
Draft of November 19, 2010

Frenetic: A High-Level Language for OpenFlow Networks

Nate Foster
Cornell University

Rob Harrison
Princeton University

Michael J. Freedman
Princeton University

Jennifer Rexford
Princeton University

David Walker
Princeton University

Abstract
Network administrators must configure network devices to simul-
taneously provide several interrelated services such as routing, load
balancing, traffic monitoring, and access control. Unfortunately,
most interfaces for programming networks are defined at the low
level of abstraction supported by the underlying hardware, leading
to complicated programs with subtle bugs. We present Frenetic, a
high-level language for OpenFlow networks that enables writing
programs in a declarative and compositional style, with a simple
“program like you see every packet” abstraction. Building on ideas
from functional programming, Frenetic offers a rich pattern algebra
for classifying packets into traffic streams and a suite of operators
for transforming streams. The run-time system efficiently manages
the low-level details of (un)installing packet-processing rules in the
switches. We describe the design of Frenetic, an implementation on
top of OpenFlow, and experiments and example programs that val-
idate our design choices.

1. Introduction
Most modern networks consist of hardware and software compo-
nents that are closed and proprietary. The difficulty of changing
the underlying network has had a chilling effect on innovation, and
forces network administrators to express complex policies through
a frustratingly brittle interface. To address this problem, a num-
ber of researchers have proposed a new platform called OpenFlow,
which opens up the software that controls the network [19]. Open-
Flow defines a standard interface for installing flexible packet-
handling rules in network switches. These rules are installed by
a programmable controller that runs separately, on a stock ma-
chine [10]. OpenFlow is supported by a number of commercial Eth-
ernet switch vendors, and several campus and backbone networks
have deployed OpenFlow switches. Building on this platform, re-
searchers have created a variety of controller applications that intro-
duce new network functionality, like flexible access control [5, 21],
Web server load balancing [11], energy-efficient networking [12],
and seamless virtual-machine migration [9].

Unfortunately, while OpenFlow now makes it possible to im-
plement exciting new network services, it certainly does not make
it easy. Programmers constantly grapple with several challenges:

Interactions between concurrent modules: Networks often
perform multiple tasks, like routing, access control, and traffic
monitoring. However, decoupling these tasks and implementing
them independently in separate modules is effectively impossible,
since packet-handling rules (un)installed by one module may inter-
fere with overlapping rules installed by other modules.

Low-level interface to switch hardware: The OpenFlow rule
algebra directly reflects the capabilities of the switch hardware
(e.g., bit patterns and integer priorities). Simple concepts such as
set difference require multiple rules and priorities to implement cor-
rectly. Moreover, the more powerful “wildcard” rules are a limited
hardware resource the programmer must manage by hand.

Two-tiered programming model: The controller only sees
packets the switches do not know how to handle—in essence, ap-
plication execution is split between the controller and the switches.

As such, programmers must carefully avoid installing rules that
hide important information from the controller.

To address these challenges, we present Frenetic, a new pro-
gramming model for OpenFlow networks. Frenetic is organized
around two levels of abstraction: (1) a set of source-level opera-
tors for manipulating streams of network traffic, and (2) a run-time
system that handles all of the details of installing and uninstalling
low-level rules on switches. The source-level operators draw on
previous work on declarative database query languages and func-
tional reactive programming (FRP). These operators are carefully
constructed to support the following key design principles:

Purely functional: The source-level abstractions are purely
functional and shield programmers from the imperative nature of
the underlying switches. Consequently, program modules may be
written independently of one another and composed without un-
predicatable effects or race conditions.

High-level, programmer-centric: Wherever possible, we first
considered what the programmer might want to say, rather than
how the hardware implements it. In general, this means we at-
tempted to supply high-level primitives, even when they were not
directly supported by the hardware.

See-every-packet abstraction: Programmers do not have to
worry that installing packet-handling rules prevents the controller
from analyzing certain traffic. Frenetic supports the abstraction
that every packet is available for analysis, side-stepping the many
complexities of today’s two-tiered programming model.

These principles are designed to make Frenetic programs ro-
bust, compact, and easy-to-understand, and, consequently, the Fre-
netic programmers writing them more productive. However, taking
our “see every packet” abstraction too literally would lead to pro-
grams that process far more traffic on the controller than necessary.
Instead, we give programmers a set of declarative query operators
that ensure packet processing remains on the switches. The Frenetic
run-time system keeps traffic in the “fast path” whenever possible,
while ensuring the correct operation of all modules. In summary,
this paper makes the following contributions:

Analysis of OpenFlow programming model (Section 3): Us-
ing our combined expertise in programming languages and net-
working, we identify weaknesses of today’s OpenFlow environ-
ment that modern programming-language principles can overcome.

Frenetic language (Section 4) and “subscribe” queries (Sec-
tion 5): Applying ideas from the disparate fields of database query
languages and functional reactive programming, we propose the
Frenetic language for programming OpenFlow networks.

Frenetic implementation (Section 6): We design and imple-
ment a library of high-level packet-processing operators and an ef-
ficient run-time system in Python. The run-time system reactively
installs rules to minimize the traffic handled by the controller.

Evaluation (Section 7) and case studies (Section 8): We com-
pare several Frenetic programs with conventional OpenFlow appli-
cations by measuring both the lines of code and the traffic handled
by the controller. We also describe our experiences building two
large applications—a security monitor that detects “scanning” at-
tacks and a distributed key-value storage system (Memcached).

