
Learning Socially Optimal Information Systems
from Egoistic Users

Karthik Raman and Thorsten Joachims

Department of Computer Science,
Cornell University, Ithaca, NY, USA

{karthik,tj}@cs.cornell.edu

http://www.cs.cornell.edu

Abstract. Many information systems aim to present results that maxi-
mize the collective satisfaction of the user population. The product search
of an online store, for example, needs to present an appropriately diverse
set of products to best satisfy the different tastes and needs of its user
population. To address this problem, we propose two algorithms that
can exploit observable user actions (e.g. clicks) to learn how to com-
pose diverse sets (and rankings) that optimize expected utility over a
distribution of utility functions. A key challenge is that individual users
evaluate and act according to their own utility function, but that the
system aims to optimize collective satisfaction. We characterize the be-
havior of our algorithms by providing upper bounds on the social regret
for a class of submodular utility functions in the coactive learning model.
Furthermore, we empirically demonstrate the efficacy and robustness of
the proposed algorithms for the problem of search result diversification.

Keywords: Online Learning, Coactive Learning, Implicit Feedback, Di-
versified Retrieval

1 Introduction

Many information systems serve a diverse population of users who have conflict-
ing preferences. This poses the challenge of maximizing collective user satisfac-
tion over a distribution of conflicting needs. A typical example is the problem
of search result diversification [1]. For an ambiguous query such as “jaguar”,
a diversified set of results should ideally provide some relevant results for each
of the query intents. Similar challenges also arise in an online store that wants
to appeal to a range of customers with different tastes, or in a movie recom-
mendation system where even a single user may have different preferences (e.g.
moods, viewing companions) on different days. More generally, “diversification”
describes the problem of hedging against uncertainty about a user’s preferences.

Much prior work on this problem has focused on manually-tuned methods
for generating diverse results [2–6]. Some learning approaches exist as well and
have been shown to outperform manually tuned methods [7–10]. Unfortunately,
the practical use of those learning methods is limited, since most require expert
annotated training data that explicitly lists all facets of an information need
(e.g. the different moods a user can be in).

The use of implicit feedback from user interaction (e.g. clicks) has the po-
tential to overcome this data bottleneck. Not only is it available in abundance,

Learning Socially Optimal Information Systems from Egoistic Users

but it also directly reflects the users’ – not the experts’ – preferences. The chal-
lenge, however, is that the learning algorithm no longer gets (expert constructed)
examples of socially optimal results, but needs to construct a socially optimal
compromise from the egoistic actions of the users. Some learning methods for
this problem already exist, but these methods either cannot generalize across
queries [11] or are specific to a particular notion of user utility that cannot be
adjusted through learning [12].

In this paper we consider the problem of learning socially optimal rankings
from egoistic user feedback in the following online learning model. In each iter-
ation a user, drawn from an unknown but fixed distribution, presents a context
(e.g., query) to the system and receives a ranking in response. The user is repre-
sented by a utility function that determines the actions (e.g. clicks) and therefore
the feedback to the learning algorithm. The same utility function also determines
the value of the presented ranking. We focus on utility functions that are sub-
modular in the elements of the ranking, since those naturally lead to diverse
result sets. The goal is to learn a ranking function that has high social utility,
which is the expected utility over the user distribution.

For this model, we present two coactive learning algorithms that learn to
compose rankings that optimize social utility. Note that this setup is fundamen-
tally different from previous coactive learning problems [13–15], which assume
that user actions always come from the same utility function. After characteriz-
ing the informativeness and noisiness of the implicit feedback, we give theoretical
results bounding the regret of our algorithms in terms of the social utility. Fur-
thermore, we empirically show that the algorithms perform well for both single
query and cross-query diversification tasks. In particular, we show that the al-
gorithms can robustly learn, using only implicit feedback, to compose rankings
with an appropriate amount of diversity.

2 Related Work
Coactive learning [13] is a framework for modeling the interaction between users
and a learning algorithm, where the user feedback is interpreted as a revealed
preference from a boundedly rational user. Recently, coactive learning [14] has
been applied to the problem of intrinsic diversity. As opposed to our problem
(i.e., extrinsic diversity [1]) intrinsic diversity is diversity required by a sin-
gle individual among their various different interests. More specifically, in their
problem there is only a single user utility, based on which feedback is received.
However in our problem, users have different utilities, which may conflict, and
the goal of the system is finding a socially optimal solution.

Yue and Guestrin [16] also proposed online learning algorithms for the prob-
lem of intrinsic diversity. While they too maximize submodular utilities, their
model relies on observing cardinal utilities which can be substantially less reliable
than preference feedback, as shown in user studies [17]. El-Arini and Guestrin [18]
also propose submodularity-based techniques to optimize for both diversity and
relevance in the context of scientific literature discovery. However, their model is
motivated by exploration diversity that hedges against uncertainty about a single
utility, while we optimize social utility over a distribution of utility functions.

Learning Socially Optimal Information Systems from Egoistic Users

Our work also relates to a large body of work in the game theory literature
on finding social optimally solutions, such as work on maximizing welfare in
congestion games [19, 20], auctions [21, 22] and social choices [23]. However, to
the best of our knowledge, there has been no work on learning socially optimal
rankings from noisy user feedback. While coactive learning is related to partial
monitoring games [24], here the loss and feedback matrices are not revealed to
the learning algorithm. Furthermore partial monitoring games have no explicit
notion of context that is available at the beginning of each round.

