On the Feasibility of Completely Wireless Datacenters

Ji-Yong Shin
Cornell University

In collaboration with
Emin Gün Sirer (Cornell), Hakim Weatherspoon (Cornell) and Darko Kirovski (MSR)
Conventional Datacenter

Core Switch

Aggregate Switch

Top of Rack Switch
Conventional Datacenter
Going Completely Wireless

• Opportunities
 – Low maintenance: no wires
 – Low power: no large switches
 – Low cost: all of the above

 – Fault tolerant: multiple network paths
 – High performance: multiple network paths

Which wireless technology?
60GHz Wireless Technology

- Short range
 - Attenuated by oxygen molecules
- Directional
 - Narrow beam
- High bandwidth
 - Several to over 10Gbps
- License free
 - Has been available for many years

Why now?

- CMOS Integration
 - Size < dime
 - Manufacturing cost < $1

[Pinel ‘09]
60 GHz Antenna Model

- One directional
 - Signal angle between 25° and 45°
 - Maximum range < 10 m
 - No beam steering

- Bandwidth < 15Gbps
 - TDMA (TDD)
 - FDMA (FDD)

- Power at 0.1 – 0.3W

How to integrate to datacenters?
Designing Wireless Datacenters

• Challenges
 – How should transceivers and racks be oriented?
 – How should the network be architected?
 – Interference of densely populated transceivers?
Completely Wireless Datacenters

- Motivation

- *Cayley* Wireless Datacenters
 - Transceiver placement and topology
 - Server and rack designs
 - Network architecture
 - MAC protocols and routing

- Evaluation
 - Physical Validation: Interference measurements
 - Performance and power

- Future

- Conclusion
Transceiver Placement: Server and Rack Design

• Rack

3D View

• Server

3-way switch (ASIC design)

Inter-rack space

Intra-rack space

2D View

How do racks communicate with each other?
Cayley Network Architecture: Topology
Masked Node Problem and MAC

• Most nodes are hidden terminals to others
 – Multiple (>5) directional antennae
 => Masked node problem
 – Collisions can occur

• Dual busy tone multiple access [Hass’02]
 – Out of band tone to preserve channels
 – Use of FDD/TDD channels as the tone
Cayley Network Architecture: Routing

- Geographical Routing
- Inter rack
 - Diagonal XYZ routing
- Turn within rack
 - Shortest path turning
- Within dst rack to dst server
 - Up down to dst story
 - Shortest path to dst server
Completely Wireless Datacenters

• Motivation

• *Cayley* Wireless Datacenters
 – Transceiver placement and topology
 • Server and rack designs
 – Network architecture
 • MAC protocols and routing

• Evaluation
 – Physical validation: Interference measurements
 – Performance and power

• Future

• Conclusion
Hardware Setup for Physical Validation

• Use of a conservative platform
• Real-size datacenter floor plan setup
• Validation of all possible interferences

Intra-rack communications Inter-rack communications
Physical Validation: Interference Evaluation
(Signal angle $\theta = 15^\circ$)
Physical Validation: Interference Evaluation
(Signal angle $\theta = 15^\circ$)

Orthogonal Inter-Rack Space (Tx on Rack D)

Diagonal Inter-Rack Space (Tx on Server 2 of Rack D)

Non-Adjacent Inter-Rack Space (Tx on Rack D)

Edge of signal: can be eliminated

Potential Interference: can be blocked using conductor curtains
Evaluation

- **Performance**: How well does a Cayley datacenter perform and scale?
 - Bandwidth and latency
- **Failure tolerance**: How well can a Cayley datacenter handle failures?
 - Server, story, and rack failure
- **Power**: How much power does a Cayley datacenter consume compared to wired datacenters
• Simulate 10K server datacenter
 – Packet level: routing, MAC protocol, switching delay, bandwidth

• Conventional datacenter (CDC)
 – 3 Layers of oversubscribed switches (ToR, AS, CS)
 • (1, 5, 1), (1, 7, 1) and (2, 5, 1)
 • Latency: 3-6us switching delay
 • Bandwidth: 1Gbps server

• FAT-tree: Equivalent to CDC (1,1,1)

• Cayley wireless datacenter
 – 10Gbps bandwidth
 – 1 Transceiver covers 7 to 8 others
 – Signal spreading angle of 25°
 – Low latency Y-switch (<< 1us)
Evaluation Setup

• Uniform random
 – Src and dst randomly selected in entire datacenter

• MapReduce
 – Src sends msg to servers in same row of rack
 – Receiver sends msg to servers in same column of rack
 – Receivers send msg to servers inside same pod with 50% probability
Bandwidth

- Burst of 500 x 1KB packets per server sent

Maximum Aggregate Bandwidth Normalized to Fat-tree

- Cayley datacenters have the most bandwidth
Latency

• Uniform random benchmark

- **Uniform Random (4KB Packet)**
 - fat-tree
 - CDC 251
 - CDC 171
 - CDC 151
 - Cayley

- **Uniform Random (16KB Packet)**

• MapReduce benchmark

- **MapReduce (4KB Packet)**

- **MapReduce (16KB Packet)**

Cayley datacenters typically performs the best
Cayley datacenters are extremely fault tolerant
Power Consumption to Connect 10K Servers

• Conventional datacenter (CDC) *
 - Depending on the oversubscription rate **58KW to 72KW**

<table>
<thead>
<tr>
<th>Switch Type</th>
<th>Typical Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of rack switch (ToR)</td>
<td>176W</td>
</tr>
<tr>
<td>Aggregation switch (AS)</td>
<td>350W</td>
</tr>
<tr>
<td>Core switch (CS)</td>
<td>611W</td>
</tr>
</tbody>
</table>

• Cayley datacenter
 - Transceivers consume < 0.3W
 - Maximum power consumption: 6KW

• Less than 1/10 of CDC power consumption

* Cost and spec of Cisco 4000, 5000, 7000 series switches
Discussion and Future Work

• Only scratched the surface
 – How far can wireless datacenters go with no wires?

• Need larger experiment/testbed
 – Interference and performance of densely connected datacenter?

• Scaling to large datacenters (>100K servers)?
• Scaling to higher bandwidth (> 10Gbps)?
Conclusion

• Completely wireless datacenters *can be* feasible
• Cayley wireless datacenters exhibit
 – Low maintenance
 – High performance
 – Fault tolerant
 – Low power
 – Low cost
References