1 2010/11/22

Integers n

Rules r ::= 〈pat , pri , t, [a1, . . . , an]〉
Patterns pat ::= {h1 :n1, . . . , hk :nk}
Priorities pri ::= n

Timeouts t ::= n | None

Actions a ::= output(op) | modify(h, n)

Header Fields h ::= in port | vlan dl src | dl dst | dl type
| nw src | nw dst | nw proto
| tp src | tp dst

Output Port op ::= n | flood | controller

Packet Counts ps ::= n

Byte Counts bs ::= n

Figure 1. OpenFlow Syntax. Prefixes dl , nw, and tp denote data
link (MAC), network (IP), and transport (TCP/UDP) respectively.

2. Background on OpenFlow and NOX
This section presents the key features of the OpenFlow platform.
To keep the presentation simple, we have elided a few details that
are not important for understanding Frenetic. Readers interested in
a complete description may consult the OpenFlow specification [3].

Overview In an OpenFlow network, a centralized controller man-
ages a distributed collection of switches. While packets flowing
through the network may be processed by the centralized controller,
doing so is orders of magnitude slower than processing those pack-
ets on the switches. Hence, one of the primary functions of the
controller is to configure the switches so that they process the vast
majority of packets and only a few packets from new or unexpected
flows need to be handled on the controller.

Configuring a switch primarily involves installing in its flow ta-
ble: a set of rules that specify how packets should be processed. A
rule consists of a pattern that identifies a set of packets, an integer
priority that disambiguates rules with overlapping patterns, an op-
tional integer timeout that indicates the number of seconds until the
rule expires, and a list of actions that specifies how packets should
be processed. For each rule in its flow table, the switch maintains
a set of counters that keep track of basic statistics concerning the
number and total size of packets processed.

Formally, rules are defined by the grammar in Figure 1. A
pattern is a list of pairs of header fields and integer values,
which are interpreted as equality constraints. For instance, the pat-
tern {nw src : 192.168.0.100, tp dst : 80} matches packets from
source IP address 192.168.1.100 going to destination port 80.
We use standard notation for the values associated with header
fields—e.g., writing “192.168.1.100” instead of “3232235876.”
Any header fields not appearing in a pattern are unconstrained. We
call rules with unconstrained header fields wildcard rules.

OpenFlow switches When a packet arrives at a switch, the switch
processes the packet in three steps. First, it selects a rule from
its flow table whose pattern matches the packet. If there are no
matching rules, the switch sends the packet to the controller
for further processing. Otherwise, if there are multiple matching
rules, it picks the exact-match rule (i.e., the rule whose pattern
matches all of the header fields in the packet) if one exists, or
a wildcard rule with highest priority if not. Second, it updates
the byte and packet counters associated with the rule. Third, it
applies each of the actions listed in the rule to the packet (or
drops the packet if the list is empty). The action output(op) in-
structs the switch to forward the packet out on port op, which
can either be a physical switch port n or one of the virtual
ports flood or controller, where flood forwards the packet out
on all physical ports (except the ingress port) and controller

sends the packet to the controller. The action modify(h, n) in-
structs the switch to rewrite the header field h to n. The list of
actions in a rule can contain both output and modify actions—
e.g., [output(2), output(controller),modify(nw src, 10.0.0.1)]
forwards packets out on switch port 2 and to the controller, and
also rewrites their source IP address to 10.0.0.1.

NOX Controller The controller manages the set of rules installed
on the switches in the network by reacting to events in the net-
work. Most controllers are currently based on NOX, which is a
simple operating system for networks that provides some primi-
tives for managing events as well as functions for communicating
with switches [10]. NOX defines a number of events including,

• packet in(s, n, p), triggered when switch s forwards a packet
p received on physical port n to the controller,
• stats in(s, xid , pat , ps, bs), triggered when switch s responds

to a request for statistics about rules contained in pat , where
xid is an identifier for the request,
• flow removed(s, pat , ps, bs), triggered when a rule with pat-

tern pat exceeds its timeout and is removed from s’s flow table,
• switch join(s), triggered when switch s joins the network,
• switch leave(s), triggered when switch s leaves the network,
• port change(s, n, u), triggered when the link attached to

physical port n on switch s goes up or down, with u a boolean
value representing the new status of the link,

and provides functions for sending messages to switches:

• install(s, pat , pri , t, [a1, . . . , ak]), which installs a rule with
pattern pat , priority pri , timeout t, and actions [a1, . . . , an] in
the flow table of switch s,
• uninstall(s, pat), which removes all rules contained in pattern

pat from the flow table of the switch,
• send(s, p, a), which sends packet p to switch s and applies

action a to it there, and
• query stats(s, pat), which issues a request for statistics from

all rules contained in pattern pat on switch s and returns a re-
quest identifier xid , which can be used to match up the asyn-
chronous response from the switch.

The controller program defines a handler for each event, but is
otherwise an arbitrary program.

Example To illustrate a simple use of OpenFlow, consider a con-
troller program written in Python that implements a repeater. Sup-
pose that the network has a single switch connected to a pool of in-
ternal hosts on port 1 and a wide-area network on port 2, as shown
in Figure 2(a). The repeater function below installs rules on
switch s that instruct the switch to forward packets from port 1 to
port 2 and vice versa. The switch join handler calls repeater
when the switch joins the network.

def repeater(s):
pat1 = {IN_PORT:1}
pat2 = {IN_PORT:2}
install(s,pat1,DEFAULT,None,[output(2)])
install(s,pat2,DEFAULT,None,[output(1)])

def switch_join(s):
repeater(s)

Note that both calls to install use the DEFAULT priority level and
None as the timeout, indicating that the rules are permanent.