3 Learning Problem and Model

Let’s start with an example to motivate the formalization of the learning problem
considered in this paper. Suppose we have a search engine that receives an am-
biguous query (e.g. “jaguar”). In particular, there are three user populations that

User Type Prob. Relevant docs

1 0.5 a1, a2, a3, . . .

2 0.25 b1, b2, b3, . . .

3 0.25 c1, c2, c3, . . .

Fig. 1. Illustrative example show-
ing different user preferences.

consider different documents relevant to the
query as detailed in Fig 1. The user popula-
tions have different sizes, and Fig. 1 lists the
probability of each type. Note that the search
engine has no way of identifying which type of
user issued the query (i.e., the search engine
does not know whether “jaguar” refers to the

cat or the car for this user). Suppose the utility of a ranking R to users of type
i is Ui(R) =

√
#of rel docs in top 4 of R. This means it is beneficial to show at

least one relevant document, and that the marginal utility of showing additional
relevant documents is sub-linear.

Now consider the following two rankings that the search engine could show.

– R1 =(a1, a2, a3, a4): While ideal for the predominant users (i.e., type 1 users
get utility U1 = 2), it provides no value for the other users (utility U2 =
U3 =0). Thus in expectation, this ranking has expected utility of E[U] = 1.

– R2 = (a1, b1, c1, a2): This ranking provides some relevant documents for all
user types (U1 ∼ 1.4;U2 = 1;U3 = 1), maximizing the collective user
satisfaction with E[U] ∼ 1.2.

Our goal is to find rankings of the latter type, which we call socially optimal
since they maximize expected utility (i.e., social utility).

In this paper we use implicit feedback from the users for learning these rank-
ings. Consider, for example, a user of type 1 that chooses to click/read relevant
documents a1, a2 from the presented ranking yt = (b1, c1, b2, a1, c2, a2). These
actions reveal information about the user’s utility functions which we can ex-
ploit to construct a feedback ranking ȳt, such as (b1, c1, a1, b2, a2, c2), that has
higher utility for that user (or at least not worse utility) i.e., U1(ȳt) ≥ U1(yt).

The key challenge in learning socially optimal rankings from the feedback
of individual users lies in resolving the contradicting feedback from different
user types. Each user’s feedback reflects only their own utility, not social utility.
For example, even if presented with the socially optimal ranking R2, users may
provide feedback indicating a preference for a different ranking (e.g. type 1 users

Learning Socially Optimal Information Systems from Egoistic Users

may indicate their preference for R1). Thus, a successful learning algorithm for
this problem should be able to reconcile such differences in preference and display
stability despite the egoistic feedback, especially when the presented solution
approaches the optimal.

3.1 Learning Problem

We now define the learning problem and user-interaction model more formally.
We assume there are N types of users, each associated with a probability pi
according to which individual users accessing the system are sampled. Given a
context xt (e.g., query), the personal utility of an object (e.g., ranking) yt

for users of type i is Ui(xt,yt). The social utility U(xt,yt) is defined as the
expected utility over the user distribution.

U(xt,yt) = E[Ui(xt,yt)] =

N∑
i=1

piUi(xt,yt) (1)

The optimal object for context xt and user type i is denoted as

y∗,it := arg max
yt∈Y

Ui(xt,yt). (2)

The socially optimal object for context xt is denoted as

y∗t := arg max
yt∈Y

U(xt,yt). (3)

Users interact with the system like in the standard coactive learning model
[13], but it is no longer assumed that all users act according to a single utility
function. Specifically, at each timestep t the system receives a context xt and
a user type i is sampled from the user distribution. In response, the system
presents the user with an object yt and the user draws utility Ui(xt,yt). The
algorithm then observes (implicit) feedback from the user (who acts according
to Ui), updates its model, and repeats. The goal of the algorithm is to present
objects as close to the social optimal y∗t , as measured by the following notion of
regret over time steps t of the learning process:

REGT :=
1

T

T−1∑
t=0

(U(xt,y
∗
t)− U(xt,yt)) . (4)

Thus the lower the regret, the better the performance of the algorithm. Note that
the social optimal y∗t is never given to the learning algorithms, but nevertheless
used to measure predictive performance.

To be able to prove anything about the regret of any learning algorithm, we
need to make an assumption about the quality of the user feedback. Coactive
learning assumes that the user feedback reveals an object ȳt that has improved
utility compared to the presented object yt. In a ranked retrieval system, for
example, ȳt can be constructed from yt by moving the clicked documents to
the top. Unlike in the traditional coactive learning model, this paper studies the
case where users do not provide feedback from a single global utility function

Learning Socially Optimal Information Systems from Egoistic Users

that directly reflects social utility. Instead, users valuate and provide feedback
according to their own personal utility. Thus, we characterize feedback quality
through the following definition.

Definition 1. User feedback is expected αi, δi-informative for a presented
object yt under context xt for a user with personal utility function Ui, if ξ̄t ∈ <
is chosen such that for some given αi ∈]0, 1] and δi > 0 it holds that

Eȳt
[Ui(xt, ȳt)] ≥ (1 + δi)Ui(xt,yt) + αi

(
Ui(xt,y

∗,i
t)− Ui(xt,yt)

)
− ξ̄t. (5)

Note that the expectation is over the user feedback.

The expected αi, δi-informative criterion states that the user’s feedback object
ȳt has better personal utility than the presented object yt on average. More pre-
cisely, the first term on the right-hand side implies that the improvement should
be at least by a factor of (1 + δi). Note, though, that this condition is based
only on the personal utility of the specific user, not the social utility. The second
term on the right-hand side further prescribes that personal utility increases
proportional to how far yt is away from the optimal object y∗,it , and the factor
αi ∈ [0, 1] describes the informativeness of the feedback. This second term cap-
tures that it is easier to make large improvements in utility when the presented
yt is far from optimal for this user. Finally, since it would be unreasonable to
assume that user feedback is always strictly αi, δi-informative, the ξ̄t captures
the amount of violation.

