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Coactive Learning

Learning model
Repeat forever:

System receives context xt .

System makes prediction yt .

Regret = Regret + U(xt , y∗t )− U(xt , yt)

System gets feedback:
Full information: U(xt , y(1)),U(xt , y(2)), . . .
Bandit: U(xt , yt)
Coactive: U(xt , ȳt) ≥α U(xt , yt)

e.g. : Search
Engine

User Query

Ranking

User utility

Unrealistic for users to provide (e.g., implicit feedback).
Perceptron has regret O(

1
α
√

T
) for linear utility (U(x, y)=w>∗φ(x, y)).
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User Study: Learning Rankings using Perceptron

Preference Perceptron Algo:
1 Initialize weight vector w1 ← 0.
2 Given context xt present

yt ← argmaxyw>t φ(xt , y).

3 Observe clicks and construct
feedback ranking ȳt .

4 wt+1←wt+φ(xt , ȳt)−φ(xt , yt).
5 Repeat from step 2.

On live search engine.
Goal: Learn ranking function
from user clicks.
Interleaved comparison against
hand-tuned baseline.

Win ratio of 1 means no better
than baseline (Higher = Better).
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Perturbed Preference Perceptron
1 Initialize weight vector w1 ← 0.
2 Given context xt compute

ŷt ← argmaxyw>t φ(xt , y).
3 Present yt ← Perturb(ŷt)

(Randomly swap adjacent pairs).
4 Observe clicks and construct

feedback ranking ȳt .
5 wt+1←wt+φ(xt , ȳt)−φ(xt , yt).
6 Repeat from step 2.
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Please come to our poster

I will tell you:

Why the preference perceptron performs poorly?
Why does perturbation fix the problem?
What are the regret bounds for the algorithm?
How do we do this more generally for non-ranking
problems?
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