2 2010/11/22

NOX

Run-Time System

 Frenetic Program

install
uninstall

packet_in
stats_in

subscribe
register

E Packet
E int

Controller

Switch

1 2

(a) (b)

Figure 2. (a) Simple network topology (b) Frenetic architecture

3. Analysis of OpenFlow/NOX Difficulties
OpenFlow provides a standard interface for manipulating the rules
installed on switches, which goes a long way toward making net-
works programmable. However, the current programming model
provided by NOX has several deficiencies that make it difficult
to use in practice. While our analysis focuses solely on the NOX
controller, other OpenFlow controllers such as Onix [14] and Bea-
con [1] suffer from similar issues because they share the same
OpenFlow core. In this section, we describe three of the most sub-
stantial difficulties that arise when writing programs in NOX.

3.1 Interactions Between Concurrent Modules
The first issue is that NOX program pieces do not compose. Sup-
pose that we want to extend the repeater to monitor the total num-
ber of bytes of incoming web traffic. Rather than counting the web
traffic at the controller, a monitoring application could install rules
for web traffic, and periodically poll the byte and packet counters
associated with those rules to collect the necessary statistics:

def monitor(s):
pat = {IN_PORT:2,TP_SRC:80}
install(s, pat, DEFAULT, None, [])
query_stats(s, pat)

def stats_in(s, xid, pat, ps, bs):
print bs
sleep(30)
query_stats(s, pat)

The monitor function installs a rule that matches all incoming
packets with TCP source port 80 and issues a query for the counters
associated with that rule. The stats_in handler receives the re-
sponse from the switch, prints the byte count to the console, sleeps
for 30 seconds, and then issues the next query.

Ideally, we would be able to compose this program with the
repeater program to obtain a program that forwards packets and
monitors traffic:

def repeater_monitor_wrong(s):
repeater(s)
monitor(s)

Unfortunately, naively composing the two programs does not work
due to interactions between the rules installed by each program.
In particular, because the programs install overlapping rules on the
switch, when a packet arrives from port 80 on the source host, the
switch is free to process the packet using either rule. But using the
repeater rule does not update the counters needed for monitoring,
while using the monitor rule breaks the repeater program because
the list of actions is empty (so the packet will be dropped).

To obtain the desired behavior, we have to manually combine
the forwarding logic from the first program with the monitoring
policy from the second:

def repeater_monitor(s):
pat1 = {IN_PORT:1}
pat2 = {IN_PORT:2}
pat2web = {IN_PORT:2, TP_SRC:80}
install(s, pat1, [output(2)], DEFAULT)
install(s, pat2web, [output(1)], HIGH)
install(s, pat2, [output(1)], DEFAULT)
query_stats(s, pat2web)

Performing this combination is non-trivial: the pat2web rule needs
to include the output(1) action from the repeater program, and
must be installed with HIGH priority to resolve the overlap with
the pat2 rule. In general, composing OpenFlow programs requires
careful, manual effort on the part of the programmer to preserve the
semantics of the original programs. This makes it nearly impossible
to factor out common pieces of functionality into reusable libraries
and also prevents compositional reasoning about programs.

3.2 Low-Level Programming Interface
Another difficulty of writing NOX programs stems from the low-
level nature of the programming interface, which is derived from
the features of the switch hardware rather than being designed for
ease of use. This makes programs unnecessarily complicated, as
they must describe low-level details that do not affect the overall
behavior of the program. For example, suppose that we want to ex-
tend the repeater and monitoring program to monitor all incoming
web traffic except traffic destined for an internal server (connected
to port 1) at address 10.0.0.9. To do this, we need to “subtract”
patterns, but the patterns in OpenFlow rules can only directly ex-
press positive constraints. To simulate the difference between two
patterns, we have to install two overlapping rules on the switch,
using priorities to disambiguate between them.

def repeater_monitor_noserver(s):
pat1 = {IN_PORT:1}
pat2 = {IN_PORT:2}
pat2web = {IN_PORT:2, TP_SRC:80}
pat2srv = {IN_PORT:2, NW_DST:10.0.0.9, TP_SRC:80}
install(s, pat1, DEFAULT, None, [output(2)])
install(s, pat2, DEFAULT, None, [output(1)])
install(s, pat2web, MEDIUM, None, [output(1)])
install(s, pat2srv, HIGH, None, [output(1)])
query_stats(s, pat2web)

This program uses a separate rule to process web traffic going to the
internal server—pat2srv matches incoming web packets going to
the internal server, while pat2web matches all other incoming web
packets. It also installs pat2srv at HIGH priority to ensure that the
pat2web rule only processes (and counts!) packets going to hosts
other than the internal server.

More generally, describing packets using the low-level patterns
that OpenFlow switches support is cumbersome and error-prone. It
forces programmers to use multiple rules and priorities to encode
patterns that could be easily expressed using natural logical opera-
tions such as negation, difference, and union. It adds unnecessary
clutter to programs that is distracting and further complicates rea-
soning about their behavior.

