, an item
<x,nearest(x)> inserted into the priority queue by iteration
i at line 17 may be the same item that is dequeued by iteration
(i+1) in line 5; this will happen if the points in the new pair are
closer together than any other pair of points in the current data-set.
On the other hand, if we consider the data-set in Figure 4(a), we
see that points a and b, and points c and d can be clustered con-
currently since neither cluster affects the other. Intuitively, if the
dendrogram is a long and skinny tree, there may be few indepen-
dent iterations, whereas if the dendrogram is a bushy tree, there is
parallelism that can be exploited since the tree can be constructed
bottom-up in parallel. As in the case of Delaunay mesh refinement,
the parallelism is very data-dependent. In experiments on graphics

1: kdTree := new KDTree(points)
2: pq := new PriorityQueue()
3: foreach p in points {pq.add(<p,kdTree.nearest(p)>)}
4: while(pq.size() != 0) do {
5: Pair <p,n> := pq.get();//return closest pair
6: if (p.isAlreadyClustered()) continue;
7: if (n.isAlreadyClustered()) {
8: pq.add(<p, kdTree.nearest(p)>);
9: continue;
10: }
11: Cluster c := new Cluster(p,n);
12: dendrogram.add(c);
13: kdTree.remove(p);
14: kdTree.remove(n);
15: kdTree.add(c);
16: Point m := kdTree.nearest(c);
17: if (m != ptAtInfinity) pq.add(<c,m>);
18: }

Figure 5. Pseudocode for agglomerative clustering

scenes with 20,000 lights, we have found that on average about 100
clusters can be constructed concurrently; thus, there is substantial
parallelism that can be exploited. For this application, each iteration
of the while-loop in Figure 5 performs about 100,000 instructions
of which roughly 4000 are floating-point operations.

3. Limitations of Current Approaches
Current approaches for parallelizing irregular applications can be
divided into static, semi-static, and dynamic approaches.

Static Approaches. One approach to parallelization is to use a
compiler to analyze and transform sequential programs into parallel
ones, using techniques like points-to analysis [5] and shape analy-
sis [32]. The weakness of this approach is that the parallel schedule
produced by the compiler must be valid for all inputs to the pro-
gram. As we have seen, parallelism in irregular applications can
be very data-dependent, so compile-time parallelization techniques
will serialize the entire execution. This conclusion holds even if
dependence analysis is replaced with more sophisticated analysis
techniques like commutativity analysis [10].

A Semi-static Approach. In the inspector-executor approach of
Saltz et al [27], the computation is split into two phases, an inspec-
tor phase that determines dependencies between units of work, and
an executor phase that uses the schedule to perform the compu-
tation in parallel. This approach is not useful for our applications
since the data-sets, and therefore the dependences, change as the
codes execute.

Dynamic Approaches. In dynamic approaches, parallelization is
performed at runtime, and is known as speculative or optimistic
parallelization. The program is executed in parallel assuming that
dependences are not violated, but the system software or hardware
detects dependence violations and takes appropriate corrective ac-
tion such as killing off the offending portions of the program and
re-executing them sequentially. If no dependence violations are de-
tected by the end of the speculative computation, the results of
the speculative computation are committed and become available
to other computations.

Fine-grain speculative parallelization for exploiting instruction-
level parallelism was introduced around 1970; for example, Toma-
sulo’s IBM 360/91 fetched instructions speculatively from both
sides of a branch before the branch target was resolved [38]. Spec-
ulative execution of instructions past branches was studied in the
abstract by Foster and Riseman in 1972 [7], and was made prac-
tical by Josh Fisher when he introduced the idea of using branch
probabilities to guide speculation [11]. Branch speculation can ex-
pose instruction-level (fine-grain) parallelism in programs but not
the data-dependent coarse-grain parallelism in applications like De-
launay mesh refinement.

One of the earliest implementations of coarse-grain optimistic
parallel execution was in Jefferson’s 1985 Time Warp system for
distributed discrete-event simulation [17]. In 1999, Rauchwerger
and Padua described the LRPD test for supporting speculative
execution of FORTRAN DO-loops in which array subscripts were
too complex to be disambiguated by dependence analysis [30]. This
approach can be extended to while-loops if an upper bound on the
number of loop iterations can be determined before the loop begins
execution [29]. More recent work has provided hardware support
for this kind of coarse-grain loop-level speculation, now known as
thread-level speculation (TLS) [37, 39, 45].

However, there are fundamental reasons why current TLS im-
plementations cannot exploit the parallelism in our applications.
One problem is that many of these applications, such as Delau-
nay mesh refinement, have unbounded while-loops, which are not
supported by most current TLS implementations since they target
FORTRAN-style DO-loops with fixed loop bounds. A more funda-
mental problem arises from the fact that current TLS implementa-
tions track dependences by monitoring the reads and writes made
by loop iterations to memory locations. For example, if iteration
i+1 writes to a location before it is read by iteration i, a dependence
violation is reported, and iteration i+1 must be rolled back.

For irregular applications that manipulate pointer-based data
structures, this is too strict and the program will perform poorly be-
cause of frequent roll-backs. To understand this, consider the work-
list in Delaunay mesh generation. Regardless of how the worklist is
implemented, there must be a memory location (call this location
head) that points to a cell containing the next bad triangle to be
handed out. The first iteration of the while loop removes a bad tri-
angle from the worklist, so it reads and writes to head, but the result
of this write is not committed until that iteration terminates suc-
cessfully. A thread that attempts to start the second iteration con-
currently with the execution of the first iteration will also attempt
to read and write head, and since this happens before the updates
from the first iteration have been committed, a dependence conflict
will be reported (the precise point at which a dependence conflict
will be reported depends on the TLS implementation). While this
particular problem might be circumvented by inventing some ad
hoc mechanism, it is unlikely that there is any such work-around
for the far more complex priority queue manipulations in agglom-
erative clustering. The manipulations of the graph and kd-tree in
these applications may also create such conflicts.

This is a fundamental problem: for many irregular applications,
tracking dependences by monitoring reads and writes to memory
locations is correct but will result in poor performance.

Finally, Herlihy and Moss have proposed to simplify shared-
memory programming by eliminating lock-based synchronization
constructs in favor of transactions [15]. There is growing interest in
supporting transactions efficiently with software and hardware im-
plementations of transactional memory [1, 12, 13, 21, 35]. Most of
this work is concerned with optimistic synchronization and not op-
timistic parallelization; that is, their starting point is a program that
has already been parallelized (for example, the SPLASH bench-
marks [12] or the Linux kernel [28]), and the goal is find an effi-
cient way to synchronize parallel threads. In contrast, our goal is to
find the right abstractions for expressing coarse-grain parallelism in
irregular applications, and to support these abstractions efficiently;
synchronization is one part of a bigger problem we are addressing
in this paper. Furthermore, most implementations of transactional
memory track reads and writes to memory locations, so they suf-
fer from the same problems as current TLS implementations. Open
nested transactions [22] have been proposed recently as a solution
to this problem, and they are discussed in more detail in Section 4.

