
Felix: Implementing Traffic Measurement
on End Hosts Using Program Analysis

Haoxian Chen
Tsinghua University
hc865@cornell.edu

Nate Foster
Cornell University

jnfoster@cs.cornell.edu

Jake Silverman
Cornell University
jrs546@cornell.edu

Michael Whittaker
Cornell University
mjw297@cornell.edu

Brandon Zhang
Cornell University
bwz6@cornell.edu

Rene Zhang
Cornell University
rz99@cornell.edu

ABSTRACT
Network measurement is an essential component of many
SDN applications, but most existing controller platforms
force programmers to implement measurement tasks by in-
stalling fine-grained forwarding rules on switches—an ap-
proach that significantly increases configuration and man-
agement complexity. This paper proposes a radically differ-
ent approach: rather than implementing measurement tasks
directly on network switches, we argue for pushing mea-
surement to the edge and utilizing the abundant resources
available on end hosts. At a technical level, our approach is
based on two key ideas: (i) we express measurement tasks
using programs in a high-level, declarative query language,
and (ii) we use program analysis to calculate predicates that
can be used to answer queries at the edge of the network.
We present an implementation of our approach on top of the
NetKAT framework, we develop case studies illustrating the
benefits of our approach, and we conduct experiments that
quantify performance on realistic benchmarks.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages

Keywords
Network measurement, domain-specific languages, program
analysis, Kleene algebra with tests, NetKAT.

1. INTRODUCTION
Network measurement is an essential component of many

SDN applications. Programmers must measure the flow of
traffic across the network for a variety of reasons ranging
from discovering hosts to billing customers to detecting con-
gestion to debugging errors, among many others. Unfortu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

SOSR ’16, March 14-15, 2016, Santa Clara, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4211-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2890955.2890971

nately, existing SDN platforms offer only rudimentary sup-
port for implementing network measurement tasks—typically
programmers must install fine-grained forwarding rules on
switches and poll the byte and packet counters associated
with those rules in a tight loop.

At first glance, implementing measurement tasks using
counters might seem like an attractive approach, since it al-
lows programmers to use the same constructs to specify both
how to forward and measure traffic. However, in practice,
this approach has a number of disadvantages:

• It complicates network configurations, which is likely
to increase the rate of software bugs and other er-
rors. On a single switch, constructing rules to separate
out the traffic being measured is already quite compli-
cated; measuring traffic across multiple switches can
require adding state to keep track of the paths taken
by packets as they traverse the network.

• It increases the amount of memory needed to store
configurations on switches. If measurement and for-
warding can be implemented using independent tables,
then the increase is merely linear, but if they must be
encoded into the same table, there can be a quadratic
blowup. Either way, this is a key limitation on current
switches, which offer relatively small numbers of tables
and forwarding rules.

• It increases the load on switches since the local con-
trol plane must retrieve the values stored in hardware
counters, aggregate them together, and send the re-
sults back to the controller. In extreme cases, this can
prevent the switch from being able to quickly process
other control messages, such as commands for insert-
ing new rules into a TCAM.

• These problems are exacerbated in situations where
the controller must make frequent updates to the con-
figuration of the network in response to changes in the
topology, traffic patterns, security policies, etc. There
are also questions about the consistency of results com-
puted during configuration updates [22].

Although a number of recent SDN-based systems have pro-
posed new hardware and software abstractions designed to
make it easy to implement measurement tasks, many of them
suffer from these fundamental limitations [8, 12, 20, 27, 24].

Approach. This paper explores a different approach to im-
plementing measurement tasks. Rather than attempting to
implement measurement by explicitly programming network
devices, we push measurement to the edge and take advan-
tage of the abundant computational resources available on
end hosts. In our system, called Felix, hosts execute a cus-
tom network stack that provides hooks for inserting local
predicates that are evaluated on all incoming and outgo-
ing packets. Multiple queries can be composed together,
since hosts typically have plentiful memories, unlike most
hardware switches. Handling updates is also straightforward
since Felix’s architecture cleanly decouples forwarding and
measurement. To enable efficient computation of network-
wide statistics, Felix provides a tree-structured overlay that
aggregates information collected at each host into a final
value at the controller.

The simplest way to use a system like Felix is to install
local predicates at each host that collect the required in-
formation and configure the overlay to aggregate this infor-
mation into the desired result. For example, to compute the
total amount of traffic going across a given network link, the
programmer would install predicates that count the amount
of outgoing traffic that eventually traverses that link in the
current forwarding configuration (for simplicity, assume the
configuration implements loop-free paths) and then config-
ure the overlay to aggregate the counters collected at each
host into a single numeric value. This idea has been explored
in the HONE system [24], which offers a unified, declarative
interface for querying state on switches and end hosts. How-
ever, although this approach is workable in simple settings,
computing the local predicates can be difficult to do by hand,
especially in larger networks with complex configurations.

Queries and Analysis. To address this challenge, Felix
provides a high-level language for specifying network-wide
queries and automated tools for compiling queries into pred-
icates that can be installed on each host. Syntactically, the
query language is based on NetKAT [1], which is in turn
based on regular expressions—a natural and well-studied
formalism for describing paths through a graph. Using this
language, a programmer can directly specify advanced mon-
itoring queries, such as “the number of packets processed
by the firewall,” “the number of packets that traverse the
path between Ithaca and New York City,” and “the number
of packets received from visitor hosts that eventually reach
an internal server.” Given such a query, Felix uses program
analysis to calculate a collection of predicates that describe
the set of packets that will satisfy the query when injected
into the network. These predicates can then be installed on
end hosts to collect the information needed to answer the
overall query. The analysis of queries is based on a novel
technique for compiling queries into the NetKAT language,
as well as a representation of NetKAT programs based on
finite automata and binary decision diagrams that was de-
veloped by some of the authors in previous work [10, 23].

Limitations. Implementing measurement at the edge does
have certain limitations. Most important, the result com-
puted for a given query is based on a model of the network
under idealized conditions, which may or may not reflect
reality. For example, if the network is congested, packets
counted by hosts at ingress may actually be dropped in the
core of the network. Likewise, if the switches exhibit hard-

ware or software bugs, the paths specified by the configu-
ration may not correspond to the actual paths used in the
network. This limitation can be mitigated, to some extent,
by using packet probes to detect congestion and bugs—at
the very least, such probes could be used to check whether
the results of the query are likely to be correct under current
conditions. However, our current prototype does not provide
this functionality. Despite this limitation, we believe that
the division of labor embodied in Felix strikes a good bal-
ance between simplicity, flexibility, and performance, while
making reasonable tradeoffs about the precision of query an-
swers under extreme operating conditions.