3.3 Two-Tiered System Architecture
A third challenge stems from the two-tiered architecture where a
controller program manages the network by (un)installing switch-
level rules. This indirection forces the programmer to specify the
communication patterns between the controller and switch and deal
with tricky concurrency issues such as coordinating asynchronous

3 2010/11/22

events. Consider extending the original repeater program to moni-
tor the total amount of incoming traffic by destination host.

def repeater_monitor_hosts(s):
pat = {IN_PORT:1}
install(s, pat, DEFAULT, None, [output(2)])

def packet_in(s, inport, p):
if inport == 2:

m = dstmac(p)
pat = {IN_PORT:2, DL_DST:m}
install(s, pat, DEFAULT, None, [output(1)])
query_stats(s, pat)

Unlike the previous examples, we cannot install all of the rules we
need in advance because, in general, we will not know the address
of each host a priori. Instead, the controller must dynamically
install rules for the packets seen at run time.

The repeater_monitor_hosts function installs a single rule
that handles all outgoing traffic. Initially, the flow table on the
switch does not contain any entries for incoming traffic, so the
switch sends all packets that arrive at ingress port 2 up to the
controller. This causes the packet_in handler to be invoked; it
processes each packet by installing a rule that handles all future
packets to the same host (identified by its MAC address). Note that
the controller only sees one incoming packet per host—the rule
processes all future traffic to that host directly on the switch.

As this example shows, NOX programs are actually imple-
mented using two programs—one on the controller and another
on the switch. While this design is essential for efficiency, the
two-tiered architecture makes applications difficult to read and
reason about, because the behavior of each program depends on
the other—e.g., installing/uninstalling rules on the switch changes
which packets are sent up to the controller. In addition, the con-
troller program must specify the communication patterns between
the two programs and deal with subtle concurrency issues—e.g., if
we were to extend the example to monitor both incoming and out-
going traffic, the controller would have to issue multiple queries for
the statistics for each host and synchronize the resulting callbacks.

Although OpenFlow makes it possible to manage networks us-
ing arbitrary general-purpose programs, its two-tiered architecture
forces programmers to specify the asynchronous and event-driven
interaction between the programs running on the controller and the
switches in the network. In our experience, these details are a sig-
nificant distraction and a frequent source of bugs.

4. Frenetic
Frenetic is a domain-specific language for programming OpenFlow
networks, embedded in Python. The language is designed to solve
the major OpenFlow/NOX programming problems outlined in the
previous section. In particular, Frenetic introduces a set of purely
functional abstractions that enable modular program development;
defines high-level, programmer-centric packet-processing opera-
tors; and eliminates many of the difficulties of the two-tier pro-
gramming model by introducing a see-every-packet programming
paradigm. In this section, we explain the basics of the Frenetic lan-
guage, and use a series of examples to illustrate how our design
principles simplify NOX programming. However, these examples
take the see-every-packet abstraction far too literally—they process
every packet on the controller. In the next section, we will introduce
additional features of Frenetic that preserve the key high-level ab-
stractions, while also making it possible to reduce the traffic han-
dled by the controller to the levels seen by vanilla NOX programs.

4.1 Basic Concepts
Inspired by past work on functional reactive programming, Frenetic
introduces three important datatypes for representing, transform-
ing, and consuming streams of values.

Events represent discrete, time-varying streams of values. The
type of all events carrying values of type α is written α E. To a first
approximation, values of type α E can be thought of as possibly
infinite lists of pairs (t, v) where t is a timestamp and v is a value of
type α. Examples of primitive events available in Frenetic include
Packets, which contains all of the packets flowing through the
network; Seconds, which contains the number of seconds since
the epoch; and SwitchJoin and SwitchLeave, which contain the
identifiers of switches joining and leaving the network respectively.

Event functions transform events of one type into events of a
possibly different type. The type of all event functions from α E
to β E is written α β EF. Many of Frenetic’s event functions are
based on standard operators that have been proposed in previous
work on FRP. For example, the simplest event function, Lift(f),
which is parameterized on an ordinary function f of type α→ β, is
an event function of type α β EF that works by applying f to each
value in its input event. Frenetic also includes some novel event
functions that are specifically designed for processing network
traffic. For example, if g has type packet → bool then Group(g)
splits the stream of packets into two streams, one for packets on
which g returns true and one for packets on which g returns false.
More generally, and precisely, if g has type packet→ α, the result
has type packet (α× packet E) EF. The elements of the resulting
event are pairs of the form (v, e) where v is a value of type α and
e is a nested event containing all the packets that g maps to v. We
use Group, and its variants, to organize network traffic into streams
of related packets that are processed in the same way.

A listener consumes an events stream and produces a side effect
on the controller. The type of all listeners of events α E is written
α L. Examples of listeners include Print, which has a polymor-
phic type α L and prints each value in its input to the console, and
Send, which has type (switch × packet × action) L and sends a
packet to a switch and applies an action to it there.

The rest of this section presents a series of examples that illus-
trate how these types fit together and demonstrate the main advan-
tages of Frenetic’s programming model over the OpenFlow/NOX
model. As in the previous section, we will assume the network
topology shown in Figure 2(a). For simplicity, we elide the details
related to the switch joining and leaving the network and assume
that a global variable switch is bound to its identifier.

4.2 The See-Every-Packet Abstraction
To get a taste of Frenetic, consider the web-monitoring program
from the last section. Note that this program only does monitoring;
we extend it with forwarding later in this section.

def web_monitor():
stats = Apply(Packets(), web_monitor_ef())
Attach(stats,Print())

def web_monitor_ef():
return (Filter(inport_p(2) & srcport_p(80)) |o|

Lift(size) |o|
GroupByTime(30) |o|
Lift(sum))

The top-level web_monitor function takes the event Packets,
which contains all packets flowing through the network (!) and
processes it using the web_monitor_ef event function. This yields
an event stats containing the number of bytes of incoming web
traffic in each 30-second window, which it prints to the console by
attaching a Print listener.