Client Code
Galois Objects

Figure 6. High-level view of Galois execution model

4. The Galois Approach
Perhaps the most important lesson from the past twenty-five years
of parallel programming is that the complexity of parallel program-
ming should be hidden from programmers as far as possible. For
example, it is likely that more SQL programs are executed in paral-
lel than programs in any other language. However, most SQL pro-
grammers do not write explicitly parallel code; instead they obtain
parallelism by invoking parallel library implementations of joins
and other relational operations. A “layered” approach of this sort is
also used in dense linear algebra, another domain that has success-
fully mastered parallelism.

In this spirit, programs in the Galois approach consist of (i) a
set of library classes and (ii) the top-level client code that creates
and manipulates objects of these classes. For example, in Delaunay
mesh refinement, the relevant objects are the mesh and worklist,
and the client code implements the Delaunay mesh refinement
algorithm discussed in Section 2. This client code is executed
concurrently by some number of threads, but as we will see, it is
not explicitly parallel and makes no mention of threads. Figure 6 is
a pictorial view of this execution model.

There are three main aspects to the Galois approach: (1) two
syntactic constructs called optimistic iterators for packaging opti-
mistic parallelism as iteration over sets (Section 4.1), (2) assertions
about methods in class libraries (Section 4.2), and (3) a runtime
scheme for detecting and recovering from potentially unsafe ac-
cesses to shared objects made by an optimistic computation (Sec-
tion 4.3).

4.1 Optimistic iterators
As mentioned above, the client code is not explicitly parallel; in-
stead parallelism is packaged into two constructs that we call op-
timistic iterators. In the compiler literature, it is standard to distin-
guish between do-all loops and do-across loops [20]. The iterations
of a do-all loop can be executed in any order because the compiler
or the programmer asserts that there are no dependences between
iterations. In contrast, a do-across loop is one in which there may be
dependences between iterations, so proper sequencing of iterations
is essential. We introduce two analogous constructs for packaging
optimistic parallelism.

• Set iterator: for each e in Set S do B(e)
The loop body B(e) is executed for each element e of set S.
Since set elements are not ordered, this construct asserts that in
a serial execution of the loop, the iterations can be executed in
any order. There may be dependences between the iterations, as
in the case of Delaunay mesh generation, but any serial order of
executing iterations is permitted. When an iteration executes, it
may add elements to S.

• Ordered-set iterator: for each e in Poset S do B(e)
This construct is an iterator over a partially-ordered set (Poset)
S. It asserts that in a serial execution of the loop, the iterations
must be performed in the order dictated by the ordering of

1: Mesh m = /* read in initial mesh */
2: Set wl;
3: wl.add(mesh.badTriangles());
4: for each e in wl do {
5: if (e no longer in mesh) continue;
6: Cavity c = new Cavity(e);
7: c.expand();
8: c.retriangulate();
9: m.update(c);
10: wl.add(c.badTriangles());
11: }

Figure 7. Delaunay mesh refinement using set iterator

elements in the Poset S. There may be dependences between
iterations, and as in the case of the set iterator, elements may be
added to S during execution.

The set iterator is a special case of the ordered-set iterator but it
can be implemented more efficiently, as we see later in this section.

Figure 7 shows the client code for Delaunay mesh generation.
Instead of a work list, this code uses a set and a set iterator. The
Galois version is not only simpler but also makes evident the fact
that the bad triangles can be processed in any order; this fact
is absent from the more conventional code of Figure 3 since it
implements a particular processing order. For lack of space, we do
not show the Galois version of agglomerative clustering, but it uses
the ordered-set iterator in the obvious way.

4.1.1 Concurrent Execution Model
Although the semantics of Galois iterators can be specified without
appealing to a parallel execution model, these iterators provide
hints from the programmer to the Galois runtime system that it
may be profitable to execute the iterations in parallel; of course
any parallel execution must be faithful to the sequential semantics.

The Galois concurrent execution model is the following. A mas-
ter thread begins the execution of the program; it also executes the
code outside iterators. When this master thread encounters an iter-
ator, it enlists the assistance of some number of worker threads to
execute iterations concurrently with itself. The assignment of iter-
ations to threads is under the control of a scheduling policy imple-
mented by the runtime system; for now, we assume that this assign-
ment is done dynamically to ensure load-balancing. All threads are
synchronized using barrier synchronization at the end of the itera-
tor.

In our applications, we have not found it necessary to use nested
iterators. There is no fundamental problem in supporting nested
parallelism, but our current implementation does not support it; if
a thread encounters an inner iterator, it executes the entire inner
iterator sequentially.

Given this execution model, the main technical problem is to
ensure that the parallel execution respects the sequential semantics
of the iterators. This is a non-trivial problem because each itera-
tion may read and write to the objects in shared memory, and we
must ensure that these reads and writes are properly coordinated.
Section 4.2 describes the information that must be specified by the
Galois class writer to enable this. Section 4.3 describes how the
Galois runtime system uses this information to ensure that the se-
quential semantics of iterators are respected.

4.2 Writing Galois Classes
To ensure that the sequential semantics of iterators are respected,
there are two problems that must be solved, which we explain with
reference to Figure 8. This figure shows set objects with methods
add(x), remove(x), get() and contains?(x) that have
the usual semantics1.

1 The method remove(x) removes a specific element from the set while
get() returns an arbitrary element from the set, removing it from the set.

Set S Workset wsS.add(x)

S.remove(x)

S.contains?(x)

ws.get() ws.get()

ws.add(x) ws.add(y)

(a) (b)

Figure 8. Interleaving method invocations from different iterations

The first problem is the usual one of concurrency control (also
known in the database literature as ensuring consistency). If a
method invocation from one iteration is performed concurrently
with an invocation from another iteration, we must ensure that the
two invocations do not step on each other. One solution is to use a
lock on object S; if this inhibits concurrency, we can use fine-grain
locks within object S. These locks are acquired before the method
is invoked and released when the method completes.

However, this is not enough to ensure that the sequential seman-
tics of the iterators are respected. Consider Figure 8(a). If S does not
contain x before the iterations start, notice that in any sequential ex-
ecution of the iterations, the method invocation contains?(x)
will return false. However, for one possible interleaving of opera-
tions — add(x),contains?(x),remove(x) — the invoca-
tion contains?(x) will return true, which is incorrect. This is
the problem of ensuring isolation of the iterations.

One solution for both problems is for an iteration to release its
locks only at the end of the iteration: the well-known two-phase
locking algorithm used in databases is an optimized version of this
simple idea. Transactional memory implementations accomplish
the same goal by tracking the read and write sets of each iteration
instead of locking them.

While this solves the problem in Figure 8(a), it is not adequate
for our applications. The program in Figure 8(b) is motivated by
Delaunay mesh generation: each iteration gets a bad triangle at
the beginning of the iteration, and may add some bad triangles
to the work-set at the end. Regardless of how the set object is
implemented, there must be a location (call it head) that points to a
cell containing the next triangle to be handed out. The first iteration
to get work will read and write location head, and it will lock
it for the duration of the iteration, preventing any other iterations
from getting work. Most current implementations of transactional
memory will suffer from the same problem since the head location
will be in the read and write sets of the first iteration for the duration
of that iteration.