Experience. To evaluate our design for Felix, we have built
a prototype implementation in C, Python, and OCaml. The
system comprises several components: an end-host monitor
(based on netfilter) that applies predicates to every in-
coming and outgoing packet and maintains statistics in ta-
bles; an end-host agent that aggregates the information col-
lected by the kernel module into a network-wide result using
a tree-structured overlay; a declarative query language and
program analysis tool based on NetKAT; and a simple SDN
controller that orchestrates the behavior of all of these com-
ponents. Using our prototype, we have built several applica-
tions that illustrate the use of our system for implementing
rich measurement tasks. We have also conducted quantita-
tive experiments to evaluate the performance of our analysis
on realistic topologies and configurations.

Contributions. The main contributions of this paper are
as follows:

• We make the case for implementing network measure-
ment at the edge and present the design of a practical
system based on this idea.

• We present a high-level language for specifying moni-
toring queries based on regular expressions and show
how to analyze queries in this language using automata.

• We discuss a prototype implementation based on the
NetKAT framework.

• We conduct case studies and experiments illustrating
the use of our system on a variety of example ap-
plications and evaluate its performance on real-world
topologies and configurations.

In outline, the rest of this paper is structured as follows. Sec-
tion 2 motivates the design of Felix in further detail, using a
simple running example. Sections 3 and 4 present NetKAT
and our query language respectively. Section 5 describes our
approach to analyzing queries. Section 6 presents our im-
plementation, and Section 7 evaluates it. We discuss related
work in Section 8 and conclude in Section 9.

2. OVERVIEW
As a simple example to illustrate the main ideas behind

our approach, consider the diamond topology shown in Fig-
ure 1. It consists of four switches, with a single host con-
nected to each switch. There are links around the perimeter
and a single “shortcut” link going from north to south across
the interior of the diamond.

Initially the network is configured to forward traffic using
shortest paths—e.g., traffic from h1 to h3 traverses a direct

N

S

EW

h1

h2

h3

h4

Figure 1: Diamond topology.

path across the shortcut link while traffic from h2 to h4

traverses a two-hop path via N or S. The configuration for
switch N would look like this (for simplicity, we write names
of switches and hosts rather than port numbers):

N:

Match Actions
Dst = h1 Forward h1

Dst = h2 Forward E
Dst = h3 Forward S
Dst = h4 Forward W

Now suppose the programmer decides to add measurement
functionality to the application. Depending on the details of
the application, there are a variety of measurement queries
that might be needed such as:

• How much total traffic is flowing across the network?

• How congested is each link in the network?

• How much HTTP traffic is traversing the shortcut link?

• How much traffic traverses a two-hop path?

To implement these queries on current SDN platforms, the
programmer would have to generate additional rules for the
traffic being measured. For example, to measure the amount
of HTTP traffic flowing across the shortcut link, they might
modify the configuration of N to the following:

N:

Match Actions
Dst = h1 Forward h1

Dst = h2 Forward E
Dst = h3,Type = HTTP Forward S
Dst = h3 Forward S
Dst = h4 Forward W

Compared to the previous configuration, we have added an
additional rule to separate out (and count!) HTTP traffic
going from N to S. The counters associated with these
rules could then be polled by the controller to compute the
answer to the query. Alternatively, to measure the amount
of traffic being generated by h1 they might instead modify
the configuration of N to the following:

N:

Match Actions
Dst = h1 Forward h1

Src = h1,Dst = h2 Forward E
Dst = h2 Forward E
Src = h1,Dst = h3 Forward S
Dst = h3 Forward S
Src = h1,Dst = h4 Forward W
Dst = h4 Forward W

Here, most rules have been split in two: one for traffic gen-
erated by h1 and another for all other traffic.

As these scenarios illustrate, even in extremely simple
applications, using forwarding rules to implement measure-
ment tasks quickly becomes complicated. Moreover, the sit-
uation would be even worse if the programmer needed to im-
plement multiple queries simultaneously, or if the forwarding
configuration were being updated frequently in response to
events such as topology changes.

Felix offers a dramatically simpler approach to implement-
ing measurement in SDN. Rather than modifying switch
configurations so that traffic statistics can be collected using
hardware-level counters, Felix cleanly decouples measure-
ment from forwarding and pushes all measurement tasks
to the edge. End hosts are responsible for collecting fine-
grained information at the edge of the network and a tree-
structured overlay aggregates the results computed at each
local host into the overall query result. We believe this ap-
proach offers a good division of labor between the network
and end hosts: the network is responsible for forwarding
traffic using efficient packet-processing hardware, while com-
plex monitoring queries are implemented at the edge using
the plentiful resources offered by end hosts.

At a technical level, the key advance that makes this de-
sign possible is a language-based framework for expressing
queries and analyzing configurations. To allow programmers
to formulate measurement queries in terms of the paths tra-
versed by packets, we use a simple query language based
on NetKAT, which is in turn based on regular expressions.
Regular expressions offer natural primitives for describing
paths through a graph and have been extensively studied
in the literature. To compute the local predicates that are
installed on end hosts, we develop a program analysis that
takes a measurement query and a forwarding configuration
and automatically calculates predicates that denote the set
of input packets that satisfy the query.

Returning to the running example, given the forwarding
configuration and the query involving HTTP traffic on the
shortcut link, our system would automatically compute a
predicate for h1 that matches all traffic destined for h3, and
vice versa. Similarly, given the forwarding configuration and
the query involving traffic generated by h1, our system would
simply compute a single predicate that matches all outgoing
traffic on h1. By counting the number of packets that match
each predicate, Felix is able to efficiently compute the overall
result of the query.

Overall, Felix offers dramatically simpler mechanisms for
implementing rich measurement queries compared to com-
peting approaches. The following sections present the tech-
nical insights behind our approach.

3. THE NETKAT LANGUAGE
This section briefly reviews the syntax and semantics of

the NetKAT language, to set the stage for the new con-
tributions described in the following sections. NetKAT is
a domain-specific programming language for specifying and
reasoning about network behavior [1, 10, 23]. The language
offers high-level and modular constructs for constructing
network programs, as well as sound and complete mecha-
nisms for verifying formal properties automatically.