3.2 Submodular Utility Model

The following defines the class of utility function we consider for modeling users.
As done in previous work [14], we assume that the utility functions Ui(xt,yt) is
linear in its parameters vi ∈ Rm.

Ui(xt,yt) = v>i φF (xt,yt) (6)

φF (xt,yt) is a feature vector representation of the context-object pair and F is
a submodular function as further elaborated on below. We require that all vi’s
and φF (xt,yt)’s are component-wise non-negative. The linear model implies that
one can write the social utility as

U(xt,yt) = w>∗ φF (xt,yt), where w∗ =

N∑
i=1

pivi. (7)

We model φF (xt,yt) using a submodular aggregation of its components, which
is a well accepted method for modeling diversity [9, 14]. To simplify the ex-
position, we focus on rankings as objects y, but analogous constructions also
work for other types of objects. Given context x, each document in ranking
y = (di1 , di2 , . . . , din) has a feature representation given by φ(x, dij) ∈ Rm. We
then obtain the overall feature vector φF (x,y) as

φjF (x,y) = F (γ1φ
j(x, di1), γ2φ

j(x, di2), , γnφ
j(x, din)) (8)

Learning Socially Optimal Information Systems from Egoistic Users

Algorithm 1 GreedyRanking(w,x)

1: y← 0
2: for i = 1 to k do
3: bestU ← −∞
4: for all d ∈ x/ y do
5: if w>(x,y ⊕ d) > bestU then
6: bestU ← w>φ(x,y ⊕ d)
7: best← d
8: y← y ⊕ best {Append document to ranking y}
9: return y

where φj(x, d) and φjF (x,y) represent the jth feature in the vectors φ(x, d) and
φF (x,y) respectively. We also introduce position-discounting factors γ1 ≥ . . . ≥
γj ≥ . . . ≥ γn ≥ 0, which determine how important each position in the ranking
is. The choice of aggregation function F determines the diminishing returns
profile of the users utility. For example, using a coverage-like aggregation function
F (A) = maxa∈A a, strongly promotes diversity, since a single document can
already maximize utility. On the other extreme lies the additive aggregation
function F (A) =

∑
a∈A a, which leads to a diversity-agnostic (i.e., modular)

feature vector. More generally, any monotone increasing and concave function
of
∑

a∈A a can be used. It was shown [9, 14] that this allows for a broad class of
performance measures to be modeled, including many common IR performance
metrics (e.g. NDCG, Precision, Coverage).

For a component-wise non-negative vector w, we can compute a
ranking that approximately maximizes the utility function, i.e., y :=
arg maxy∈Y w>φF (x,y), using the Greedy Algorithm 1. The algorithm itera-
tively picks the document with the highest marginal utility to be added to the
ranking. Despite its simplicity, Algorithm 1 has good approximation properties
for this NP-hard problem.

Lemma 1. For w ≥ 0 and monotone, concave F : Rn
≥0→R≥0 that commutes

in all arguments, Algorithm 1 produces a ranking that is a βgr-approximate so-

lution, with βgr =
(
1− 1

e

)
if γ1 = · · · = γk or βgr = 1/2 otherwise.

Proof. For γ1=. . .=γk this is a straightforward reduction to monotone submod-
ular maximization with a cardinality constraint for which the greedy algorithm
is (1− 1

e)-approximate [25]. For the more general case we reduce it to submodular
maximization over a partition matroid. Suppose we have documents {d1,. . ., dN}
and want to find a ranking of length k. Let the new ground set A contain k copies
di,j:j ∈{1, k} of each document di, one for each position. The matroid only per-
mits sets containing at most one document per position. Define set function H
over A: For set B(⊆ A), let C={. . . dij ,j . . .}be the set obtained by removing all
duplicates from B (i.e., keep only the highest ranked occurrence of a document).
Define H(B)=F (. . .,γjφ(x, dij),. . .). The lemma follows from observing that Al-
gorithm 1 is equivalent to the greedy algorithm for maximizing H over A under
a matroid constraint, which is known to provide a 1

2 -approximate solution [25].

Learning Socially Optimal Information Systems from Egoistic Users

4 Social Learning Algorithms

In this section, we present two coactive learning algorithms for predicting rank-
ings that optimize social utility. The first considers rankings with discount factors
for each rank while the second considers the special case of evaluating the top k
results as a set. For both algorithms, we characterize their regret by providing
upper bounds.

4.1 Social Perceptron for Rankings (SoPer-R)

Following the utility model introduced in Section 3.2, we now present an algo-
rithm for learning rankings y = (di1 , di2 , . . . , din) that aim to optimize social
utility where personal user utility can be represented as

Ui(xt,yt) = v>i φF (xt,yt), (9)

φjF (x,y) = F (γ1φ
j(x, di1), γ2φ

j(x, di2), , γnφ
j(x, din)), (10)

with γ1≥γ2≥ ... ≥ γn ≥ 0. The submodular DCG metric proposed in [9], where
the discount factors are γi = 1

log2(1+i) , is an example of such a utility function.