The crux of the problem is that the abstract set operations have
useful semantics that are not available to an implementation that
works directly on the representation of the set and tracks reads and
writes to individual memory locations. The problem therefore is to
understand the semantics of set operations that must be exploited
to permit parallel execution in our irregular applications, and to
specify these semantics in some concise way.

4.2.1 Semantic Commutativity
The solution we have adopted exploits the commutativity of
method invocations. Intuitively, it is obvious that the method in-
vocations to a given object from two iterations can be interleaved
without losing isolation provided that these method invocations
commute, since this ensures that the final result is consistent with
some serial order of iteration execution. In Figure 8(a), the invo-
cation contains?(x) does not commute with the operations from
the other thread, so the invocations from the two iterations must

not be interleaved. In Figure 8(b), (1) get operations commute with
each other, and (2) a get operation commutes with an add operation
provided that the operand of add is not the element returned by get.
This allows multiple threads to pull work from the work-set while
ensuring that sequential semantics of iterators are respected.

It is important to note that what is relevant for our purpose is
commutativity in the semantic sense. The internal state of the object
may actually be different for different orders of method invocations
even if these invocations commute in the semantic sense. For exam-
ple, if the set is implemented using a linked list and two elements
are added to this set, the concrete state of the linked list will de-
pend in general on the order in which these elements were added
to the list. However, what is relevant for parallelization is that the
state of the set abstract data type, which is being implemented by
the linked list, is the same for both orders. In other words, we are
not concerned with concrete commutativity (that is, commutativ-
ity with respect to the implementation type of the class), but with
semantic commutativity (that is, commutativity with respect to the
abstract data type of the class). We also note that commutativity of
method invocations may depend on the arguments of those invo-
cations. For example, an add and a remove commute only if their
arguments are different.

4.2.2 Inverse Methods
Because iterations are executed in parallel, it is possible for com-
mutativity conflicts to prevent an iteration from completing. Once
a conflict is detected, some recovery mechanism must be invoked
to allow execution of the program to continue despite the conflict.
Because our execution model uses the paradigm of optimistic par-
allelism, our recovery mechanism rolls back the execution of the
conflicting iteration. To avoid livelock, the lower priority iteration
is rolled back in the case of the ordered-set iterator.

To permit this, every method of a shared object that may mod-
ify the state of that object must have an associated inverse method
that undoes the side-effects of that method invocation. For exam-
ple, for a set, the inverse of add(x) is remove(x), and the inverse of
remove(x) is add(x). As in the case of commutativity, what is rele-
vant for our purpose is an inverse in the semantic sense; invoking a
method and its inverse in succession may not restore the concrete
data structure to what it was.

Note that when an iteration rolls back, all of the methods which
it invokes during roll-back must succeed. Thus, we must never en-
counter conflicts when invoking inverse methods. When the Galois
system checks commutativity, it also checks commutativity with
the associated inverse method.

4.2.3 Putting it All Together
Since we are interested in semantic commutativity and undo, it is
necessary for the class designer to specify this information. Fig-
ure 9 illustrates how this information is specified in Galois for a
class that implements sets. The interface specifies two versions of
each method: the internal methods on the object, and the interface
methods, called from within iterators, that perform the commuta-
tivity checks, maintain the undo information and trigger roll backs
when commutativity conflicts are detected.

The specification for an interface method consists of three main
sections (with pseudo-code representing these in the figure):

• calls: This section ties the interface method to the internal
method(s) it invokes.

• commutes: This section specifies which other interface meth-
ods the current method commutes with, and under which con-
ditions. For example, remove(x) commutes with add(y),
as long as they elements are different.

• inverse: This section specifies the inverse of the current method.

class Set {
// interface methods
void add(Element x);

[calls] _add(x) : void
[commutes]

- add(y) {y != x}
- remove(y) {y != x}
- contains(y) {y != x}
- get() : y {y != x} //get call that returns y

[inverse] _remove(x)
void remove(Element x);

[calls] _remove(x) : void
[commutes]

- add(y) {y != x}
- remove(y) {y != x}
- contains(y) {y != x}
- get() : y {y != x}

[inverse] _add(x)
bool contains(Element x);

[calls] _contains(x) : bool b
[commutes]

- add(y) {y != x}
- remove(y) {y != x}
- get() : y {y != x}
- contains(*) //any call to contains

Element get();
[calls] _get() : Element x
[commutes]

- add(y) {y != x}
- remove(y) {y != x}
- contains(y) {y != x}
- get() : y {y != x}

[inverse] _add(x)

//internal methods
void _add(Element x);
void _remove(Element x);
bool _contains(Element x);
Element _get();

}

Figure 9. Example Galois class for a Set

The description of the Galois system in this section implicitly
assumed that all calls to parallel objects are made from client code.
However, to facilitate composition, we also allow parallel objects to
invoke methods on other objects. This is handled through a simple
flattening approach. The iteration object is passed to the “child”
invocation and hence all operations done in the child invocation
are appended to the undo log of the iteration. Similarly, the child
invocation functions as an extension of the original method when
detecting commutativity conflicts. No changes need to be made to
the Galois run-time to support this form of composition.

The class implementor must also ensure that each internal
method invocation is atomic to ensure consistency. This can be
done using any technique desired, including locks or transactional
memory. Recall that whatever locks are acquired during method
invocation (or memory locations placed in read/write sets during
transactional execution) are released as soon as the method com-
pletes, rather than being held throughout the execution of the it-
eration, since we rely on commutativity information to guarantee
isolation. In our current implementation, the internal methods are
made atomic through the use of locks.

4.2.4 A small example

Iteration A Iteration B Iteration C

{ { {
...
a.accumulate(5) a.accumulate(7) a.read()
...

} } }

Figure 10. Example accumulator code

Consider a program written using a single shared object, an in-
teger accumulator. The object supports two operations: accumulate
and read, with the obvious semantics. It is clear that accumulates
commute with other accumulates, and reads commute with other
reads, but that accumulate does not commute with read. The meth-
ods are made atomic with a single lock which is acquired at the
beginning of the method and released at the end.

There are three iterations executing concurrently, as seen in
Figure 10. The progress of the execution is as follows:

• Iteration A calls accumulate, acquiring the lock, updating the
accumulator and then releasing the lock and continuing.

• Iteration B calls accumulate. Because accumulates commute, B
can successfully make the call, acquiring the lock, updating the
accumulator and releasing it. Note that A has already released
the lock on the accumulator, thus allowing B to make forward
progress without blocking on the accumulator’s lock.

• When iteration C attempts to execute read, it sees that it cannot,
as read does not commute with the already executed accumu-
lates. Thus, C must roll back and try again. Note that this is
not enforced by the lock on the accumulator, but instead by the
commutativity conditions on the accumulator.

• When iterations A and B commit, C can then successfully call
read and continue execution.