Syntax and Semantics. NetKAT models SDN programs
as functions on packets histories, where a packet (pk) is a

NetKAT Syntax

Naturals n ::= 0 | 1 | 2 | . . .
Fields f ::= f1 | · · · | fk

Packets pk ::= {f1 = n1, · · · , fk = nk}
Histories h ::= 〈pk〉 | pk ::h

Predicates a, b ::= true Identity
| false Drop
| f =n Test
| a + b Disjunction
| a · b Conjunction
| ¬a Negation

Programs p, p′ ::= a Filter
| f←n Modification
| p + p′ Union
| p · p′ Sequencing
| p∗ Iteration
| sw1_sw2 Link

NetKAT Semantics

[[p]] ∈ History→ P(History)

[[true]] h , {h}
[[false]] h , {}

[[f =n]] (pk ::h),

{
{pk ::h} if pk .f = n
{} otherwise

[[¬a]] h , {h} \ ([[a]] h)

[[f←n]] (pk ::h), {pk [f := n]::h}
[[p + p′]] h , [[p]] h ∪ [[p′]] h

[[p · p′]] h , ([[p]] • [[p′]]) h

[[p∗]] h ,
⋃
i F

i h

where F 0 h , {h} and F i+1 h , ([[p]] • F i) h

[[sw1_sw2]] (pk ::h),

{pk ′::pk ′::pk ::h}

where pk ′ = pk [sw := sw2]
if pk .sw = sw1

{} otherwise

Figure 2: NetKAT syntax and semantics.

record of fields and a history (h) is a non-empty list of pack-
ets. This is unlike the programming interfaces offered by
most controllers, which are based on lower-level construct
such as forwarding table rules. Fields f range over standard
packet headers such as Ethernet source and destination ad-
dresses, VLAN tags, etc., as well as special fields that indi-
cate the switch (sw) and physical port (pt) where the packet
is located in the network.

More formally, NetKAT is defined by the definitions given
in Figure 2. The syntax is described by a grammar in stan-
dard BNF notation while the semantics is described by a set
of equations of the form [[p]] h = H. Intuitively, this notation
means that the function described by p maps input history
h to a set of output histories H. Each predicate a describes
a boolean predicate on packets and includes primitives tests
f =n, which check whether field f is equal to n, as well as
the standard boolean operators. Each program p describes
a function that takes a packet history as input and generates
a set of packet histories as output. A filter a drops packets

that do not satisfy a; a modification f←n updates the f
field to n; a union p + p′ copies the input packet, processes
one copy using p and the other copy using p′, and takes the
union of the resulting sets; a sequence p · p′ processes the
input packet using p and then feeds each output of p into p′

(the symbol • indicates this form of composition, which is
also known as Kleisli composition); an iteration p∗ behaves
like the union of p composed with itself zero or more times;
and a link sw1_sw2 forwards from sw1 to sw2.

Encoding Network-Wide Behavior. One way to use the
NetKAT language is as an SDN programming framework:
the programmer specifies a collection of network-wide for-
warding paths using boolean predicates and regular opera-
tors, and the compiler generates local forwarding rules that
implement that behavior. However, NetKAT is also useful
in situations where the configurations are expressed directly
in terms of low-level forwarding tables: the programmer en-
codes the topology and configurations as NetKAT programs
and uses the tools provided by the language to reason about
their behavior. In this paper, we focus on this latter use.

To encode network-wide behavior in NetKAT, we proceed
in several steps. A single forwarding rule can be encoded as
the sequential composition of a predicate that encodes the
pattern of the rule and a program that encodes the action.
An action that forwards a packet on a switch is encoded
as a modification to the pt field; multiple actions can be
composed using union and sequence. To model tables, we
use conditionals, which can be encoded as follows:

if a then p1 else p2 , (a · p1) + (¬a · p2)

A table is a cascade of nested conditionals, sorted in order
of priority. A configuration can then be encoded as a union
of tables, one for each switch. Similarly, a topology can be
encoded as a union of links. Finally, given predicates in and
out that capture ingress and egress locations, we can model
the end-to-end behavior of the network with forwarding pol-
icy p and topology t as follows:

in · (p · t)∗ · p · out

Intuitively, this program accepts incoming packets and re-
peatedly forwards them across switches and links until they
exit the network.

Importantly, programmers do not need to write NetKAT
programs to use Felix—we use the langauge only as a model
of the forwarding behavior of the network. Although NetKAT
programs denote deterministic functions, richer features can
also be encoded, provided one only needs to model reacha-
bility. For example, a configuration that uses ECMP to for-
ward traffic randomly along multiple paths can be encoded
using NetKAT’s union operator, with one sub-term for each
path. Hence, we believe our solution is broadly applicable.

Language Model and NetKAT Automata. A unique fea-
ture of NetKAT is that programs can be characterized either
in terms of the standard model based on packet-processing
functions or equivalently in terms of a language-theoretic
model based on regular sets. The sets used in the latter
model can be encoded using finite automata, which pro-
vides a concrete basis for analyzing and verifying NetKAT
programs. NetKAT automata are similar to classic finite
automata, but are extended to handle functions on packets
rather than recognizing sets of strings.

Query Syntax

Queries q, q′ ::= (a, b) Filter
| q + q′ Union
| q · q′ Sequencing
| q∗ Iteration

Predicate Semantics

A[[a]] ∈ P(Packet)

A[[a]] , {pk | [[a]]〈pk〉 6= {}}

Query Semantics

Q[[q]] ∈ P((History ∪ {〈〉}))
Q[[(a, b)]] , {pk ′::〈pk〉 | pk ∈ A[[a]] and pk ′ ∈ A[[b]]}
Q[[q + q′]] , Q[[q]] ∪Q[[q′]]

Q[[q · q′]] , {h′ @ h | h ∈ Q[[q]] and h′ ∈ Q[[q′]]}
Q[[q∗]] , {〈〉} ∪

(⋃
i∈N+ Q[[qi]]

)
where q1 , q and qi+1 , q · qi

Figure 3: Query Language Syntax and Semantics

Definition 1 (NetKAT Automaton). A NetKAT automa-
ton is a tuple (S, s0, E,D), where:

• S is a finite set of states,

• s0 ∈ S is the start state,

• E : S → Pk→ P(Pk) is the observation function, and

• D : S → Pk→ P(Pk×S) is the continuation function.

Intuitively, the observation function E encodes the input-
output behavior at each state, while the transition func-
tion D encodes the forwarding behavior from the current
state across a link in the topology. The packet histories
used in the standard semantics are encoded in terms of
transitions from the initial state ending with an observa-
tion. Prior work by some of the authors developed efficient
algorithms for translating NetKAT programs to automata
based on derivatives [10], and a compact representation of
automata based on (a small extension) of binary decision
diagrams (BDDs) [23].

The key point for the purposes of this paper is that the
observation and transition functions provide compact repre-
sentations of network behavior that can be used as a basis
for analysis. If we syntactically replace all occurrences of
the link primitive sw1_sw2 with sw =sw1 · sw←sw2, which
move the packet from sw1 to sw2 but do not extend the
packet history, then the observation function E function en-
codes reachability directly. This syntactic translation will
be defined formally as Φ(p) in Section 4. Moreover, the
data structures used in our implementation support extract-
ing predicates that represent the domain of the observation
function—i.e., the inputs it maps to non-empty outputs.

4. QUERY LANGUAGE
This section presents the high-level language used to de-

fine measurement queries in Felix. We define the syntax and

semantics of the language formally and provide a number of
example queries. Intuitively, queries match the histories (as
defined in Section 3) that satisfy the path property we are
measuring.