The Social Perceptron for Rankings (SoPer-R) is detailed in Algorithm 2.
It applies to any F that satisfies the conditions of Lemma 1. The algorithm
maintains a weight vector wt, which is its estimate of w∗. For the given context
xt, the algorithm first computes ranking yt using the greedy Algorithm 1, which
is then presented to the user. The user actions (e.g., clicks) are observed and
used to construct the feedback as follows. The ranking is first partitioned into
adjacent pairs by randomly selecting an odd or even grouping. The feedback
ranking ȳt is constructed by swapping the documents whenever the user clicks
on the lower element of the pair. This relates to the idea of FairPairs [26], which
is used to help de-bias click data. Note that feedback is only generated whenever
the lower elements was clicked but not the upper, otherwise ȳt := yt. After the
feedback ȳt is received, the algorithm performs a perceptron-style update to the
weight vector. To to ensure that the weight vector contains only non-negative
weights, any negative weights are clipped to zero.

Given function g and constant 0 ≤ λ ≤ 1 define τg(λ) as:

τg(λ) = lim
x→0

g(λ · x, 0, . . . , 0)

g(x, 0, . . . , 0)
(11)

The below lemma bounds the change in a concave function on scaling arguments.

Lemma 2. For any function g (satisfying the conditions of Lemma 1), constant
0 ≤ λ ≤ 1 and values v1, v2, . . . , vn ≥ 0, we can bound the change in value of g
on scaling the values vi by λ as follows:

g(v1, . . . , vi, . . . , vn) ≥ τg(λ) · g(λ · v1, . . . , λ · vi, . . . , λ · vn) (12)

We use this to characterize the sequence of position discounts and their smooth-
ness, which is a key parameter of the main theorem. Thus for a utility measure
with function F and γi discount factors, we define:

ΓF = 1−min
i
τF (

γi+1

γi
) (13)

Learning Socially Optimal Information Systems from Egoistic Users

Algorithm 2 Social Perceptron for Ranking (SoPer-R)

1: Initialize w0 ← 0
2: for t = 0 to T − 1 do
3: Observe xt

4: Present yt ← GreedyRanking(wt,xt) {Present argmax ranking}
5: Observe user clicks D {Get User Feedback}
6: Construct feedback ȳt ← ListFeedback(yt,D) {Create Feedback Object}
7: Update: w̄t+1 ← wt + φ(xt, ȳt)− φ(xt,yt) {Perceptron Update}
8: Clip: wj

t+1 ← max(w̄j
t+1, 0) ∀1 ≤ j ≤ m.

9:
10: Function ListFeedback(y,D) {y: Presented Ranking; D: User clicks }
11: ȳ← y {Initialize with presented object}
12: With probability 0.5: PR ← ({1, 2}, {3, 4}, {5, 6} · · ·)
13: else: PR ← ({1}, {2, 3}, {4, 5}, {6, 7} · · ·)
14: for i = 0 · · · len(PR) do
15: {jupper, jlower} ← PR[i] {Get Pair}
16: if y[jlower] ∈ D AND y[jupper] /∈ D then
17: Swap(ȳ[jupper], ȳ[jlower]) {Place clicked doc above the other doc}
18: return ȳ

We can now characterize the regret suffered by the SoPer-R algorithm for
list-based utilities, as shown below in Theorem 1.

Theorem 1. For any w∗ ∈ Rm and ‖φ(x,y)‖`2 ≤ R the average regret of the
SoPer-R algorithm can be upper bounded as:

REGT ≤
1

ηT

T−1∑
t=0

Ei[piξ̄t] +
βR‖w∗‖

η
+

√
2
√

4− β2R‖w∗‖
η
√
T

. (14)

with: δi ≥
(
ΓF · 1−pi

pi

)
, η = mini piαi and β = (1− βgr) = 1

2 .

Before presenting the proof of the theorem, we first analyze the structure of the
regret bound. The first term on the right-hand side characterizes in how far the
user feedback violates the desired αi, δi-informative feedback assumption due to
model misspecification and bias/noise in the user feedback. This term implies
that the regret does not necessarily converge to zero in such cases.

The second term results from the fact that we can only guarantee a βgr-
approximate solution for greedy Algorithm 1. In practice, however, the solutions
computed by greedy Algorithm 1 tend to be much better, making the second
term much smaller than in the worst case.

The third and final term converges to zero at a rate of T 0.5. Note that none
of the terms in the bound depend explicitly on the number of features, but that
that it scales only in terms of margin R||w∗||.
Proof. From Lemma 1, we get that:

w>t φ(xt,yt) ≥ βgrw>t φ(xt, ȳt)

w>t (φ(xt, ȳt)− φ(xt,yt)) ≤ (1− βgr)w>t φ(xt, ȳt) ≤ βR‖wt‖ (15)

Learning Socially Optimal Information Systems from Egoistic Users

Next, we bound the `2 norm of wT :

‖wT ‖2 = ‖wT−1‖2 + 2w>T−1(φ(xT−1, ȳT−1)− φ(xT−1,yT−1))

+ ‖φ(xT−1, ȳT−1)− φ(xT−1,yT−1)‖2

≤ ‖wT−1‖2 + 2β‖wT−1‖R+ 4R2

≤ (βT +
√

4− β2
√

2T)2R2 (16)

Eq. (15) is used for the second inequality. The last line is obtained using the
inductive argument made in [14]. Similarly we bound E[w>T w∗] using Cauchy-
Schwartz and concavity:

‖w∗‖E[‖wT+1‖] ≥ E[w>T w∗] =

T−1∑
t=0

E[U(xt, ȳt)− U(xt,yt)] (17)

Now we use the αi, δi-informativeness condition:

E[Ui(xt, ȳt)−Ui(xt,yt)]≥αi

(
Ui(xt,y

∗,i
t)−Ui(xt,yt)