In [40], von Praun et al discuss the use of ordered transactions
in parallelizing FORTRAN-style DO-loops, and they give special
treatment to reductions in such loops to avoid spurious conflicts.
Reductions do not require any special treatment in the Galois ap-
proach since the programmer could just use an object like the ac-
cumulator to implement reduction.

4.3 Runtime System
The Galois runtime system has two components: (1) a global struc-
ture called the commit pool that is responsible for creating, abort-
ing, and committing iterations, and (2) per-object structures called
conflict logs which detect when commutativity conditions are vio-
lated.

At a high level, the runtime systems works as follows. The com-
mit pool maintains an iteration record, shown in Figure 11, for each
ongoing iteration in the system. The status of an iteration can be
RUNNING, RTC (ready-to-commit) or ABORTED. Threads go to
the commit pool to obtain an iteration. The commit pool creates a
new iteration record, obtains the next element from the iterator, as-
signs a priority to the iteration record based on the priority of the
element (for a set iterator, all elements have the same priority), and
sets the status field of the iteration record to RUNNING. When an
iteration invokes a method of a shared object, (i) the conflict log
of that object and the local log of the iteration record are up-
dated, as described in more detail below, and (ii) a callback to the
associated inverse method is pushed onto the undo log of the it-
eration record. If a commutativity conflict is detected, the commit
pool arbitrates between the conflicting iterations, and aborts itera-
tions to permit the highest priority iteration to continue execution.
Callbacks in the undo logs of aborted iterations are executed to
undo their effects on shared objects. Once a thread has completed
an iteration, the status field of that iteration is changed to RTC, and
the thread is allowed to begin a new iteration. When the completed
iteration has the highest priority in the system, it is allowed to com-
mit. It can be seen that the role of the commit pool is similar to that
of a reorder buffer in out-of-order processors [14].

4.3.1 Conflict Logs
The conflict log is the mechanism for detecting commutativity con-
flicts. There is one conflict log associated with each shared object.
A simple implementation for the conflict log of an object is a list

IterationRecord {
Status status;
Priority p;
UndoLog ul;
list<LocalConflictLog> local_log;
Lock l;

}

Figure 11. Iteration record maintained by runtime system

containing the method signatures (including the values of the input
and output parameters) of all invocations on that object made by
currently executing iterations (called “outstanding invocations”).
When iteration i attempts to call a method m1 on an object, the
method signature is compared against all the outstanding invoca-
tions in the conflict log. If one of the entries in the log does not
commute with m1, then a commutativity conflict is detected, and
an arbitration process is begun to determine which iterations should
be aborted, as described below. If m1 commutes with all the entries
in the log, the signature of m1 is appended to the log. When i either
aborts or commits, all the entries in the conflict log inserted by i are
removed from the conflict log.

This model for conflict logs, while simple, is not efficient since
it requires a full scan of the conflict log whenever an iteration calls
a method on the associated object. In our actual implementation,
conflict logs consist of separate conflict sets for each method in
the class. Now when i calls m1, only the conflict sets for methods
which m1 may conflict with are checked; the rest are ignored.

There are two optimizations that we have implemented for con-
flict logs.

First, each iteration caches its own portion of the conflict logs
in a private log called its local log. This local log stores a
record of all the methods the iteration has successfully invoked
on the object. When an iteration makes a call, it first checks its
local log. If this local log indicates that the invocation will succeed
(either because that same method has been called before or other
methods, whose commutativity implies that the current method also
commutes, have been called before2), the iteration does not need to
check the object’s conflict log.

A second optimization is that not all objects have conflict logs
associated with them. For example, the triangles contained in the
mesh do not; their information is managed by the conflict log in the
mesh. If this optimization is used, care must be taken that modifi-
cations to the triangle are only made through the mesh interface. In
general, program analysis is required to ensure that this optimiza-
tion is safe.

4.3.2 Commit Pool
When an iteration attempts to commit, the commit pool checks two
things: (i) that the iteration is at the head of the commit queue, and
(ii) that the priority of the iteration is higher than all the elements
left in the set/poSet being iterated over3. If both conditions are met,
the iteration can successfully commit. If the conditions are not met,
the iteration must wait until it has the highest priority in the system;
its status is set to RTC, and the thread is allowed to begin another
iteration.

When an iteration successfully commits, the thread that was
running that iteration also checks the commit queue to see if more
iterations in the RTC state can be committed. If so, it commits those
iterations before beginning the execution of a new iteration. When
an iteration has to be aborted, the status of its record is changed

2 For example, if an iteration has already successfully invoked add(x),
then contains(x) will clearly commute with method invocations made
by other ongoing iterations.
3 This is to guard against a situation where an earlier committed iteration
adds a new element with high priority to the collection which has not yet
been consumed by the iterator

to ABORTED, but the commit pool takes no further action. Such
iteration objects are lazily removed from the commit queue when
they reach the head.

Conflict arbitration The other responsibility of the commit pool
is to arbitrate conflicts between iterations. When iterating over an
unordered set, the choice of which iteration to roll back in the
event of a conflict is irrelevant. For simplicity, we always choose
the iteration which detected the conflict. However, when iterating
over an ordered set, the lower priority iteration must be rolled back
while the higher priority iteration must continue. Without doing so,
there exists the possibility of deadlock.

Thus, when iteration i1 calls a method on a shared object and
a conflict is detected with iteration i2, the commit pool arbitrates
based on the priorities of the two iterations. If i1 has lower priority,
it simply performs the standard rollback operations. The thread
which was executing i1 then begins a new iteration.

This situation is complicated when i2 is the iteration that must
be rolled back. Because the Galois run time systems functions
purely at the user level, there is no simple way to abort an iteration
running on another thread. To address this problem, each iteration
record has an iteration lock as shown in Figure 11. When invoking
methods on shared objects, each iteration must own the iteration
lock in its record. Thus, the thread running i1 does the following:

1. It attempts to obtain i2’s iteration lock. By doing so, it ensures
that i2 is not modifying any shared state.

2. It aborts i2 by executing i2’s undo log and clearing the various
conflict logs of i2’s invocations. Note that the control flow of
the thread executing i2 does not change; that thread continues
as if no rollback is occurring.

3. It sets the status of i2 to ABORTED.
4. It then resumes its execution of i1, which can now proceed as

the conflict has been resolved.

On the other side of this arbitration process, the thread executing
i2 will realize that i2 has been aborted when it attempts to invoke
another method on a shared object (or attempts to commit). At this
point, the thread will see that i2’s status is ABORTED and will cease
execution of i2 and begin a new iteration.

When an iteration has to be aborted, the callbacks in its undo
log are executed in LIFO order. Because the undo log must persist
until an iteration commits, we must ensure that all the arguments
used by the callbacks remain valid until the iteration commits. If the
arguments are pass-by-value, there is no problem; they are copied
when the callback is created. A more complex situation is when
arguments are pass-by-reference or pointers. The first problem is
that the underlying data which the reference or pointer points to
may be changed during the course of execution. Thus, the callback
may be called with inappropriate arguments. However, as long
as all changes to the underlying data also occur through Galois
interfaces, the LIFO nature of the undo log ensures that they will be
rolled back as necessary before the callback uses them. The second
problem occurs when an iteration attempts to free a pointer, as there
is no simple way to undo a call to free. The Galois run-time
avoids this problem by delaying all calls to free until an iteration
commits. This does not affect the semantics of the iteration, and
avoids the problem of rolling back memory deallocation.