Syntax. The syntax of Felix’s query language is defined by
the grammar in Figure 3. The simplest query is a pair of
NetKAT predicates ((a, b)) that, intuitively, describes the
input-output behavior at the current location in the net-
work. More complicated queries can be expressed using
the regular operators: union (q + q′), sequencing (q · q′),
and iteration (q∗). These operators allow programmers to
naturally express queries that measure traffic on end-to-end
paths through the network.

Semantics. Semantically, a query denotes a set of histo-
ries. Queries can be understood as regular expressions over
an “alphabet” of packet pairs where a query’s denotation
corresponds to the regular expression’s language of histo-
ries. A history models the path a packet takes through the
network where the elements of the history model the state
of the packet before and after traversing each link. Unlike
NetKAT, the “empty” history 〈〉 is a possible query result.

For example, the query (sw=sw1, sw=sw2) describes the
set of all histories pk2::〈pk1〉 where the switch field sw of
pk2 is sw2 and the switch field sw of pk1 is sw1. Such a his-
tory is produced by any packet that traverses the link from
switch sw1 to switch sw2. The query (true, true) matches
traffic across any link while the query (false, false) matches
nothing. The concatenation of two queries (q · q′) denotes
the set of histories obtained by concatenating a result from
each sub-query. For example, the query (sw=sw1, sw=sw2)·
(sw=sw2, sw=sw3) matches traffic that flows from switch
sw1 to sw2 and then from switch sw2 to sw3. The union
of two queries (q + q′) denotes the union of the histories
matched by the queries. For example, (sw=sw1, sw=sw2) +
(sw=sw2, sw=sw1) matches traffic that flows from switch
sw1 to sw2 or from switch sw2 to sw1. That is, it matches
traffic on the bidirectional link between switch sw1 and sw2.
The iteration of a query (q∗) represents the infinite union of
repeated sequencing of a query with itself. For example, the
query (true, true)∗ matches packets that traverse an arbi-
trary number of links—i.e., all traffic in the network.

The semantics of our query language is defined by the
equations in Figure 3. To streamline the definition, we use
an alternate formulation of the semantics for predicates that
is equivalent to the standard version given in Figure 2.

Example Queries. Many common measurement tasks can
be expressed using Felix’s query language.

• n-hop Traffic: The query (true, true) matches traffic
along a single link. The query (true, true) · (true, true)
matches traffic along 2-hop paths across two links. The
following query matches traffic across n-hop paths:

(true, true)n

Similarly, we can measure the traffic across paths with
n or fewer hops by constructing the union over each
path length:

n∑
i=1

(true, true)i

• Link Monitoring: We can measure the traffic along
any path that traverses the link from sw1 to sw2:

(true, true)∗·
(sw=sw1, sw=sw2)·

(true, true)∗

Intuitively, the query matches paths with an arbitrary
prefix and suffix so long as the path includes a link
between switch sw1 and switch sw2. We can easily ex-
tend this query to match all paths that include a sub-
path. For example, the following query matches any
paths that include a path from switch sw1 to switch
sw2, from switch sw2 to switch sw3, and from switch
sw3 to switch sw4.

(true, true)∗·
(sw=sw1, sw=sw2)·
(sw=sw2, sw=sw3)·
(sw=sw3, sw=sw4)·

(true, true)∗

Furthermore, we are able to extend this to measure all
traffic between two switches. For example, the follow-
ing query matches all paths from sw1 to sw4. Note
that we include a (true, true)∗ between sw1 and sw4

to represent all paths between the two switches.

(true, true)∗·
(sw=sw1, true)·

(true, true)∗·
(true, sw=sw4)·

(true, true)∗

In all three of these queries, we are only measuring di-
rected traffic from one switch to another. If we wanted
to measure bidirectional traffic in a network, we could
take the union of both unidirectional paths.

• Switch Monitoring: Finally, the query

(true, true)∗ · (sw=sw1 · true) · (true, true)∗

matches all traffic that exits switch sw1 at some point.
Similarly, the query

(true, true)∗ · (true · sw=sw1) · (true, true)∗

matches all traffic that enters switch sw1 at some point.
We can combine these two queries into a single query
that matches all traffic that passes through switch sw1

at some point.

(true, true)∗·
((sw=sw1, true) + (true, sw=sw1))·

(true, true)∗

Additional examples of Felix queries are given in Table 1.

5. QUERY COMPILATION
Existing SDN platforms often implement measurement

tasks by installing forwarding rules on switches. Felix takes
a different approach and instead uses predicates evaluated
on end hosts. Given a query and a configuration, the Felix

h1 sw1 sw2 h2
1 2 1 2

Figure 4: Example linear topology. Packets destined for host
h1 are forwarded out on port 1 of each switch, and packets
destined for host h2 are forwarded out on port 2.

Φ(p) ∈ NetKAT

Φ(a) , a

Φ(f←n) , f←n
Φ(p + p′) , Φ(p) + Φ(p′)

Φ(p · p′) , Φ(p) · Φ(p′)

Φ(p∗) , Φ(p)∗

Φ(sw1_sw2) , sw=sw1 · sw←sw2

cnet(q) ∈ NetKAT

cnet((a, b)) , p · a · Φ(t) · b
cnet(q + q′) , cnet(q) + cnet(q

′)

cnet(q · q′) , cnet(q) · cnet(q′)
cnet(q

∗) , cnet(q)
∗

Cnet(q) ∈ NetKAT

Cnet(q) , in · cnet(q) · p · out

Figure 5: Query Compilation Rules.

compiler computes these predicates automatically, using a
program analysis based on NetKAT automata.

As an example to illustrate, suppose that we want to mea-
sure the traffic along the link from switch sw1 port pt2 to
switch sw2 port pt1 in the linear topology given in Figure 4.
A switch based measuring approach could install a forward-
ing rule on switch sw1 to tally packets outbound on port
pt2. Felix would instead analyze the network via NetKAT
and produce a set of predicates to install on host h1 and host
h2. In this simple example, since all outgoing traffic from
host h1 will wind up traveling through sw1, we would only
need to measure outgoing traffic from h1.

The analysis proceeds in two steps. First, we compile a
NetKAT encoded network and a query into a NetKAT term
that forwards packets according to the network and drops
packets that aren’t matched by our query. Second, we “read
off” the predicates from the E function of the NetKAT au-
tomata associated with the compiled term and install them
as predicates on end hosts. We currently assume that the
configuration is loop and blackhole free, but we do not be-
lieve this is an essential restriction.

Compilation Rules. The rules for compiling a query q into
a NetKAT term is given in Figure 5. The compiler takes
a model of the network being measured as input, so the
compilation function Cnet(·) is parameterized on a network
4-tuple encoding net = (in, p, t, out). The function Cnet(·)
uses a helper functions cnet(·) and Φ—the latter replaces
all links sw1_sw2 in a NetKAT term with a corresponding
filter-modification pair: sw=sw1 · sw←sw2.