The web_monitor_ef event function is structured as the com-
position of several smaller event functions—the infix operator |o|
composes event functions. Filter discards packets that do not
match the predicate supplied as a parameter. Lift applies size
to each packet in the result, yielding an event carrying packet sizes.
GroupByTime, which has type α (α list) EF (and is derived from

4 2010/11/22

other Frenetic operators) divides the event of packet sizes into an
event of lists containing the packet sizes in each 30-second window.
The final event function, Lift, uses Python’s built-in sum function
to add up the packet sizes in each list, yielding an event of integers
as the final result. Note that unlike the NOX program, which spec-
ified the layout of switch-level rules as well as the communication
between the switch and controller (to retrieve counters from the
switch), Frenetic’s unified architecture makes it possible to express
this program as a simple, declarative query.

4.3 High-Level Patterns
Frenetic includes a rich pattern algebra for describing sets of pack-
ets. Suppose that we want to change the monitoring program to ex-
clude traffic to the internal server. In Frenetic, we can simply take
the difference between the pattern describing incoming web traffic
and the one describing traffic to the internal web server.

def monitor_noserver_ef():
return(Filter((inport_p(2) & srcport_p(80)) -

dstip_p("10.0.0.9"))
Lift(size) |o|
GroupByTime(30) |o|
Lift(sum))

The only change in this program compared to the previous one
is the pattern passed to Filter. The “-” operator computes the
difference between patterns and the run-time system takes care of
the details related to implementing this pattern. Recall that crafting
rules to implement the same behavior in NOX required simulating
the difference using two rules at different priorities.

4.4 Compositional Semantics
Frenetic makes it easy to compose programs. Suppose that we want
to extend the monitoring program from above to also behave like
a repeater. In Frenetic, we just specify the forwarding rules and
register them with the run-time system.

rules = [(switch, inport_p(1), [output(2)]),
(switch, inport_p(2), [output(1)])]

def repeater_monitor():
register_rules(rules)
stats = Apply(Packets(), monitor_ef())
Attach(stats,Print())

The register_rules function takes a list of high-level rules (dif-
ferent than the low-level rules used in NOX) each containing a
switch, a high-level pattern, and a list of actions, and installs them
as the current forwarding policy in the Frenetic run-time. Note that
the monitoring portion of the program does not need to change at
all—the run-time ensures that there are no harmful interactions be-
tween the forwarding and monitoring components.

To illustrate the benefits of composition, let us carry the example
a step further and extend it to monitor incoming traffic by host.
Implementing this program in NOX would be difficult—we cannot
run the two smaller programs side-by-side because the rules for
monitoring web traffic overlap with the rules for monitoring traffic
by host. We would have to rewrite both programs to ensure that
the rules installed on the switch by the programs do not interfere
with each other—e.g., installing two rules for each host, one for
web traffic and another for all other traffic. This could be made
to work, but it would require a major effort from the programmer,
who would need to understand the low-level implementations of
both programs in full detail.

In contrast, extending the Frenetic program is simple. The fol-
lowing event function monitors incoming traffic by host.

def host_monitor_ef():
return (Filter(inport_p(2)) |o|

Group(dstmac_g()) |o|

helper functions
def add_rule(((m,p),t)):

a = forward(inport(header(p)))
pat = dstmac_p(m)
t[m] = (switch,pat,[a])
return (t,t)

def complete_rules(t):
l = t.values()
ps = map(lambda r: r.pattern, l)
r = (switch,reduce(diff_p, ps, true_p()),[flood()])
l.append(r)
return l

main definitions
def learning_ef():

return (Group(srcmac_g()) |o|
Regroup(inport_r()) |o|
Ungroup(1,lambda n,p:p,None) |o|
LoopPre({}, Lift(add_rule)) |o|
Lift(complete_rules))

def learning():
rules = Apply(Packet(),learning_ef())
Attach(Register(),rules)

Figure 3. Frenetic learning switch

RegroupByTime(60) |o|
Second(Lift(lambda l:sum(map(size,l)))))

It uses Filter to obtain an event carrying all packets incoming
on port 2, Group to aggregate these filtered packets into an event
of pairs of destination MACs and nested events that contain all
packets destined for that host, RegroupByTime to divide the nested
event streams into an event of pairs of MACs and lists that contain
all packets to that host in each 60-second window, and Second
and Lift to add up the size of the packets in each window. The
ReGroupByTime event function, which like GroupByTime is a
derived operator in Frenetic, has type (β×α E) (β×α list) EF. It
works by splitting the nested event stream into lists containing the
values in each window. The Second event function takes an event
function as an argument and applies it to the second component of
each value in an event of pairs. Putting all of these together, we
obtain an event function that transforms an event of packets into an
event of pairs containing MACs and byte counts.

The top-level program applies both stream functions to Packets
and registers the forwarding policy with the run-time. Despite the
slightly different functionality and polling intervals of the two pro-
grams, Frenetic allows these programs to be easily composed with-
out any concerns about undesirable interactions or timing issues
between them.

def repeater_monitor_hosts():
register_rules(rules)
stats1 = Apply(Packets(),web_monitor_ef())
stats2 = Apply(Packets(),host_monitor_ef())
Attach(Merge(stats1,stats2),Print())

Raising the level of abstraction frees programmers from worrying
about low-level details and enables writing programs in a modular
style. This represents a major advance over NOX, where programs
must be written monolithically to avoid harmful interactions be-
tween the switch-level rules installed by different program pieces.

