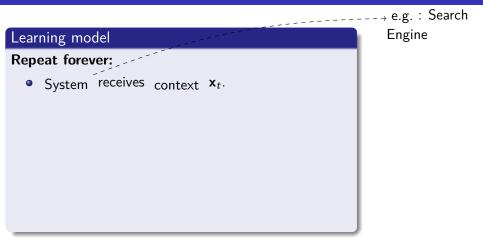
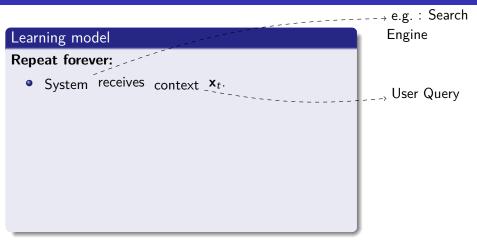
Stable Coactive Learning via Perturbation

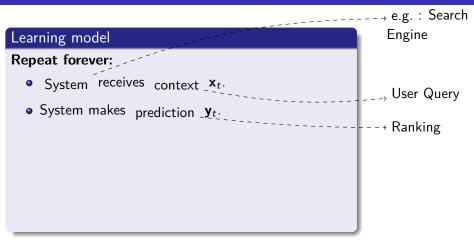
Karthik Raman ¹ Thorsten Joachims ¹ Pannaga Shivaswamy ² Tobias Schnabel ³

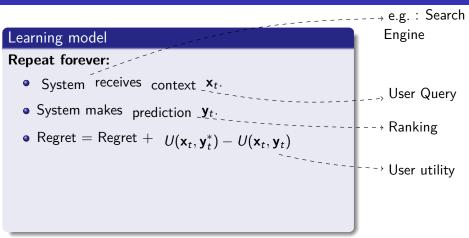
¹Cornell University {*karthik,tj*}@cs.cornell.edu

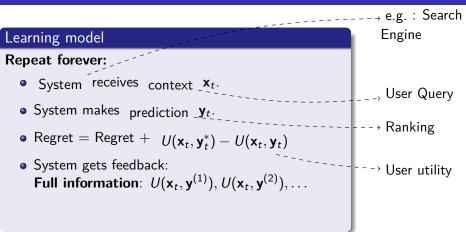
²AT&T Research pannaga@research.att.com

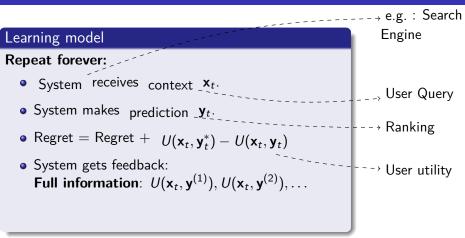

³Stuttgart University tbs49@cornell.edu

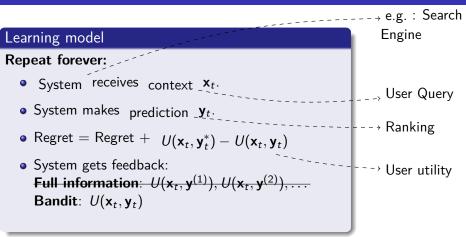

June 19, 2013

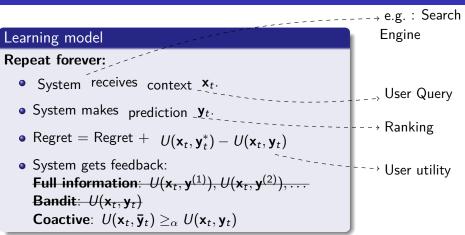

Learning model

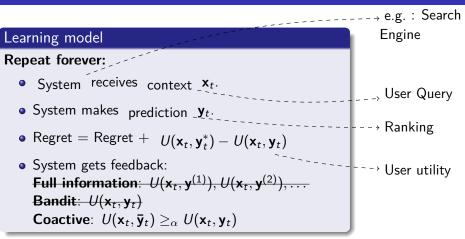

Repeat forever:


• System receives context \mathbf{x}_t .



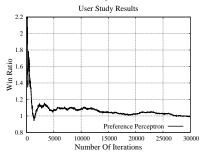






Unrealistic for users to provide (e.g., implicit feedback).

Unrealistic for users to provide (e.g., implicit feedback).