Name Description Query
drop no paths (false, false)

i-hop i-hop paths (true, true)i

i-all all paths (true, true)∗i

http HTTP traffic (dport=80, true)∗

sw4or5 paths through sw4 or sw5
((true, true)∗ · ((sw=sw4, true) + (true, sw=sw4)) · (true, true)∗)+
((true, true)∗ · ((sw=sw5, true) + (true, sw=sw5)) · (true, true)∗)

long-path long path

(true, true)∗·
(sw=sw1 + sw=sw2 + sw=sw3, sw=sw4 + sw=sw5 + sw=sw6)·
(sw=sw4 + sw=sw5 + sw=sw6, sw=sw7 + sw=sw8 + sw=sw9)·
(sw=sw7 + sw=sw8 + sw=sw9, sw=sw10 + sw=sw11 + sw=sw12)·
(true, true)∗

Table 1: Example queries.

Recall that a link records the state of the packet in the his-
tory before and after traversing the link. Intuitively, Cnet(q)
is a modified version of in · (p · t)∗ · p · out where the links
in t are surrounded by pairs of predicates in q. The com-
piled term forwards traffic identically to in · (p · t)∗ · p · out ,
but rather than recording the packet state into the history
before and after traversing a link, it instead drops packets
that are not matched by the query q.

For example, again consider the linear topology in Fig-
ure 4. In this example, we are using the net modeling the
network in the figure. We can measure the traffic from
switch sw1 port pt2 to switch sw2 port pt1 with the fol-
lowing query:

q1→2 , (sw1 : 2, sw2 : 1)

If we abbreviate predicates sw=sw i · pt=ptj as sw i : j, then
the program q1→2 is compiled as follows:

Cnet(q1→2) = in · p · (sw1 : 2) · Φ(t) · (sw2 : 1) · p · out

The program Cnet(q1→2) behaves like in · (p · t)∗ · p · out ; it
filters packets that enter the network (in), forwards packets
through switches (p), transports packets across links (t), and
filters traffic exiting the network (out). Unlike in · (p · t)∗ ·p ·
out , however, Cnet(q1→2) includes only a single t, meaning
that it transports traffic across a link exactly once. Thus,
Cnet(q1→2) models a 1-hop network as intended. Moreover,
before it transports traffic across a link, it filters packets
that begin at switch sw1 port pt2 before traversing the link
and filters packets that end at switch sw2 port pt1 after
traversing the link. In general, Cnet(q) only delivers packets
that fully traverse the network and produce histories inQ[[q]].

Installing Predicates. After compiling the query q into a
NetKAT term Cnet(q), we “read off” a collection of pred-
icates to install on hosts, to count the number of packets
that traverse paths specified by q. Semantically, the predi-
cate set for a query q and network net is the following set
where α and β are “complete” predicates that test the value
of every field in the packet and pktα is the packet satisfying
the predicate α:

{(α, β) | 〈pktβ〉 ∈ [[Cnet(q)]] 〈pktα〉}

This set includes a pair of predicates (α, β) for each each
packet pktα that satisfies the query q and exits the network
matching β. Before a host sends a packet, it first checks to
see if the packet is matched by some αi. If it is, the host tags
the packet with a unique identifier i. Similarly, whenever a

host receives a packet, it first checks to see if the packet is
tagged with i. If it is, then the host tallies the packet if and
only if it is matched by βi.

Each host keeps track of the total number of packets
matched by its predicate set. Hosts also record the num-
ber of matching packets sent by each host. This is useful for
generating traffic matrices, as discussed in Section 7. More-
over, we use a virtual overlay to aggregate these statistics
and perform real-time queries. This is described in detail in
Section 6.

In theory, a predicate set could be very large. We exploit
a compact representation of the observation function E for
Cnet(q) using forwarding decision diagrams (FDDs). Rather
than generating a set of complete tests, we read off predi-
cates from the FDDs where each predicate is a simple con-
junction of atomic tests. In practice, these sets are typically
much smaller. However, by using incomplete tests, hosts
must tag packets differently because in general, a packet may
be matched by several incomplete tests. Thus, before an end
host sends a packet, it must tag it with i for every αi that
matches the packet. Similarly, an end host tallies a packet
with a set of tags T if and only if the packet matches some
βj and there is a tag i ∈ T where (αi, βj) is in the predicate
set installed on the end host. If all incomplete tests happen
to be disjoint, then packets only require a single tag simi-
lar to the scenario of using complete tests. Currently, Felix
assumes all incomplete tests are disjoint.

As an example, Felix generates the following singleton set
of predicates for Cnet(q1→2):

{(sw1 : 1 · dst=h2, sw2 : 2 · dst=h2)}

Intuitively, all traffic along the link from sw1 to sw2 is made
up of traffic originating on host h1 and destined for h2.

Formal Properties. Whenever a packet is received and tal-
lied by an end host for a query q, we would like the guarantee
that the history associated with the packet is in the deno-
tation of q. Likewise, whenever a packet is not tallied, we
would like the guarantee that the history associated with
the packet is not in the denotation of q. We formalize this
intuition with Theorem 1. For simplicity, we assume all
tests are complete, though extending the theorem to handle
incomplete tests is not difficult.

Theorem 1. Let Pnet(q) denote the predicate set of q com-
piled on network net. For all predicates (in, out), for-
warding policies (p), topologies (t), queries (q), and packets

configure overlay
{

’type’: ’add_leaf_agent’,
’agent_addr’: ’10.0.0.2’

}
configure counters
{

’type’: ’config_counter’,
’counter_key_type’: ’src’,
’increment’: ’pkt’

}
query counters
{

’type’: ’query_counter’,
’counter_key_type’: ’src’,
’counter_key’: ’10.0.0.2’

}

Figure 6: Example agent API operations.

(pktα), we have:

∃(α, β) ∈ Pnet(q)
⇐⇒

∃pktβ ::h ∈ [[in · (p · t)∗ · p · out]] 〈pktα〉. h ∈ Q[[q]]

The left hand side of the implication says that if the packet
pktα is sent through the network, it will be tagged by some
sending host and will arrive at some receiving host as pktβ
where it will be tallied by Felix. The right hand side of the
implication says that there is some history pktβ ::h that pktα
takes through the network that is matched by the query.

Note that some “obvious” stronger versions of Theorem 1
do not hold. For example, the property for all in, out , p, t,
q, pktα, and all pktβ ::h ∈ [[in · (p · t)∗ · p · out]] 〈pktα〉,

(α, β) ∈ Pnet(q) ⇐⇒ h ∈ Q[[q]]

in which we universally quantify pktβ ::h instead of existen-
tially quantifying it is not valid! If pktα produces multiple
histories of the form pktβ :: , then it is possible that some
of the histories of pktα would not be matched by the query.
However, assuming that whenever a packet is duplicated, the
two copies do not subsequently reconverge and depart the
network as identical packets, this limitation is irrelevant.