4.4 Discussion
Set iterators: Although the Galois set iterators introduced in Sec-
tion 4.1 were motivated in this paper by the two applications dis-
cussed in Section 2, they are very general, and we have found them
to be useful for writing other irregular applications such as advanc-
ing front mesh generators [23], and WalkSAT solvers [34]. Many
of these applications use “work-list”-style algorithms, for which

Galois iterators are natural, and the Galois approach allows us to
exploit data-parallelism in these irregular applications.

SETL was probably the first language to introduce an unordered
set iterator [19], but this construct differs from its Galois counter-
part in important ways. In SETL, the set being iterated over can be
modified during the execution of the iterator, but these modifica-
tions do not take effect until the execution of the entire iterator is
complete. In our experience, this is too limiting because work-list
algorithms usually involve data-structure traversals of some kind in
which new work is discovered during the traversal. The tuple iter-
ator in SETL is similar to the Galois ordered-set iterator, but the
tuple cannot be modified during the execution of the iterator, which
limits its usefulness in irregular applications. Finally, SETL was a
sequential programming language. DO-loops in FORTRAN are a
special case of the Galois ordered-set iterator in which iteration is
performed over integers in some interval.

A more complete design than ours would include iterators over
multisets and maps, which are easy to add to Galois. MATLAB or
FORTRAN-90-style notation like [low:step:high] for spec-
ifying ordered and unordered integers within intervals would be
useful. We believe it is also advisable to distinguish syntactically
between DO-ALL loops and unordered-set iterators over integer
ranges, since in the former case, the programmer can assert that
run-time dependence checks are unnecessary, enabling more effi-
cient execution. For example, in the standard i-j-k loop nest for
matrix-multiplication, the i and j loops are not only Galois-style
unordered-set iterators over integer intervals but they are even DO-
ALL loops; the k loop is an ordered-set interator if the accumula-
tions to elements of the C matrix must be done in order.

Semantic commutativity: Without commutativity information,
an object can be accessed by at most one iteration at a time, and
that iteration shuts out other iterations until it commits. In this case,
inverse methods can be implemented automatically by data copying
as is done in software transactional memories.

In the applications we have looked at, most shared objects are
instances of collections, which are variations of sets, so specifying
commutativity information and writing inverse methods has been
straightforward. For example, the kd-tree is just a set with an ad-
ditional method for finding the nearest neighbor of an element in
the set. Note that the design of Galois makes it easy to replace sim-
ple data structures with clever, hand-tuned concurrent data struc-
tures [33] if necessary, without changing the rest of the program.

The use of commutativity in parallel program execution was ex-
plored by Bernstein as far back as 1966 [4]. In the context of con-
current database systems, Weihl described a theoretical framework
for using commutativity conditions for concurrency control [42].
Herlihy and Weihl extended this work by leveraging ordering con-
straints to increase concurrency but at the cost of more complex
rollback schemes [16].

In the context of parallel programming, Steele described a sys-
tem for exploiting commuting operations on memory locations in
optimistic parallel execution [18]. However, commutativity is still
tied to concrete memory locations and does not exploit properties
of abstract data types like Galois does. Diniz and Rinard performed
static analysis to determine concrete commutativity of methods for
use in compile-time parallelization [10]. Semantic commutativity,
as used in Galois, is more general but it must be specified by the
class designer. Wu and Padua have proposed to use high level se-
mantics of container classes [44]. They propose making a compiler
aware of properties of abstract data types such as stacks and sets to
permit more accurate dependence analysis.

Recently, Ni et al [24] have proposed to extend conventional
transactional memory with a notion of “abstract locking” to intro-
duce the notion of semantic conflicts. Carlstrom et al have taken a
similar approach to the Java collections classes [6]. Semantic com-

mutativity provides another way of specifying open nesting. More
experience is needed before the relative advantages of the two ap-
proaches become clear, but we believe that semantic commutativity
is an easier notion for programmers to understand.

5. Evaluation
We have implemented the Galois system in C++ on two Linux
platforms: (i) a 4 processor, 1.5 GHz Itanium 2, with 16KB of L1,
256KB of L2 and 3MB of L3 cache per processor, and (ii) a dual
processor dual-core 3.0 GHz Xeon system, with 32KB of L1 per
core and 4MB of L2 cache per processor. The threading library on
both platforms was pthreads.

5.1 Delaunay Mesh Refinement
We first wrote a sequential Delaunay mesh refinement program
without locks, threads etc. to serve as a reference implementation.
We then implemented a Galois version (which we call meshgen),
and a fine-grain locking version (FGL) that uses locks on individ-
ual triangles. The Galois version uses the set iterator, and the run-
time system described in Section 4.3. In all three implementations,
the mesh was represented by a graph that was implemented as a set
of triangles, where each triangle maintained a set of its neighbors.
This is essentially the same as the standard adjacency list repre-
sentation of graphs. For meshgen, code for commutativity checks
was added by hand to this graph class; ultimately, we would like
to generate this code automatically from high level commutativity
specifications like those in Figure 9. We used an STL queue to im-
plement the workset. We refer to these default implementations of
meshgen and FGL as meshgen(d) and FGL(d).

To understand the effect of scheduling policy on performance,
we implemented two more versions, FGL(r) and meshgen(r), in
which the work-set was implemented by a data structure that re-
turned a random element of the current set.

The input data set was generated automatically using Jonathan
Shewchuk’s Triangle program [36]. It had 10,156 triangles and
boundary segments, of which 4,837 triangles were bad.

Execution times and speed-ups. Execution times and self-relative
speed-ups for the five implementations on the Itanium machine are
shown in Figure 12(a,b). The reference version is the fastest on a
single processor. On 4 processors, FGL(d) and FGL(r) differ only
slightly in performance. Meshgen(r) performed almost as well as
FGL, although surprisingly, meshgen(d) was twice as slow as FGL.

Statistics on committed and aborted iterations. To understand
these issues better, we determined the total number of committed
and aborted iterations for different versions of meshgen, as shown
in Figure 12(c). On 1 processor, meshgen executed and commit-
ted 21,918 iterations. Because of the inherent non-determinism of
the set iterator, the number of iterations executed by meshgen in
parallel varies from run to run (the same effect will be seen on
one processor if the scheduling policy is varied). Therefore, we ran
the codes a large number of times, and determined a distribution
for the numbers of committed and aborted iterations. Figure 12(c)
shows that on 4 processors, meshgen(d) committed roughly the
same number of iterations as it did on 1 processor, but also aborted
almost as many iterations due to cavity conflicts. The abort ratio for
meshgen(r) is much lower because the scheduling policy reduces
the likelihood of conflicts between processors. This accounts for
the performance difference between meshgen(d) and meshgen(r).
Because the FGL code is carefully tuned by hand, the cost of an
aborted iteration is substantially less than the corresponding cost in
meshgen, so FGL(r) performs only a little better than FGL(d).