)
+ δiUi(xt,yt)− ξ̄t

≥ η

pi

(
Ui(xt,y

∗,i
t)− Ui(xt,yt)

)
+ δiUi(xt,yt)− ξ̄t (18)

Next we bound the expected difference in the social utility between ȳt and
yt IF a user of type i provided feedback at iteration t:

∆i =E[U(xt, ȳt)−U(xt,yt)]≥−ΓF

∑
j 6=i

pjUj(xt,yt) + piE[Ui(xt, ȳt)−Ui(xt,yt)]

= −ΓF (U(xt,yt)− piUi(xt,yt)) + piE[Ui(xt, ȳt)− Ui(xt,yt)]

≥−ΓFU(xt,yt)+piΓFUi(xt,yt)+η
(
Ui(xt,y

∗,i
t)−Ui(xt,yt)

)
+piδiUi(xt,yt)−piξ̄t

≥ η
(
Ui(xt,y

∗,i
t)− Ui(xt,yt)

)
+ ΓF

(
Ui(xt,yt)− U(xt,yt)

)
− piξ̄t (19)

The first line is obtained by using Lemma 2 and definition of ΓF (Eq. 13). The
second line uses the definition of the social utility (Eq. 1). The third line uses
Eq. 18. The fourth step uses the condition on δi and rearranging of terms. Note
that the expectations in the above lines are w.r.t. the user feedback (and the
feedback construction process).

We next consider the expected value of ∆i (over the user distribution):

Ei[∆i] = E[U(xt, ȳt)−U(xt,yt)] ≥ η
(
Ei[Ui(xt,y

∗,i
t)]− U(xt,yt)

)
−Ei[piξ̄t]

≥ η
(
U(xt,y

∗
t)− U(xt,yt)

)
−Ei[piξ̄t] (20)

where the second line uses the fact that Ei[Ui(xt,y
∗,i
t)] ≥ U(xt,y

∗
t). We can put

together Eqns. 16, 17 and 20 to give us the required bound.

Learning Socially Optimal Information Systems from Egoistic Users

Algorithm 3 Social-Set-Based-Perceptron(C,M, p)

1: Function SetFeedback(y,D)
2: ȳ← y {Initialize with presented object}
3: DO ← D/y[1 : M] {Clicks on docs outside top M}
4: for i = 1 · · ·min(C, |DO|) do
5: c← DO[i] {Clicked document}
6: u← Random (unclicked) document from y[1 : M] {Non-clicked document}
7: Swap(ȳ[ju], ȳ[jc])
8: return ȳ

4.2 Social Perceptron for Sets (SoPer-S)

While DCG-style position discounts γi that decay smoothly are often appropri-
ate, other models of utility require more discrete changes in the rank discounts.
The coverage metric is an example of such a metric, which measures what frac-
tion of the users will find atleast 1 document relevant to them in the set of M
documents [11, 8, 12]. We call these metrics set-based, since they consider the first
M documents in a ranking as a set (i.e., position within the top-M positions
does not matter). Clearly, we can model such metrics by setting the γi in the
aggregation step (defined in Eq. 8) as

γi =

{
1 if i ≤M
0 if i > M.

However, the bound in Theorem 1 can be rather loose for this case, and the
pairwise feedback construction model “wastes” information. In particular, since
utility is invariant to reordering in the top M or below the top M , only pairwise
feedback between position M and M +1 provides information. To overcome this
problem, we now present an alternate algorithm that is more appropriate for
set-based utility functions.

The Social Perceptron for Sets (SoPer-S), shown in Algorithm 3, uses the
same basic algorithm, but replaces the feedback mechanism. Now, clicked docu-
ments outside the top M are swapped with a random non-clicked document in
the top M . This leads to a feedback set ȳt (of size M), that contains more (or
at least as many) of the user’s preferred documents than the top M elements of
the presented ranking. Note that during the feedback creation, we only consider
the first C clicks outside the top M . This parameter C is used to restrict the
difference between the feedback set and the presented set. We now state a lemma
we will use to bound the regret of the SoPer-S algorithm.

Lemma 3. For any non-negative, submodular function g and set X with |X| =
n, we can lower bound the function value of a random subset of size k as:

EY :Y⊆X,|Y |=k[g(Y)] ≥ k

n
g(X) (21)

Using Lemma 3, we can now characterize the regret suffered by the SoPer-S
algorithm for set-based utilities, as shown below in Theorem 2.

Learning Socially Optimal Information Systems from Egoistic Users

Table 1. Summary of key properties of the TREC dataset.

Statistic Value

Average number of documents per query 46.3
Average number of user types 20.8
Fraction of docs. relevant to > 1 user 0.21
Average number of users a document is relevant for 1.33
Fraction of docs. relevant to most popular user 0.38
Average probability of most popular user 0.29

Theorem 2. For any w∗ ∈ Rm and ‖φ(x,y)‖`2 ≤ R the average regret of the
SoPer-S algorithm can be upper bounded as:

REGT ≤
1

ηT

T−1∑
t=0

Ei[piξ̄t] +
βR‖w∗‖

η
+

√
2
√

4− β2R‖w∗‖
η
√
T

. (22)

with: δi ≥
(

C
M ·

1−pi

pi

)
, η = mini piαi and β = (1− βgr) = 1

e .

Note that the proposed algorithms are efficient (due to the online updates) and
scalable with the greedy algorithm requiring O(nk) time to find a length k
ranking over n documents. This can be further improved using lazy evaluation.