6. IMPLEMENTATION
We have built a prototype implementation of Felix in C,

OCaml, and Python. Our implementation includes the Fe-
lix query compiler, an end-host monitor, end-host agent,
and SDN controller. The end-host monitor gathers local
statistics about incoming and outgoing traffic; the end-host
agent communicates statistics to the controller using a tree-
structured overlay; and the controller manages the config-
urations installed on switches and coordinates the behavior
of the end hosts.

End-Host Monitor. The end-host monitor monitors incom-
ing and outgoing traffic and then tallies the traffic that
matches an installed set of predicates. We implement the
monitor using iptables [16]. Given an incoming or out-
going packet, we first match it against the filtering rules
managed by iptables. If the packet matches one of the
rules, we send it to the monitor, which uses scapy [3] to
parse the packet, extract certain fields relevant to the query,

H4

H5
H7

H6

H9

H10

H7

H2

H11

H1

H3

H4
H1

H3H2

Abilene

ARPANet

(a)

H4

H5
H7

H6

H9

H10

H8

H2

H11

H1

H3

H4
H1

H3H2

Abilene

ARPANet
(b)

Figure 7: Case studies: topologies.

and update counters. For example, if an end-host is con-
figured to group packets by source IP address, the monitor
would extract the source IP address of every incoming packet
and increment the counter that corresponds to the extracted
IP address. The monitor can aggregate counters in several
ways: by packet fields, top-k heavy-hitters, sliding-windows,
and using count-min sketches [6].

End-Host Agent. The end-host agent implements two es-
sential functions: it parses messages from the SDN controller
and from other end-hosts to configure and query the moni-
tor, and it establishes a tree-structured overlay among end-
hosts for aggregating data. The agent provides a JSON API
for network operators to configure measurement tasks and
query data on end-hosts. The agent on an end-host pro-
cesses requests and forwards them to the agent on the same
end-host. The agent provides a JSON API for network op-
erators to set up a virtual overlay of end-hosts by connecting
hosts in the overlay to form a virtual tree topology. Some
example commands from this API are shown in Figure 6.

Controller. Finally, the controller manages the forwarding
rules installed on switches, invokes the Felix compiler to
generate the predicates associated with each query, installs
predicates on end-hosts monitors, and issues queries to end
host agent (either directly or using the overlay).

7. EVALUATION
To evaluate our design for Felix, we built case studies and

conducted experiments to quantify the performance of the
compiler.

7.1 Case Studies
We built two case studies based on realistic (if small) ap-

plications, and executed them with Mininet, using Felix to
answer a variety of traffic measurement queries.

0 10 20 30 40 50 60 70 80
0

5

10

15

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
0

100

200

300

400

0 10 20 30 40 50 60 70 80
0

5

10

15

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
0

100

200

300

400

0 10 20 30 40 50 60 70 80
0

5

10

15

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
0

100

200

300

400

0 10 20 30 40 50 60 70 80
0

5

10

15

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
0

100

200

300

400

Figure 8: Case study: ARPANet traffic matrices. The plot
in row i column j gives the plot of traffic from host i to
host j in the four-node Arpanet topology over an 80-second
experiment; the red line and left y-axis gives rate (packets
per second); the blue line and right y-axis gives total traffic
(packets); the x-axis gives time (seconds).

all (dport=8888 ∨ 5001, true)∗

http (dport=8888, true)∗

3ormore
(dport=8888 ∨ 5001, true)∗·
(true, true)2·
(true, true)∗

bisect

(true, true)∗·
(dport=8888 ∨ 5001 · sw=8, sw=11)·
(true, true)∗+
(true, true)∗·
(dport=8888 ∨ 5001 · sw=9, sw=10)·
(true, true)∗

Table 2: Case study: Abilene queries.

Topologies and Traffic. The topologies for our case studies
are drawn from the Topology Zoo: a public data set com-
prising 260 real-world network topologies [15]. We wrote
NetKAT policies that forward traffic along shortest paths
and generated traffic synthetically using iperf. More specif-
ically, we configured each host to run iperf servers on ports
5001 and 8888, and generated periodic bursts of UDP traffic
to other hosts using simple patterns as described below.

Traffic Matrices. For our first case study, we used Felix
to collecte traffic matrices for each host in the four-node
ARPANet topology shown in Figure 7a over an 80-second
experiment. We configured hosts 2, 3, and 4 to periodi-
cally send 10-second bursts of traffic at a rate of roughly 10
packets per second, with 10 seconds delays between bursts.
Host 2 sends traffic concurrently to hosts 1 and 3. Host 3
sends traffic to host 1, then host 2, then host 4. Host 3
repeatedly sends traffic to host 1. Using these patterns we
compiled and installed the predicates corresponding to the
query (true, true)∗ on each host. We then repeatedly queried
each end host for packet counts aggregated by source. This
generates a 4× 4 matrix indexed by source hosts on the left

0 50 100 150 200 250 300
time (s)

0

1000

2000

3000

4000

5000

tr
a
ff

ic
 (

p
a
ck

e
ts

)

all

http

3ormore

bisect

(a) Traffic

(b) Bandwidth

Figure 9: Case study: Abilene results.

axis and destination hosts on the top axis where entry (i, j)
shows the traffic and bandwidth sent from host i to host j,
as shown in Figure 8. The plots in Figure 8 show traffic
rates in red and total traffic in blue.

Multiple Queries. For our second case study, we ran mul-
tiple queries using the 11-node Abilene topology shown in
Figure 7b, using a simple traffic pattern. We used three
hosts to generate bursts of traffic as follows: First, host 8
sends traffic in a round-robin fashion to hosts 7, 4, 5, 6, 9, 10,
3, 1, 2, and 11 on port 5001. Second, host 9 sends traffic in a
round-robin fashion to hosts 6, 5, 4, 7, 8, 11, 2, 1, 3, and 10;
traffic to hosts 6, 4, 8, 2, and 3 is sent to port 8888, and the
other traffic is sent to port 5001. Finally, host 4 sends traffic
to hosts 7, 8, 11, 2, and 1 all on port 5001; these paths are of
length 1, 2, 3, 4, and 5 respectively. Hosts 8 and 9 generate
10 second bursts of traffic with 10 second delays. Host 4
generates 20 second bursts of traffic with 10 second delays.
We then ran four queries over this traffic pattern, as shown
in Table 2: all measures the total amount of traffic; http
measures the amount of traffic destined for port 8888; 3or-
more measures the amount of traffic that traverses a path
of three or more hops; and bisect measures the amount of

(a) drop

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Term Size

(b) 5-hop

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Term Size

(c) 1-all

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Term Size

(d) sw4or5

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Term Size

(e) long-path

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Term Size
Figure 10: Experimental results: compilation for a variety
of queries on Topology Zoo. The x-axis is program size (#
syntax nodes) and y-axis gives is running time (seconds).

traffic that traverses either the link from switch 8 to 11 or
the link from switch 9 to 10—these links bisect the network.