It seems counterintuitive that a randomized scheduling policy
could be beneficial, but a deeper investigation into the source of

1 2 3 4
of processors

0

2

4

6

8

Ex
ec

ut
io

n
Ti

m
e

(s
)

reference
FGL (d)
FGL (r)
meshgen (d)
meshgen (r)

(a) Execution times

1 2 3 4
of processors

1

1.5

2

2.5

3

Sp
ee

du
p

reference
FGL (d)
FGL (r)
meshgen (d)
meshgen (r)

(b) Self-relative Speed-ups

Committed Aborted
of proc. Max Min Avg Max Min Avg

1 21918 21918 21918 n/a n/a n/a
4 (meshgen(d)) 22128 21458 21736 28929 27711 28290
4 (meshgen(r)) 22101 21738 21909 265 151 188

(c) Committed and aborted iterations for meshgen

Instruction Type reference meshgen(r)
Branch 38047 70741

FP 9946 10865
LD/ST 90064 165746

Int 304449 532884
Total 442506 780236

(d) Instructions per iteration on a single processor

0

7.5

15.0

22.5

30.0

1 proc 4 proc (d) 4 proc (r)

C
yc

le
 (

b
ill

io
n
s)

13.8951

25.7625

18.8501

0

7.5

15.0

22.5

30.0

1 proc 4 proc (d) 4 proc (r)

In
st

ru
ct

io
n
s

(b
ill

io
n
s)

16.8889

25.6734

17.4675

with randomized queue

(e) Breakdown of instructions and cycles in meshgen

Commutativity
77%

Scheduler
3%

Abort
10%

Commit
10%

Commit Abort Scheduler Commutativity

mesghen

(f) Breakdown of Galois overhead

of procs Client Object Runtime Total
1 1.177 0.6208 0.6884 2.487
4 2.769 3.600 4.282 10.651

(g) L3 misses (in millions) for meshgen(r)

Figure 12. Mesh refinement results: 4-processor Itanium

cavity conflicts showed that the problem could be attributed to our
use of an STL queue to implement the workset. When a bad triangle
is refined by the algorithm, a cluster of smaller bad triangles may be
created within the cavity. In the queue data structure, these new bad
triangles are adjacent to each other, so it is likely that they will be
scheduled together for refinement on different processors, leading
to cavity conflicts.

One conclusion from these experiments is that domain knowl-
edge is invaluable for implementing a good scheduling policy.

Instructions and cycles breakdown. Figure 12(d) shows the
breakdown of different types of instructions executed by the ref-
erence and meshgen versions of Delaunay mesh refinement when
they are run on one processor. The numbers shown are per itera-
tion; in sequential execution, there are no aborts, so these numbers
give a profile of a “typical” iteration in the two codes. Each itera-
tion of meshgen performs roughly 10,000 floating-point operations
and executes almost a million instructions. These are relatively
long-running computations.

Meshgen executes almost 80% more instructions than the ref-
erence version. To understand where these extra cycles were being
spent, we instrumented the code using PAPI. Figure 12(e) shows a
breakdown of the total number of instructions and cycles between
the client code (the code in Figure 7), the shared objects (graph and
workset), and the Galois runtime system. The 4 processor numbers
are sums across all four processors. The reference version performs
almost 9.8 billion instructions, and this is roughly the same as the
number of instructions executed in the client code and shared ob-
jects in the 1 processor version of meshgen and the 4 processor
version of meshgen(r). Because meshgen(d) has a lot of aborts, it
spends substantially more time in the client code doing work that
gets aborted and in the runtime layer to recover from aborts.

We further broke down the Galois overhead into four categories:
commit and abort overheads, which are the time spent commit-
ting iterations and aborting them, respectively; scheduler overhead,
which includes time spent arbitrating conflicts; and commutativity
overhead, which is the time spent performing conflict checks. The
results, as seen in Figure 12(f), show that roughly three fourths of
the Galois overhead goes in performing commutativity checks. It
is clear that reducing this overhead is key to reducing the overall
overhead of the Galois run-time.

The 1 processor version of meshgen executes roughly the same
number of instructions as the 4 processor version. We do not get
perfect self-relative speedup because some of these instructions
take longer to execute in the 4 processor version than in the 1 pro-
cessor version. There are two reasons for this: contention for locks
in shared objects and the runtime system, and cache misses due
to invalidations. Contention is difficult to measure directly, so we
looked at cache misses instead. On the 4 processor Itanium, there
is no shared cache, so we measured L3 cache misses. Figure 12(g)
shows L3 misses; the 4 processor numbers are sums across all pro-
cessors for meshgen(r). Most of the increase in cache misses arises
from code in the shared object classes and in the Galois runtime.
An L3 miss costs roughly 300 cycles on the Itanium, so it can be
seen that over half of the extra cycles executed by the 4 processor
version, when compared to the 1 processor version, are lost in L3
misses. The rest of the extra cycles are lost in contention.

5.2 Agglomerative clustering
For the agglomerative clustering problem, the two main data struc-
tures are the kd-tree and the priority queue. The kd-tree interface
is essentially the same as Set, but with the addition of the nearest
neighbor (nearest) method. The priority queue is an instance of
a poSet. Since the priority queue is used to sequence iterations, the
removal and insertion operations (get and add respectively) are
orchestrated by the commit pool.

1 2 3 4
of processors

0

2

4

6

8

Ex
ec

ut
io

n
tim

e
(s

)

Reference
treebuild

(a) Execution times

1 2 3 4
of processors

1

1.5

2

2.5

Sp
ee

du
p

Reference
treebuild

(b) Self-relative speed-ups

0 5 10 15 20
RTC occupancy in commit pool

0

5000

10000

15000

20000

25000

30000

Fr
eq

ue
nc

y

(c) Commit pool occupancy by RTC iterations

Committed Aborted
of proc. Max Min Avg Max Min Avg

1 57846 57846 57846 n/a n/a n/a
4 57870 57849 57861 3128 1887 2528

(d) Committed and aborted iterations in treebuild

Instruction Type reference treebuild
Branch 7162 18187

FP 3601 3640
LD/ST 22519 48025

Int 70829 146716
Total 104111 216568

(e) Instructions per iteration on a single processor.

0

5

10

15

20

1 proc 4 proc

C
yc

le
 (

b
ill

io
n
s)

0

5

10

15

20

1 proc 4 proc

In
st

ru
ct

io
n
s

(b
ill

io
n
s)

12.5272
13.2660

14.1666

18.8916

(f) Breakdown of instructions and cycles

Commutativity
52% Scheduler

39%

Abort
1%

Commit
8%

Commit Abort Scheduler Commutativity

treebuild

(g) Breakdown of Galois overhead

of procs User Object Runtime Total
1 0.5583 3.102 0.883 4.544
4 2.563 12.8052 5.177 20.545

(h) Number of L3 misses (in millions) on different numbers of processors.