5 Empirical Evaluation

In this section, we empirically analyze the proposed learning algorithms for the
task of extrinsic [1] search result diversification. In particular, we (a) explore
how well the algorithms perform compared to existing algorithms that do single-
query learning; we (b) compare how close our algorithms get to the performance
of algorithms that require expert annotated examples of socially optimal ranking
for cross-query learning; and (c) we explore the robustness of our algorithm to
noise and misspecification of the utility model.

5.1 Experiment Setup

We performed experiments using the standard diversification dataset from the
TREC 6-8 Interactive Track. The dataset contains 17 queries, each with binary
relevance judgments for 7 to 56 different user types, which we translate into
binary utility values. Similar to previous work [9], we consider the probability
of a user type to be proportional to the number of documents relevant to that
user type. Also following [9], we only consider documents that are relevant to at
least 1 user type to focus the experiments on learning to diversify, not learning
to determine relevance. Table 1 summarizes some key properties of the data.

To simulate user behavior, we use the following model. Users scan the doc-
uments of a ranking in order and click on the first document they consider
relevant. Each (binary) decision of relevance is made incorrectly with a small
probability of error. This error probability was set to zero for most experiments
but later varied when studying the effect of user noise.

Learning Socially Optimal Information Systems from Egoistic Users

 0.64

 0.68

 0.72

 0.76

 0.8

 0 200 400 600 800 1000

N
o

rm
al

iz
ed

 S
et

 U
ti

li
ty

Number of Iterations Per Query

Random

Ranked Bandit

SoPer-S

Unclipped SoPer-S

 0.56

 0.64

 0.72

 0.8

 0.88

 0 200 400 600 800 1000

N
o

rm
al

iz
ed

 L
is

t
U

ti
li

ty

Number of Iterations Per Query

Random

Ranked Bandit

SoPer-R

Unclipped SoPer-R

Fig. 2. Performance of different methods for single-query learning to diversify. Perfor-
mance is averaged over all queries, separately considering Set Utility (Left) and List
Utility (Right). Standard error bars are shown in black.

Unless mentioned otherwise, we used the coverage function (F (x1, . . . , xn) =
maxi xi) to define the submodular function for utility aggregation. We measured
performance of the different methods in terms of the utility being optimized -
i.e., Set Utility (of size 5 sets) for the Set-Based methods and List Utility (up to
rank 5) with DCG discounting factors, for the List-Based methods. Additionally
we normalize the maximum scores per query to 1 (i.e., ∀x : U(x,y∗) = 1), so
as to get comparable scores across queries. We report the performance of each
algorithm in terms of its running average of these scores (i.e., 1−REGT).

5.2 Can we learn to diversify for a single query?

We first evaluate our algorithms in the setting of the Ranked Bandits algorithm
[11], which serves as a baseline. The Ranked Bandit algorithm learns a separate
model for each query and cannot generalize across queries. Furthermore, its
original version was limited to optimizing the coverage function, corresponding
to the max aggregation in our framework. We use the UCB1 variant of the
Ranked Bandits algorithm, which was empirically found to be the best variant.

As a second baseline we report randomly ordering the results. Note that this
is a competitive baseline, since (a) all documents are relevant to at least 1 user,
and (b) the probability of users is proportional to the number of documents
relevant to them.

For the SoPer-R and SoPer-S algorithms, documents were represented as
unit-norm TFIDF word vectors. All learning algorithms were run twice for each
of the 17 queries (with different random seeds) and the results are averaged
across all 34 runs. As seen from Figure 2, the proposed algorithms perform
much better than either of the two baselines. The Ranked Bandits algorithm
converges extremely slowly, and is barely better than the random baseline after
1000 iterations. Both the SoPer-R and SoPer-S algorithm are able to learn sub-
stantially faster. Already within 200 iterations, the SoPer-S method is able to
provide at least 1 relevant document to 80% of the user population, while ran-
dom and Ranked Bandits perform at around 65%. Thus both proposed methods
are clearly able to learn the diversity required in such rankings from individual
user feedback.

Learning Socially Optimal Information Systems from Egoistic Users

 0.64

 0.66

 0.68

 0.7

 0.72

 0 200 400 600 800 1000

N
o

rm
al

iz
ed

 S
et

 U
ti

li
ty

Number of Iterations

Random

StructPerc

SoPer-S

Unclipped SoPer-S 0.52

 0.56

 0.6

 0.64

 0.68

 0 200 400 600 800 1000

N
o

rm
al

iz
ed

 L
is

t
U

ti
li

ty

Number of Iterations

Random

StructPerc

SoPer-R

Unclipped SoPer-R

Fig. 3. Set (L) and List (R) Utilities for learning to diversify across queries.

We also explore variants of the SoPer-S and SoPer-R algorithms where we
omit the final step of clipping negative weights to 0. While the unclipped ver-
sions of both algorithms still perform better than random, they fall short of the
corresponding clipped versions as seen from Figure 2. Thus we can conclude
that ensuring non-negative weights not only guarantees theoretical results, but
is important for empirical performance.

5.3 Can we learn a cross-query model for diversification?

While the previous experiments indicate that the new algorithms can learn to
diversify for a single query, such single-query learning is restricted to frequent
queries that are issued hundreds of times. Instead, it is more desirable for diver-
sification models to be trained across a distribution of queries.

To get a suitable representation that allows cross-query learning, we use
the same word-importance feature vectors that were used in previous work on
learning from expert-annotated feedback [8, 9]. These features capture both the
overall importance of a word (e.g., “Does the word appears in at least x% of the
documents?”), as well as the importance in the documents of the ranking (e.g.,
“Does the word appear with frequency of atleast y% in the document?”). Using
different such values of x and y along with other similar features, we get a total
of 1197 features.