The results of these queries are shown in Figure 9; Fig-
ure 9a and Figure 9b chart the total traffic and traffic rate
respectively. As expected, traffic comes in periodic bursts;
the traffic peaks when all three sending hosts are active and
drops to zero when all three hosts are inactive. http traf-
fic is generated by host 9. 3ormore and bisect traffic is
produced by all three hosts.

 0.1

 1

 10

 100

 1000

Goodnet Karen Canerie Intranetwork Internode Columbus Oteglobe

T
im

e
(s

)

DROP
1-HOP
5-HOP
1-ALL
5-ALL

SW4OR5
LONG-PATH

Figure 11: Experimental results on representative Topology
Zoo networks. Each bar depicts the running time for the
Felix compiler in seconds for a query in a given topology.

7.2 Experiments
To evaluate the performance of the query compiler, we

implemented a variety of queries across a large number of
topologies of varying sizes. When running these experi-
ments, we had two main questions in mind: how quickly
does the compiler calculate predicates for a variety of inputs
and how well does it scale?

Benchmarks. To benchmark our system, we used topolo-
gies from the Topology Zoo, which have widely varying struc-
ture and scale, and shortest-path forwarding policies ex-
pressed in NetKAT. Topologies in this dataset range from 4-
197 switches. When implemented in Netkat, the forwarding
policies range in size from 195-3111079 syntax tree nodes.

Queries. For each topology, we ran each of the queries de-
fined in Table 1. We selected these queries for their diversity
in function and complexity. They allow us to see how Felix
scales and they make use of all of the query language’s oper-
ators. The i-hop, sw4or5, http, and long-path are espe-
cially interesting because they represent queries that would
be likely to arise in pratice.

Methodology. We used a cluster of five Dell r620 servers,
each with two eight-core 2.60 GHz Xeon CPU E5-2650 pro-
cessors and 64 GB of RAM running Ubuntu 14.04.1 LTS.
Running time was obtained in OCaml using the Jane Street
Time library. Times reported include the time for compiling
the query and generating the predicate set for the compiled
query. Time for parsing, generating, and installing the poli-
cies is excluded.

Results and Analysis. The results of our experiments on
Topology Zoo can be seen in Figure 10, Figure 12, and Fig-
ure 11. The scatter plots in Figure 10 compare the total
term size for various topologies plotted against the time to
run a given query over these topologies. Note that both axes
on the scatter plots are logarithmic. The bar plots compare
the time to run various queries over several representative
topologies. In all plots, time is reported in seconds.

Topology Term Size Switches drop 5-hop 1-all sw4or5 long-path
Goodnet 5949 17 0.16 / 0 0.58 / 0 0.39 / 289 1.13 / 82 0.88 / 0

Karen 18549 25 0.35 / 0 1.39 / 98 1.03 / 625 3.05 / 346 2.03 / 0
Canerie 32913 32 0.85 / 0 2.37 / 130 2.12 / 1024 6.51 / 582 4.25 / 110

Intranetwork 75585 39 1.63 / 0 5.19 / 138 5.53 / 1521 13.79 / 346 12.25 / 0
Internode 138123 66 3.91 / 0 12.75 / 840 18.62 / 4356 29.28 / 958 25.22 / 0
Columbus 278585 70 9.23 / 0 22.97 / 482 34.57 / 4900 43.23 / 1584 30.13 / 0
Oteglobe 358595 93 12.46 / 0 35.07 / 776 56.20 / 6906 35.87 / 1344 34.02 / 0

Figure 12: Experimental results on representative Topology Zoo Networks. The column for each query gives results of the
form (t/p), where t is the amount of time needed to run the Felix compiler in seconds, and p is the number of predicates
generated.

Overall, our implementation runs in less than a second on
topologies with a small number of terms and scales linearly
with term size. For example, with the trivial drop query,
we see terms in the 1000s taking .01 seconds, terms in the
10000s taking .1 seconds, and so on. For the 1-all query,
we see terms in the 1000s taking .1 seconds, terms in the
10000s taking 1 second, and so on. The table and bar graphs
in Figure 12 and Figure 11 depict detailed running times for
selected topologies. A noticeable pattern is that queries with
a star in them take longer than queries without a star.

Discussion. Overall, we believe these experiments show
that our initial prototype performs well enough to usable
across a variety of real-world topologies, configurations, and
queries. We intend to explore optimizations that improve
the performance of the compiler in future work.

8. RELATED WORK
There is an extensive literature on systems and abstrac-

tions for network measurement. We briefly review the work
most closely related work to Felix.

The standard approach to network measurement is to
sample traffic on certain links to collect repositories of flow
records (or full packets) for offline analysis using standard
formats such as sFlow and NetFlow. This approach effec-
tively decouples forwarding from measurement since it uses
separate mechanisms to implement each. However, unlike
Felix, it does not allow operators to directly specify rich
network-wide queries based on regular paths.

GigaScope pioneered the use of declarative query languages
for network measurement [7]. The system offered a stream-
ing SQL-like query language—i.e., evaluation was formu-
lated in terms of sliding windows over streams of packets.
It also provided the ability to use regular expressions to in-
spect packet payloads. The GigaScope compiler translated
high-level queries to efficient code for a collection of hetero-
geneous devices.

A variety of measurement approaches have been explored
in the context of SDN. Frenetic proposed a high-level lan-
guage for monitoring network traffic using declarative query
constructs [8]. Another early paper by Jose et al. exploited
the capabilities provided by SDN controllers and switches
to build a dynamic system that performed continuous mon-
itoring of “heavy hitters” [12]. Work by Narayana et al. has
investigated the problem of compiling regular path queries
to forwarding tables [20]. All of these systems use forward-
ing tables to implement measurement functionality. Hence,

they suffer from many of the limitations discussed in the
early sections of this paper.

A notable exception is the HONE system, which pro-
posed flexible abstractions for joint management of hosts
and switches within a unified framework [24]. Like Felix,
HONE uses end hosts to implement certain measurement
tasks. However, HONE lacks abstractions for expressing,
analyzing, and partitioning network-wide queries based on
regular expressions. An interesting direction for future work
would be to build a unified system that combines the fea-
tures of HONE and Felix.

Network debugging is closely related to network measure-
ment. An influential early paper by Handigol et al. on the
ndb system proposed the idea of “network breakpoints” and
“packet backtraces” to assist SDN programmers in develop-
ing correct programs [11]. To implement these features, ndb
proposed implementing switches to generate packet digests
that could be sent to a central repository for analysis. Like
Felix, ndb can be used to obtain global visibility but the
mechanisms are largely different.