Figure 13. Agglomerative clustering results: 4-processor Itanium

meshgen(p) treebuild
Cores Time (s) Speedup Time (s) Speedup

1 12.5 1.0 8.19 1.0
2 (non-shared L2) 8.1 1.5 7.77 1.05

2 (shared L2) 6.7 1.9 4.66 1.78

Table 1. Results on dual-core, dual-processor Intel Xeon

To evaluate the agglomerative clustering algorithm, we modi-
fied an existing graphics application called lightcuts that provides a
scalable approach to illumination [41]. This code builds a light hier-
archy based on a distance metric that factors in Euclidean distance,
light intensity and light direction. We modified the objects used in
the light clustering code to use Galois interfaces and the poSet it-
erator for tree construction. The overall structure of the resulting
code was discussed in Figure 5. We will refer to this Galois version
as treebuild. We compared the running time of treebuild against a
reference version which performed no threading or locking.

Figure 13 shows the results on the Itanium machine. These re-
sults are similar to the Delaunay mesh generation results discussed
in Section 5.1, so we describe only the points of note. The self-
relative speed-ups in Figure 13(b) show that despite the serial de-
pendence order imposed by the priority queue, the Galois system is
able to expose a significant amount of parallelism. The mechanism
that allows us to do this is the commit pool, which allows threads
to begin execution of iterations even if earlier iterations have yet to
commit. To understand the role of the commit pool quantitatively,
we recorded the number of iterations in RTC state every time the
commit pool created, aborted or committed an iteration. This gives
an idea of how deeply into the ordered set we are speculating to
keep all the processors busy. Figure 13(c) shows a histogram of
this information (the x-axis is truncated to reveal detail around the
origin). We see that most of the time, we do not need to spec-
ulate too deeply. However, on occasion, we must speculate over
100 elements deep into the ordered set to continue making forward
progress. Despite this deep speculation, the number of aborted iter-
ations is relatively small because of the high level of parallelism in
this application, as discussed in Section 2.2. Note that commit pool
occupancy is not the same as parallelism in the problem because
we create iteration records in the commit pool only when a thread
needs work; the priority queue is distinct from the commit pool.
We also see that due to the overhead of managing the commit pool,
the scheduler accounts for a significant percentage of the overall
Galois overhead, as seen in Figure 13(g).

Figure 13(h) shows that most of the loss in self-relative speedup
when executing on 4 processors is due to increased L3 cache misses
from cache-line invalidations.

5.3 Results on Xeon
To confirm the role of cache invalidation misses, we investigated
the performance of meshgen and treebuild on a dual-core, dual pro-
cessor Xeon system. In this asymmetric architecture, cores on the
same package share the lowest level of cache (in this case, L2).
Therefore, a program run using two cores on the same package will
incur no L2 cache line invalidations, while the same program run-
ning on two cores on separate packages will suffer from additional
cache invalidation misses (capacity misses may be reduced because
the effective cache size doubles).

Table 1 shows the performance of the two programs when run
on a single core and on two cores. We see that when the two
cores are on the same package, we achieve near-perfect speedup,
but the speedup is much less when the two cores are on separate
packages. This confirms that a substantial portion of efficiency loss
arises from cache line invalidations due to data sharing, so further
improvements in performance require attending to locality.

6. Conclusions and Ongoing Work
The Galois system is the first practical approach we know of for
exploiting data-parallelism in work–list based algorithms that deal
with complex, pointer-based data structures like graphs and trees.
Our approach is based on (1) a small number of syntactic constructs
for packaging optimistic parallelization as iteration over mutable
ordered and unordered sets, (2) assertions about methods in class
libraries, and (3) a runtime scheme for detecting and recovering
from potentially unsafe accesses to shared memory made by an
optimistic computation. The execution model is an object-based
shared-memory model. By exploiting the high level semantics of
abstract data types, the Galois system is able to allow concurrent
accesses and updates to shared objects. We have some experience in
massaging existing object-oriented codes in C++ to use the Galois
approach, and the effort has not been daunting at least for codes
that use collections of various sorts.

Our experimental results show that (1) our approach is promis-
ing, (2) scheduling iterations to reduce aborted computations is im-
portant, (3) domain knowledge may be important for good schedul-
ing, and (4) locality enhancement is critical for obtaining better
performance than our current approach is able to provide.

Our application studies suggest that the objective of compile-
time analysis techniques such as points-to and shape analysis
should be to improve the efficiency of optimistic parallelization,
rather than to perform static parallelization of irregular programs.
These techniques might also help in verification of commutativity
conditions against a class specification. Static parallelization works
for regular programs because the parallelism in dense-matrix al-
gorithms is independent of the values in dense matrices. Irregular
programs are fundamentally different, and no static analysis can
uncover the parallelism in many if not most irregular applications.

While exposing and exploiting parallelism is important, one of
the central lessons of parallel programming is that exploiting lo-
cality is critical for scalability. Most work in locality enhancement
has focused on regular problems, so new ideas may be required to
make progress on this front. We believe that the approach described
in this paper for exposing parallelism in irregular applications is the
right foundation for solving the problem of exploiting parallelism
in irregular applications in a scalable way.

Acknowledgments
We would like to thank Khubaib Khubaib in our group for his
measurements of Galois overhead, and Ramesh Peri and David
Levinthal at Intel, Austin Division for their help with VTune. Fi-
nally, we would like to thank Tim Harris for being a good shepherd
on behalf of the PLDI program committee.

References
[1] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E.

Leiserson, and Sean Lie. Unbounded transactional memory. In
HPCA ’05: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, 2005.

[2] Christos D. Antonopoulos, Xiaoning Ding, Andrey Chernikov, Filip
Blagojevic, Dimitrios S. Nikolopoulos, and Nikos Chrisochoides.
Multigrain parallel delaunay mesh generation: challenges and
opportunities for multithreaded architectures. In ICS ’05: Proceedings
of the 19th annual international conference on Supercomputing, 2005.

[3] J.L. Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9):509–517,
1975.

[4] A. Bernstein. Analysis of programs for parallel processing. IEEE
Transactions on Electronic Computers, 1966.

[5] Michael Burke, Paul Carini, and Jong-Deok Choi. Interprocedural
pointer alias analysis. Technical Report IBM RC 21055, IBM
Yorktown Heights, 1997.

[6] Brian D. Carlstrom, Austen McDonald, Christos Kozyrakis, and
Kunle Olukotun. Transactional collection classes. In Principles and
Practices of Parallel Programming (PPoPP), 2007.

[7] C.C.Foster and E.M.Riseman. Percolation of code to enhance
parallel dispatching and execution. IEEE Transactions on Computers,
21(12):1411–1415, 1972.

[8] L. Paul Chew. Guaranteed-quality mesh generation for curved
surfaces. In SCG ’93: Proceedings of the ninth annual symposium on
Computational geometry, pages 274–280, 1993.

[9] Johan de Galas. The quest for more processing power: is the
single core CPU doomed? http://www.anandtech.com/cpuchipsets/
showdoc.aspx?i=2377, February 2005.