4.5 Learning Switch
So far, we have mostly focused on small examples that illustrate the
main features of Frenetic. The last example in this section describes
a more realistic application—an Ethernet learning switch. Learning
switches provide easy plug-and-play functionality in local-area net-
works. When the switch receives a packet, the switch remembers
the source host and ingress port that the packet came in on. Then,

5 2010/11/22

Events
Seconds ∈ int E
Packets ∈ packet E

SwitchJoin ∈ switch E
SwitchLeave ∈ switch E
PortChange ∈ (switch× int× bool) E

Event Functions
Apply ∈ (α E× α β EF)→ β E

Lift ∈ (a→ β)→ α β EF
|o| ∈ (α β EF× β γ EF)→ α γ EF
First ∈ α β EF→ (α× γ) (β × γ) EF

Second ∈ α β EF→ (γ × α) (γ × β) EF
Merge ∈ (α E× β E)→ (α option× β option) E

LoopPre ∈ (γ × ((α× γ) (β × γ) EF))→ α β EF
Calm ∈ α α EF
Filter ∈ (α→ bool)→ α α EF

Group ∈ (α→ β)→ α (β × α E) EF
Regroup ∈ ((α× α)→ bool)→ (β × α E) (β × α E) EF
Ungroup ∈ (int option× (γ × α→ γ)× γ)→

(β × α E) (β × γ) EF

Listeners
Attach ∈ (α E× α L)→ unit

Print ∈ α L
Register ∈ (packet× action list) list L

Send ∈ (switch× packet× action) L

Figure 4. Core Frenetic Operators

if the switch has previously received a packet from the destination
host, it forwards the packet out on the port that it remembered for
that host. Otherwise, it floods the packet out on all ports (other than
the packet’s ingress). In this way, over time, the switch learns the
information needed to route packets to each active host in the net-
work and avoids unnecessary flooding.

Figure 3 gives the definition of a learning switch in Fre-
netic. Just like the other Frenetic programs we have seen, the
learning_ef event function is structured as the composition of
several smaller event functions. It uses Group to aggregate the
input event of packets by source MAC and Regroup to split the
nested events whenever a packet from a given host appears on a
different ingress port (i.e., because the host has moved). This leaves
an event of pairs (m, e) wherem is a source MAC and e is a nested
event containing packets that share the same source MAC address
and ingress switch port. The Ungroup event function extracts the
first packet from each nested event, yielding an event of pairs of
MACs and packets. The LoopPre event function takes an initial
value of type γ and an event function of type (α× γ) (β × γ) EF
as an arguments and produces an event function of type α β EF
that works by looping the second component of each pair into the
next iteration of the top-level event function. In this instance, it
builds up a dictionary structure that associates MAC addresses to a
rule that forwards packets to that host (the helper add_rule inserts
the rule into the dictionary). The final Lift event function uses
complete_rules to extract the list of rules from the dictionary
and add a catch-all rule that floods packets to unknown hosts.

The top-level learning function applies learning_ef to
Packets and registers the resulting rule list event in the Frenetic
run-time. Note that unlike the previous examples, the rules gener-
ated for the learning switch are not static. The Register listener
takes a rule list event and registers each new list as the forwarding
policy in the run-time.

4.6 Other Operators
Frenetic includes a number of additional operators, which space
constraints prevent us from discussing in detail. Figure 4 lists a few
of the most important operators and their types.

Queries q ::= Select(a) |x|
Where(qp) |x|
GroupBy([qh1, . . . , qhk]) |x|
SplitOn([qh1, . . . , qhk]) |x|
Every(n) |x|
Limit(n)

Aggregates a ::= packets | bytes | counts

Headers qh ::= inport | srcmac | dstmac | ethtype | vlan |
srcip | dstip | protocol | srcport | dstport

Patterns qp ::= true p() | qh p(n) | qp & qp | qp — qp |
qp – qp | ˜qp

Figure 5. Frenetic query syntax

5. Subscribe Queries
Each of the Frenetic programs in the previous section applies a
user-defined event function to Packets, the built-in event con-
taining every packet flowing through the network. These programs
are easy to write and understand—much easier than their NOX
counterparts—but implementing their semantics directly would re-
quire sending every packet to the controller, which would lead to
unacceptable performance.

Frenetic sidesteps this issue by providing programmers with a
simple query language that allows them to succinctly express the
packets and statistics needed in their programs. The Frenetic run-
time takes these queries and generates events that contain the ap-
propriate data, using rules on the switch to move packet processing
into the network and off of the controller.

Frenetic queries are expressed using orthogonal constructs for
filtering using high-level patterns, grouping by one or more header
fields, splitting by time or whenever a header field changes value,
aggregating by number or size of packets, and limiting the number
of values returned. The syntax of Frenetic queries is given in Fig-
ure 5. Each of the top-level constructs are optional, except for the
Select, which identifies the type of values returned by the query—
actual packets, byte counts, or packet counts. The infix operator
|x| combines query operators. As an example, the following query
generates an event that may be used in the learning switch:

q = (Select(packets) |x|
GroupBy([srcmac]) |x|
SplitOn([inport]) |x|
Limit(1))

It groups packets (using Select) by source MAC (using GroupBy),
splits each group when the ingress port changes (using SplitOn),
and limits the number of packets in each group to one (using
Limit). The event generated by this query contains pairs (m, e),
where m is a MAC address and e is an event carrying the first
packet sent from that host. We can use this event to rewrite the
learning switch as follows:

def learning():
e = Subscribe(q)
ef = (Ungroup(1,lambda n,p:p,None) |o|

LoopPre({}, Lift(add_rule)) |o|
Lift(complete_rules))

rules = Apply(e,ef)
Attach(rules,Register())

This program is simpler than the one given in the last section
because the grouping and regrouping of packets is done by the
query instead of the event function.