Another active line of research is investigating data plane
measurement primitives. Work on OpenSketch proposed
a simple three-stage pipeline based on hashing, filtering,
and counting, and demonstrated it could be implemented
efficiently and used to express a variety of measurement
tasks [27]. P4 offers a rich collection of primitives including
stateful memory, hashing, etc. [4]. Compared to Felix, these
systems focus mostly on measurement primitives at the data
plane level. It would be interesting to explore using OpenS-
ketch and P4 as platforms for implementing Felix’s end-host
monitor.

A large number of languages for SDN programming have
been proposed in recent years. Languages such as Frenetic [8],
NetCore [18], Pyretic [19], Maple [25], and NetKAT [1, 10,
23] have introduced high-level abstractions and semantics
that enable programmers to reason precisely about the be-
havior of networks. Several different network programming
languages based on logic programming have also been pro-
posed including NDLog [17] and FlowLog [21].

There is also a growing body of work investigating appli-
cations of formal methods to SDN. NICE [5] uses a model
checker and symbolic execution to find bugs in network pro-
grams written in Python. Automatic Test Packet Genera-
tion [28] constructs a set of packets that provide coverage for
a given network-wide configuration. VeriCon [2] uses first-
order logic and a notion of admissible topologies to automat-
ically check network-wide properties. Several different sys-
tems have proposed techniques for checking network reach-

ability properties including seminal work by Xie et al. [26],
Header Space Analysis [13], VeriFlow[14], and the NetKAT
verifier [10]. The program analysis used in Felix builds on
the foundation provided by these tools.

9. CONCLUSION
This paper presents the design and implementation of Fe-

lix, a new SDN measurement system. Unlike most previous
work, Felix uses a high-level language to express measure-
ment queries and a program analysis to compute predicates
that implement those queries at the edge. Cleanly sepa-
rating forwarding and measurement in this way reduces the
size and complexity of configurations, which has a number
of important operational benefits. However, it does mean
that query results are computed against an idealized model
of the network.

There are several possible directions for future work. An
obvious next step is to develop optimizations that improve
the performance of our NetKAT analysis tool. Our cur-
rent implementation is simple, but the NetKAT semantics
provides a solid foundation for exploring optimizations. An-
other exciting direction involves hybrid approaches where
measurement is not necessarily pushed to the edge, but
merely pushed to certain devices. For example, we might
perform measurement at the interface between mutually-
distrusting islands but use Felix within each island. The
same ideas might be useful for extending our techniques to
handle congestion and bugs. Finally, we are interested in
exploring extensions to handle stateful data planes as well
as probabilistic network models [9].

Acknowledgments. The authors wish to thank the SOSR
reviewers for helpful feedback. Our work is supported in part
by NSF under grants CNS-1111698, CCF-1253165, CNS-
1413972, and ACI-1440744; ONR under grant N00014-15-
1-2177; a Google Faculty Research Award; and gifts from
Cisco, Facebook, and Fujitsu.

10. REFERENCES
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha,

Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger,
and David Walker. NetKAT: Semantic foundations for
networks. In POPL, pages 113–126, January 2014.

[2] Thomas Ball, Nikolaj Bjorner, Aaron Gember, Shachar
Itzhaky, Aleksandr Karbyshev, Mooly Sagiv, Michael
Schapira, and Asaf Valadarsky. Vericon: Towards verifying
controller programs in software-defined networks. In PLDI,
pages 282–293, June 2014.

[3] Philippe Biondi. Scapy. Available at
http://www.secdev.org/projects/scapy/demo.html.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet
processors. SIGCOMM CCR, 44(3):87–95, July 2014.

[5] Marco Canini, Daniele Venzano, Peter Pereš́ıni, Dejan
Kostić, and Jennifer Rexford. A NICE way to test
OpenFlow applications. In NSDI, April 2012.

[6] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, April
2005.

[7] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and
Vladislav Shkapenyuk. Gigascope: A stream database for

network applications. In ACM SIGMOD, pages 647–651,
2003.

[8] N. Foster, R. Harrison, M. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A network
programming language. In ACM ICFP, 2011.

[9] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark
Reitblatt, and Alexandra Silva. Probabilistic NetKAT. In
ESOP, 2016. To appear.

[10] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra
Silva, and Laure Thompson. A coalgebraic decision
procedure for NetKAT. In POPL, pages 343–355. ACM,
2015.

[11] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar,
David Maziéres, and Nick McKeown. Where is the
debugger for my software-defined network? In ACM
HotSDN, pages 55–60, 2012.

[12] Lavanya Jose, Minlan Yu, and Jennifer Rexford. Online
measurement of large traffic aggregates on commodity
switches. In USENIX HotICE, pages 13–13, 2011.

[13] Peyman Kazemian, George Varghese, and Nick McKeown.
Header space analysis: Static checking for networks. In
NSDI, April 2012.

[14] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P. Brighten Godfrey. VeriFlow: Verifying
network-wide invariants in real time. In NSDI, April 2013.

[15] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The internet topology zoo. IEEE Selected
Areas in Communications, 29(9):1765–1775, October 2011.

[16] Linux. Iptables. Available at
http://linux.die.net/man/8/iptables.

[17] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and
Raghu Ramakrishnan. Declarative routing: Extensible
routing with declarative queries. In SIGCOMM, pages
289–300, August 2005.

[18] Christopher Monsanto, Nate Foster, Rob Harrison, and
David Walker. A compiler and run-time system for network
programming languages. In POPL, pages 217–230, January
2012.

[19] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer
Rexford, and David Walker. Composing software-defined
networks. In NSDI, 2013.

[20] Srinivas Narayana, Jennifer Rexford, and David Walker.
Compiling path queries. In NSDI, 2016. To appear.

[21] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer,
and Shriram Krishnamurthi. Tierless programming and
reasoning for software-defined networks. In NSDI, April
2014.

[22] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for network
update. In SIGCOMM, 2012.

[23] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and
Arjun Guha. A fast compiler for NetKAT. In ACM ICFP,
2015.

[24] Peng Sun, Minlan Yu, Michael J. Freedman, and Jennifer
Rexford. Hone: Joint host-network traffic management in
software-defined network. Journal of Network and System
Management, July 2014.

[25] Andreas Voellmy, Junchang Wang, Y. Richard Yang, Bryan
Ford, and Paul Hudak. Maple: Simplifying SDN
programming using algorithmic policies. In SIGCOMM,
pages 87–98, August 2013.

[26] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang,
Albert G. Greenberg, Gı́sli Hjálmtýsson, and Jennifer
Rexford. On static reachability analysis of IP networks. In
INFOCOM, March 2005.

[27] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined
traffic measurement with OpenSketch. In USENIX NSDI,
pages 29–42, 2013.

[28] Hongyi Zeng, Peyman Kazemian, George Varghese, and
Nick McKeown. Automatic test packet generation. In
CoNEXT, pages 241–252, December 2012.

