Isotope: A Case for Block I/O Level Tx Isolation

- Traditionally I/O stacks are too heavy
 - Filesystem and above have rich functionalities
 - Block I/O and below are simple/non-intelligent
 - Time for new abstractions!
- Tx isolation is general
 - Multicore and cloud make concurrency a norm
- Tx isolation is difficult
 - Having one high quality implementation helps
 - Tx isolation in block layer enables easy and clean software design
 - Lowest common software layer that can directly support higher layers
 - New abstractions enable policy/mechanism separation
- Tx isolation can be implemented with negligible overhead
 - Optimistic concurrency control using advanced CPUs and abundant memory

Isotope Design

1) Multi-version Index

2) Timestamp Counter

3) Tx Context

4) Write Buffer

5) Tx Decision Engine

Implementation

- Block I/O layer kernel module (device mapper)
 - Similar to LVM and software RAID
 - Can run on any block devices (Disk, SSD, etc.)
- Based on Gecko, a chain logging storage
- Log-structured design with chaining block devices
- Garbage collection is isolated from writes
- SSD and memory cache included

Applications

- IsoBT and IsoHT
 - Persistent B-tree and hashtable based key-value stores
 - Uses LevelDB APIs
- IsoFS
 - Transactional file system on FUSE
 - PleaseCache() for metadata
- ImgStore using IsoBT and IsoHT
 - IsoBT for metadata and IsoHT for data
- ReleaseTx/TakeoverTx to continue transactions
- Three compositions to handle transactions across, libraries, threads, and processes
- Easy to build transactional applications with Isotope APIs
 - 1K LoC for IsoFS and 150 LoC for ImgStore

Isotope APIs

- BeginTx()
 - Creates a Tx context
 - Treats I/Os before EndTx as a Tx
 - Every write handled in memory
- AbortTx()
 - Terminates a Tx
 - Marks subblock accesses
 - Enables in-memory read
 - E.g. for filesystem metadata
- EndTx()
 - Checks transaction conflicts
 - Persists updates on success
 - Aborts on failure
 - Returns success/failure

Isotope: Transactional Isolation for Block Storage

Ji-Yong Shin1, Mahesh Balakrishnan2, Tudor Marian3, and Hakim Weatherspoon1

1Cornell University, 2Yale University, 3Google

Work funded by NSF and DARPA