To produce the following results, all methods were run for 1000 iterations
with 5 random seeds. The values reported are averaged across these 5 runs.

In this cross-query setting, we cannot apply Ranked-Bandits as it only works
for a single query. Thus we again use the Random baseline in this experiment.
Existing supervised learning algorithms for diversification are also not applicable
here, as they require explicit training data of socially optimal rankings (i.e.,
knowledge of all document-user relevance labels). However, we would like to
estimate how well our algorithms can learn from (far weaker) implicit feedback
data, in relation to conventional methods trained in such a full information
setting. Thus we trained a structural perceptron, which internally uses the greedy
algorithm for prediction. This uses the same feature vector representation as our
algorithm, but is provided the social optimal at every iteration.

Learning Socially Optimal Information Systems from Egoistic Users

Table 2. Set and List Utilities (with standard error) when the two submodular func-
tions i.e., of the population (fixed for row) and the algorithm (fixed for column) are
mismatched.

UserF SET

Max Sqrt Lin Rand

Max .699 ±.005 .695 ±.005 .683 ±.005 .646 ±.006
Sqrt .675 ±.006 .686 ±.006 .706 ±.006 .634 ±.006
Lin .509 ±.006 .532 ±.006 .574 ±.007 .492 ±.006

UserF LIST

Max Sqrt Lin Rand

Max .630 ±.007 .620 ±.006 .618 ±.006 .557 ±.006
Sqrt .656 ±.007 .654 ±.007 .684 ±.006 .610 ±.007
Lin .500 ±.006 .504 ±.006 .566 ±.007 .474 ±.007

Fig. 3 shows the average utility for the SoPer-S and SoPer-R algorithms, as
well as the random baseline and the Structured Perceptron after 1000 iterations.
Both SoPer-S and SoPer-R substantially outperform the random baseline, indi-
cating that the proposed algorithms can learn to diversify for this cross-query
setting. Both methods get close to the performance of the supervised method
despite learning from far weaker feedback. For example, the SoPer-S method
is able to satisfy 70% of the user population, as compared to the 64% of the
baseline and 72% of the Structured Perceptron. We also again evaluate the un-
clipped versions of the algorithms. For the the unclipped SoPer-R, performance
never rises above random, indicating the practical importance of maintaining a
positive weight vector to ensure good performance of the greedy algorithm.

5.4 How robust are the algorithms to misspecification of the model?

While the previous experiments showed that the algorithms can learn efficiently
when the submodular function of the user population (as used in computing
the personal and social utilities) and the algorithm match, we now study what
happens when there is a mismatch. More specifically, for the cross-query diversi-
fication setting, we ran the algorithms with three different submodular functions
as defined by the concave function F : a) Max: F (x1, . . . , xn) = maxi xi; b) Lin:
F (x1, . . . , xn) =

∑
i xi; c) Sqrt: F (x1, . . . , xn) =

√∑
i xi. We also varied the

population utility to each of these three functions, and obtained the average
utility value (after 200 iterations) for all 9 combinations of functions. Note that
we still ensured that SoPer-R was used to optimize the List based utilities, while
SoPer-S was used for set-based ones.

The results (averaged over 5 runs) are shown in Table 2. We find that for both
methods and all three population utility functions, the utility value is always
better than the random baseline, regardless of the algorithm and function used.
While the values may be highest when the functions align, we still find significant
improvements over the baselines even when there is a mismatch. In fact, for some
situations we find that the utility is highest when there is a mismatch: The case
of a linear algorithm utility but SQRT population utility is one such example. We
conjecture that is due to the relatively small set/list size of 5. On short rankings
LIN and SQRT do not differ as much as on longer rankings. Additionally LIN

Learning Socially Optimal Information Systems from Egoistic Users

Table 3. Ranking performance in the presence of feedback noise.

Utility Random No Noise Noise

Set .646 ±.006 .699 ±.005 .694 ±.006
List .557 ±.006 .630 ±.007 .631 ±.007

does not suffer any approximation degradation as the greedy algorithm always
provides an optimal solution for LIN.

5.5 Is the method robust to noise in the feedback?

In the real world, users make errors in judging the relevance of documents. To
model this, we simulated users who make an error in each binary relevance
judgment with 0.1 probability. This means that, as users go down the ranking,
they may flip the true relevance label. Users now return as feedback the first
document they perceive as relevant, which contains significant noise. We ran
both our algorithms and measured the average utility after 200 iterations in the
cross-query setting, with matching algorithm and population utilities using the
Max function.

Table 3 shows the results (averaged over 5 runs) comparing the performance
of the algorithms in both the noise-free and noisy settings. We see that the
performance for both SoPer-S and SoPer-R is almost the same, with the gap to
the baseline still being significant. The robustness to noise is also supported by
the theoretical results. In particular, note that the definition of αi, δi-informative
feedback only requires that feedback be informative in expectations, such that
the slack terms ξ̄t may be zero even for noisy feedback. In general, we conclude
that the algorithms are robust and applicable in noisy settings.

6 Conclusions

We proposed two online-learning algorithms in the coactive setting for aggregat-
ing the conflicting preferences of a diverse user population into a ranking that
aims to optimize social utility. Formalizing the learning problem and model as
learning an aggregate utility function that is submodular in the elements of the
ranking and linear in the parameters, we were able to provide regret bounds
that characterize the worst-case behavior of the algorithm. In an empirical eval-
uation, the algorithms learned substantially faster than existing algorithms for
single-query diversification. For learning cross-query diversification models, the
algorithms are robust and the first that can be trained using implicit feedback.
This work was supported in part by NSF Awards IIS-1217686, IIS-1247696, IIS-
0905467, the Cornell-Technion Joint Research Fund, and a Google Fellowship.