[10] Pedro C. Diniz and Martin C. Rinard. Commutativity analysis: a new
analysis technique for parallelizing compilers. ACM Trans. Program.
Lang. Syst., 19(6):942–991, 1997.

[11] Joseph A. Fisher. Very long instruction word architectures and the
eli-512. In ISCA ’98: 25 years of the international symposia on
Computer architecture (selected papers), pages 263–273, New York,
NY, USA, 1998. ACM Press.

[12] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom,
John D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya,
Christos Kozyrakis, and Kunle Olukotun. Transactional memory
coherence and consistency. isca, 00:102, 2004.

[13] Tim Harris and Keir Fraser. Language support for lightweight
transactions. In OOPSLA ’03: Proceedings of the 18th annual
ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, pages 388–402, 2003.

[14] John Hennessy and David Patterson, editors. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 2003.

[15] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: ar-
chitectural support for lock-free data structures. In ISCA ’93: Pro-
ceedings of the 20th annual international symposium on Computer
architecture, pages 289–300, New York, NY, USA, 1993. ACM Press.

[16] Maurice P. Herlihy and William E. Weihl. Hybrid concurrency
control for abstract data types. In PODS ’88: Proceedings of the
seventh ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 201–210, New York, NY, USA, 1988.

[17] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,
7(3):404–425, 1985.

[18] Guy L. Steele Jr. Making asynchronous parallelism safe for the world.
In Proceedings of the 17th symposium on Principles of Programming
Languages, pages 218–231, 1990.

[19] J.T.Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg.
Programming with sets: An introduction to SETL. Springer-Verlag
Publishers, 1986.

[20] Ken Kennedy and John Allen, editors. Optimizing compilers
for modren architectures:a dependence-based approach. Morgan
Kaufmann, 2001.

[21] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D.
Hill, and David A. Wood. Logtm: Log-based transactional memory.
In HPCA ’06: Proceedings of the 12th International Symposium on
High Performance Computer Architecture, 2006.

[22] J. Eliot B. Moss and Antony L. Hosking. Nested transactional
memory: Model and preliminary architectural sketches. In SCOOL
’05: Sychronization and Concurrency in Object-Oriented Languages,
2005.

[23] J.B.C Neto, P.A. Wawrzynek, M.T.M. Carvalho, L.F. Martha, and
A.R. Ingraffea. An algorithm for three-dimensional mesh generation
for arbitrary regions with cracks. Engineering with Computers,
17:75–91, 2001.

[24] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking,
Rick Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman.
Open nesting in software transactional memory. In Principles and
Practices of Parallel Programming (PPoPP), 2007.

[25] Openmp: A proposed industry standard api for shared memory
programming. See www.openmp.org, October 28, 1997.

[26] Michael Steinbach Pang-Ning Tan and Vipin Kumar, editors.
Introduction to Data Mining. Pearson Addison Wesley, 2005.

[27] R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime compilation
techniques for data partitioning and communication schedule
reuse. In Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, 1993.

[28] Hany E. Ramadan, Donald E. Porter Christopher J. Rossbach,
Owen S. Hofmann, Aditya Bhandari, and Emmett Witchel. Trans-
actional memory designs for an operating system. In International
Symposium on Computer Architecture (ISCA), 2007.

[29] Lawrence Rauchwerger and David A. Padua. Parallelizing while
loops for multiprocessor systems. In IPPS ’95: Proceedings of the
9th International Symposium on Parallel Processing, pages 347–356,
Washington, DC, USA, 1995. IEEE Computer Society.

[30] Lawrence Rauchwerger and David A. Padua. The lrpd test:
Speculative run-time parallelization of loops with privatization
and reduction parallelization. IEEE Trans. Parallel Distrib. Syst.,
10(2):160–180, 1999.

[31] Jim Ruppert. A new and simple algorithm for quality 2-dimensional
mesh generation. In Fourth annual ACM-SIAM Symposium on
Discrete algorithms, pages 83–92, 1993.

[32] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems
in languages with destructive updating. In Proceedings of the
23rd Annual ACM Symposium on the Principles of Programming
Languages, St. Petersburg Beach, FL, January 1996.

[33] William Scherer and Michael Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings
of the Fifteenth ACM Symposium on Principles of Distributed
Computing, 1996.

[34] B. Selman, H. Levesque, and D. Mitchell. A new method for solving
hard satisfiability problems. In Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 440–446, 1992.

[35] Nir Shavit and Dan Touitou. Software transactional memory. In
PODC ’95: Proceedings of the fourteenth annual ACM Symposium
on Principles of Distributed Computing, pages 204–213, 1995.

[36] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality
Mesh Generator and Delaunay Triangulator. In Applied Computa-
tional Geometry: Towards Geometric Engineering, volume 1148 of
Lecture Notes in Computer Science, pages 203–222. May 1996.

[37] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and
Todd C. Mowry. A scalable approach to thread-level speculation. In
ISCA ’00: Proceedings of the 27th annual international symposium
on Computer architecture, 2000.

[38] Robert Tomasulo. An algorithm for exploiting multiple arithmetic
units. IBM Journal, 11(1):25–33, 1967.

[39] T. N. Vijaykumar, Sridhar Gopal, James E. Smith, and Gurindar Sohi.
Speculative versioning cache. IEEE Trans. Parallel Distrib. Syst.,
12(12):1305–1317, 2001.

[40] Christoph von Praun, Luis Ceze, and Calin Cascaval. Implicit
parallelism with ordered transactions. In Principles and Practices
of Parallel Programming (PPoPP), 2007.

[41] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala,
Michael Donikian, and Donald Greenberg. Lightcuts: a scalable
approach to illumination. ACM Transactions on Graphics (SIG-
GRAPH), 24(3):1098–1107, July 2005.

[42] W.E. Weihl. Commutativity-based concurrency control for abstract
data types. IEEE Transactions on Computers, 37(12), 1988.

[43] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1978.

[44] Peng Wu and David A. Padua. Beyond arrays - a container-centric
approach for parallelization of real-world symbolic applications.
In LCPC ’98: Proceedings of the 11th International Workshop on
Languages and Compilers for Parallel Computing, pages 197–212,
London, UK, 1999.

[45] L. Rauchwerger Y. Zhan and J. Torrellas. Hardware for speculative
run-time parallelization in distributed shared-memory multiproces-
sors. In HPCA ’98: Proceedings of the 4th International Symposium
on High-Performance Computer Architecture, page 162, 1998.

www.openmp.org

	Introduction
	Two Irregular Applications
	Delaunay Mesh Refinement
	Agglomerative Clustering

	Limitations of Current Approaches
	The Galois Approach
	Optimistic iterators
	Concurrent Execution Model

	Writing Galois Classes
	Semantic Commutativity
	Inverse Methods
	Putting it All Together
	A small example

	Runtime System
	Conflict Logs
	Commit Pool

	Discussion

	Evaluation
	Delaunay Mesh Refinement
	Agglomerative clustering
	Results on Xeon

	Conclusions and Ongoing Work