This revised program makes it easier for the run-time to deter-
mine which packets need to be sent up to the controller and which
ones can be processed using rules on the switch. It also helps the
programmer predict how their program will perform—in general,
the run-time will move as much processing from the controller to

6 2010/11/22

function packet in(packet, inport)
isSubscribed := false
actions := []
for (query, event, counters, requests) ∈ subscribers do

if query.matches(packet.header) then
event.push(packet)
isSubscribed := true

for rule ∈ rules do
if (rule.pattern).matches(packet.header) then

actions.append(rule.actions)
if isSubscribed then

send packet(packet, actions)
else

install(packet.header,DEFAULT,None, actions)
flows.add(packet.header)

function stats in(xid, ps, bs)
for (query, event, counters, requests) ∈ subscribers do

if requests.contains(xid) then
counters.add(ps, bs)
requests.remove(xid)
if requests.is empty() then

event.push(counters)

function stats loop()
while true do

for (query, event, counters, requests) ∈ subscribers do
if query.ready() then

counters.reset()
for pattern ∈ flows do

if query.matches(pattern) then
xid := stats request(pattern)
requests.add(xid)

sleep(1)

Figure 6. Frenetic run-time system handlers

the switches as possible. In this case, since the learning switch only
needs a single packet from each host (as long as that host does not
move to a different port on the switch), the run-time will indeed in-
stall switch-level rules that forward most traffic without having to
send it up to the controller.

Queries can subscribe to streams of traffic statistics. For exam-
ple, the following query looks only at web traffic, groups by desti-
nation MAC, and aggregates the number of bytes every 60 seconds:

Select(bytes) |x|
Where(srcport_p(80)) |x|
GroupBy([dstmac]) |x|
Every(60)

Queries such as this can be used to implement many monitoring ap-
plications. The run-time can implement them efficiently by polling
the counters associated with rules on the switch.

Subscribing to queries is fully compositional—a program can
subscribe to multiple, overlapping events without worrying about
harmful low-level interactions between the switch-level rules used
to implement them. In addition, the policy for forwarding packets
registered in the run-time does not affect the values sent to the
subscribers. In contrast, in OpenFlow/NOX installing a rule can
prevent future packets from being sent to the controller.

6. Frenetic Implementation
Frenetic provides high-level programming abstractions that free

programmers from reasoning about many low-level details involv-
ing the underlying switch hardware. However, the need to deal with
these details does not disappear just because the language raises the
level of abstraction. The rubber meets the road in the implementa-
tion, which is described in this section.

We have implemented a complete working prototype of Frenetic
as an embedded combinator library in Python. Figure 2(b) depicts
its architecture, which consists of three main pieces: an implemen-
tation of the language itself, a run-time system, and NOX. The use
of NOX is convenient but not essential—we borrow its OpenFlow
API but could also use a different back-end.

The core piece of the implementation is the run-time system,
which sits between the high-level FRP program and NOX. The run-
time system manages all of the bookkeeping related to installing
and uninstalling rules on switches. It also generates the necessary
communication patterns between switches and the controller. To do
all of this, the run-time maintains several global data structures:

• rules, a set of high-level rules that describe the current packet-
forwarding policy,
• flows, a set of low-level rules that are currently installed on the

switches in the network, and
• subscribers, a set of tuples of the form (q, e, cs, rs) where q

is the query that defines the subscriber, e is the event for that
subscriber, cs tracks byte and packet counts, and rs is a set of
identifiers for outstanding requests for statistics,

Currently, our implementation translates the high-level forwarding
policy installed in the run-time into switch-level rules using a
simple strategy that reacts to flows of network traffic as they occur.
At the start of the execution of a program, the flow table of each
switch in the network is empty, so all packets are sent up to the
controller and passed to the packet in handler. Upon receiving a
packet, the run-time system iterates through the set of subscribers
and propagates the packet to each subscriber whose defining query
depends on being provided with this packet. Next, it traverses the
set of rules and collects the list of actions specified in all rules.
Finally, it processes the packet in one of two ways: If there were
no subscribers for the packet, then it installs a microflow rule that
processes future packets with the same header fields on the switch.
Alternatively, if there were subscribers for the packet, then the run-
time sends the packet back to the switch and applies the actions
there, but does not install a rule, as doing so would prevent future
packets from being sent to the controller, and, by extension, the
subscribers that need to be supplied with those packets. In effect,
this strategy dynamically unfolds the forwarding policy expressed
in the high-level rules into switch-level rules, moving processing
off the controller and onto switches in a way that does not interfere
with any subscriber.

The run-time uses a different strategy to implement aggregate
statistics subscribers, using the byte and packet counters main-
tained by the switches to calculate the values. The run-time sys-
tem executes a loop that waits until the window for a statistics
subscriber has expired. At that point, it traverses the flows set and
issues a request for the byte and packet counters from each switch-
level rule whose pattern matches the query, adding the request iden-
tifier to the set of outstanding requests maintained for this sub-
scriber in subscribers. The stats_in handler receives the asyn-
chronous replies to these requests, adds the byte and packet coun-
ters to the counters maintained for the subscriber in subscribers,
and removes the request id from the set of outstanding requests.
When the set of outstanding requests becomes empty, it pushes the
counters, which now contain the correct statistics, onto the sub-
scriber’s event stream.