References

1. Radlinski, F., Bennett, P.N., Carterette, B., Joachims, T.: Redundancy, diversity
and interdependent document relevance. SIGIR Forum 43(2) (2009) 46–52

2. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for re-
ordering documents and producing summaries. In: SIGIR. (1998) 335–336

3. Zhai, C.X., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods
and evaluation metrics for subtopic retrieval. In: SIGIR. (2003) 10–17

Learning Socially Optimal Information Systems from Egoistic Users

4. Chen, H., Karger, D.R.: Less is more: probabilistic models for retrieving fewer
relevant documents. In: SIGIR. (2006) 429–436

5. Swaminathan, A., Mathew, C.V., Kirovski, D.: Essential pages. In: Web Intelli-
gence. (2009) 173–182

6. Clarke, C., Kolla, M., Vechtomova, O.: An effectiveness measure for ambiguous
and underspecified queries. In: ICTIR. (2009) 188–199

7. Santos, R.L., Macdonald, C., Ounis, I.: Selectively diversifying web search results.
In: CIKM. (2010) 1179–1188

8. Yue, Y., Joachims, T.: Predicting diverse subsets using structural SVMs. In: ICML.
(2008) 1224–1231

9. Raman, K., Joachims, T., Shivaswamy, P.: Structured learning of two-level dynamic
rankings. In: CIKM. (2011) 291–296

10. Kulesza, A., Taskar, B.: Learning determinantal point processes. In: UAI. (2011)
419–427

11. Radlinski, F., Kleinberg, R., Joachims, T.: Learning diverse rankings with multi-
armed bandits. In: ICML. (2008) 784–791

12. Slivkins, A., Radlinski, F., Gollapudi, S.: Ranked bandits in metric spaces: learning
optimally diverse rankings over large document collections. JMLR 14 (2013) 399–
436

13. Shivaswamy, P., Joachims, T.: Online structured prediction via coactive learning.
In: ICML. (2012)

14. Raman, K., Shivaswamy, P., Joachims, T.: Online learning to diversify from im-
plicit feedback. In: KDD. (2012) 705–713

15. Raman, K., Joachims, T., Shivaswamy, P., Schnabel, T.: Stable coactive learning
via perturbation. In: ICML. (2013)

16. Yue, Y., Guestrin, C.: Linear submodular bandits and their application to diver-
sified retrieval. In: NIPS. (2012) 2483–2491

17. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., Gay, G.: Eval-
uating the accuracy of implicit feedback from clicks and query reformulations in
web search. TOIS 25(2) (April 2007)

18. El-Arini, K., Guestrin, C.: Beyond keyword search: discovering relevant scientific
literature. In: KDD. (2011) 439–447

19. Blumrosen, L., Dobzinski, S.: Welfare maximization in congestion games. In: EC.
(2006) 52–61

20. Meyers, C.A., Schulz, A.S.: The complexity of welfare maximization in congestion
games. Netw. 59(2) (March 2012) 252–260

21. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combina-
torial auctions with submodular bidders. In: SODA. (2006) 1064–1073

22. Feige, U.: On maximizing welfare when utility functions are subadditive. In: STOC.
(2006) 41–50

23. Boutilier, C., Caragiannis, I., Haber, S., Lu, T., Procaccia, A.D., Sheffet, O.: Op-
timal social choice functions: a utilitarian view. In: EC. (2012) 197–214

24. Bartók, G., Pál, D., Szepesvári, C.: Toward a classification of finite partial-
monitoring games. In: Algorithmic learning theory. (2010) 224–238

25. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions. Mathematical Programming 14 (1978) 265–
294

26. Radlinski, F., Joachims, T.: Minimally invasive randomization for collecting unbi-
ased preferences from clickthrough logs. In: AAAI. (2006) 1406–1412

Learning Socially Optimal Information Systems from Egoistic Users

7 Appendix

7.1 Proof of Lemma 3

Proof. The proof involves constructing a new set function h over a set of elements
U . In particular each element a ∈ X now has k copies in U represented as
a1, a2, . . . ak. Now for set A ⊆ U , we can define the value of h(A) as:

h(A) =

k∑
i=1

g(Ai) (23)

where Ai refers to all elements in A that have subscript i.

Lemma 4. h as defined above is nullary and submodular.

This is straightforward as h(φ) = 0 and for B ⊆ A we have:

h(A ∪ ai)− h(A) = g(Ai ∪ ai)− g(A) ≥ g(Bi ∪ ai)− g(B) = h(B ∪ ai)− h(B)

Now consider a group of n subsets of X (Y1, Y2, . . . Yn) of size k, where each
element of X appears in exactly k of the subsets. Thus, we can create a cor-
responding set of subsets (Y ′1 , Y

′
2 , . . . Y

′
n) which together form a partition of A.

Since the Y ′ subsets form a partition of A, by submodularity we have that:

n∑
i=1

h(Y ′i) ≥ h(A).

Since h(A) = kg(X) and coupled with the fact that h(Y ′i) = g(Yi), we get that:

Ei[g(Yi)] ≥
k

n
g(X).

As all the subsets of size k can be grouped up in this manner to form such
subsets Yis, we can apply this inequality for all of them. Combining all of them
gives the required bound.