Perceptron has regret
$$O(\frac{1}{\alpha\sqrt{T}})$$
 for linear utility $(U(\mathbf{x}, \mathbf{y}) = \mathbf{w}_*^\top \phi(\mathbf{x}, \mathbf{y}))$.

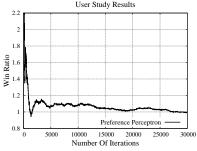
- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.

- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).

- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).

Perceptron performs poorly!

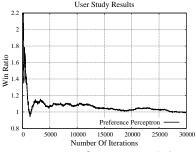
Preference Perceptron Algo:


- **1** Initialize weight vector $\mathbf{w}_1 \leftarrow \mathbf{0}$.
- **2** Given context \mathbf{x}_t present $\mathbf{y}_t \leftarrow \operatorname{argmax}_{\mathbf{y}} \mathbf{w}_t^\top \phi(\mathbf{x}_t, \mathbf{y}).$

Presented Ranking (y)

COCK DOTION NOVATA SEAN REPORT OF MORE AND A TO A THE AND A DECEMBER OF A DECEMBER

- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).



Perceptron performs poorly!

Preference Perceptron Algo:

- **1** Initialize weight vector $\mathbf{w}_1 \leftarrow \mathbf{0}$.
- **2** Given context \mathbf{x}_t present $\mathbf{y}_t \leftarrow \operatorname{argmax}_{\mathbf{y}} \mathbf{w}_t^\top \phi(\mathbf{x}_t, \mathbf{y}).$
- Observe clicks and construct feedback ranking y
 _t.

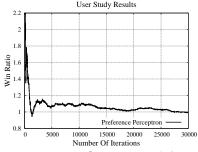
- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).

Perceptron performs poorly!

Karthik Raman (Cornell)

Stable Coactive Learning

Feedback Ranking (v)


Rock bottom Novara stun hapless inter are- ring) mus

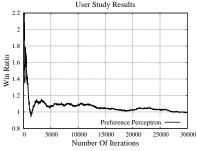
iked away from the San Sirs on Sunday with a sturning 1-0 victory. More

Preference Perceptron Algo:

- **1** Initialize weight vector $\mathbf{w}_1 \leftarrow \mathbf{0}$.
- **2** Given context \mathbf{x}_t present $\mathbf{y}_t \leftarrow \operatorname{argmax}_{\mathbf{y}} \mathbf{w}_t^\top \phi(\mathbf{x}_t, \mathbf{y}).$
- Observe clicks and construct feedback ranking y
 _t.

- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).

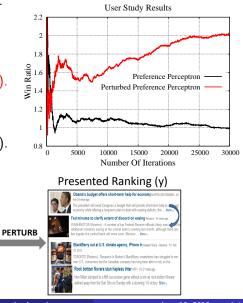
Perceptron performs poorly!


Presented Ranking (v)

Preference Perceptron Algo:

- **1** Initialize weight vector $\mathbf{w}_1 \leftarrow \mathbf{0}$.
- **2** Given context \mathbf{x}_t present $\mathbf{y}_t \leftarrow \operatorname{argmax}_{\mathbf{y}} \mathbf{w}_t^\top \phi(\mathbf{x}_t, \mathbf{y}).$
- Observe clicks and construct feedback ranking y
 _t.
- Sepeat from step 2.

- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).


Perceptron performs poorly!

Perturbed Preference Perceptron

- Initialize weight vector $\mathbf{w}_1 \leftarrow \mathbf{0}$.
- **2** Given context \mathbf{x}_t compute $\hat{\mathbf{y}}_t \leftarrow \operatorname{argmax}_{\mathbf{y}} \mathbf{w}_t^\top \phi(\mathbf{x}_t, \mathbf{y}).$
- Present y_t ← Perturb(ŷ_t) (Randomly swap adjacent pairs).
- Observe clicks and construct feedback ranking y
 _t.
- 6 Repeat from step 2.

Predicted Ranking (ŷ)

Karthik Raman (Cornell)

Stable Coactive Learning

I will tell you:

- Why the preference perceptron performs poorly?
- Why does perturbation fix the problem?
- What are the regret bounds for the algorithm?
- How do we do this more generally for non-ranking problems?