Pseudocode for the NOX handlers used in the Frenetic run-time
system are given in Figure 6. These algorithms describe the ba-
sic behavior of the run-time, but elide some additional complica-
tions and details with which the actual implementation has to deal.
For example, if the forwarding policy changes—e.g., because the
rule_listener receives a new set of rules—the microflow rules

7 2010/11/22

that the run-time has installed on some of the switches in the net-
work may be stale. To repair them, the run-time system traverses
the set of flows, uninstalling stale rules and re-installing fresh ones
using the actions specified in the updated policy. Of course, when
the run-time uninstalls a rule on a switch due to a change in the
high-level forwarding policy, the byte and packet counters associ-
ated with the switch-level rule should not be lost. Thus, the Fre-
netic run-time also defines a handler for flow_removed messages
that receives the counters for uninstalled rules and adds them to
the counters maintained for the subscriber on the controller. The
run-time deals with several other complications, such as spurious
packets that get sent to the controller due to race conditions be-
tween the receipt of a message to install a rule and the arrival of the
packet at the switch.

The other major piece of the Frenetic implementation is the li-
brary of FRP operators themselves. This library defines representa-
tions for events, event functions, and listeners, as well as each of the
primitives in Frenetic including Lift, Filter, LoopPre, etc. Un-
like classic FRP implementations, which support both continuous
streams called behaviors and discrete streams called events, Fre-
netic focuses almost exclusively on discrete streams. This means
that the pull-based strategy used in most previous FRP implemen-
tations, which is optimized for behaviors, is not a good fit for Fre-
netic. Instead, our FRP library uses a push-based strategy to propa-
gate values from input to output streams.

The run-time’s current use of microflow (exact-match) rules fol-
lows the approach of Ethane [5] and many OpenFlow-based appli-
cations [9, 11], and is well-suited for dynamic settings. Moreover,
microflow rules can use the plentiful conventional memory (e.g.,
SRAM) many switches provide for exact-match rules, as opposed
to the small, expensive, power-hungry Ternary Content Address-
able Memories (TCAMs) needed to support wildcard matches.
Still, wildcard rules are more concise and well-suited for static set-
tings. We plan to develop a more proactive, priority-based wild-
card approach as part of Frenetic’s run-time in the future. Longer
term, we plan to extend the run-time to choose adaptively between
exact-match and wildcard rules, depending on the capabilities of
the individual switches in the network.

7. Experiments
Section 4 described a naive version of Frenetic that leads to pro-
grams that forward all traffic to the controller. In Section 5 we
described subscribe queries, which allow us to provide optimized
functionality where programs process most packets directly in the
switches. We now compare these two implementations of Frenetic
to pure NOX programs. We evaluate the programs according to two
metrics: lines of code and total traffic between the switch and the
controller. The “lines of code” gives a sense of how much Frenetic
simplifies the programmer’s task, as well as the savings from code
reuse in composed modules. The “total traffic” gauges how well
Frenetic keeps traffic in the “fast path”—crucial to assessing the
feasibility of using Frenetic in practice. We compare pure NOX,
naive Frenetic, and optimized Frenetic programs using four micro-
benchmark experiments.

Setup We ran the experiments using the Mininet virtualization
environment [15] on a Linux host with a 2.4GHz Intel Core2 Duo
processor and 2GB of RAM. Although Mininet cannot provide
performance fidelity, it does give accurate measurements of the
volume of traffic flowing through the network.

Microbenchmarks We compared the performance of Frenetic
against NOX using the following microbenchmarks:

LSW: In the learning switch (LSW) benchmark, the switch for-
wards packets from hosts it has learned directly but sends packets
from unknown hosts to the controller. Our experiment sends ICMP

LSW WSS WSL HHL
Pure NOX

Lines of Code 55 29 121 125
Controller Traffic (Bytes) 71224 1932 5300 18010

Naive Frenetic
Lines of Code 15 7 19 36
Controller Traffic (Bytes) 120104 6590 14075 95440

Optimized Frenetic
Lines of Code 14 5 16 32
Controller Traffic (Bytes) 70694 3912 5368 19360

Figure 7. Experimental results.

echo request (“pings”) between all-pairs of four hosts. This experi-
ment evaluates the effectiveness of programs that reactively install
microflow rules.

WSS: In the web statistics static (WSS) benchmark, the switch
behaves like a repeater between a client and server. The forwarding
rules do not change during the experiment but the controller col-
lects HTTP request statistics every five seconds. Our experiment
sends multiple HTTP requests to a single web server. This experi-
ment evaluates the effectiveness of monitoring queries.

WSL: The web statistics learning (WSL) benchmark combines
the forwarding logic from LSW with the monitoring logic from
WSS. Our experiment sends multiple HTTP requests from three
hosts to a single web server. This experiment illustrates the compo-
sition of two modules and the effectiveness of monitoring queries
in a dynamic forwarding context.

HHL: The “heavy hitters” learning (HHL) benchmark com-
bines the forwarding logic from LSW with a monitoring program
that computes the top-k source MACs by total bytes sent. Our ex-
periment sends a varying number of ICMP echo requests from three
hosts, which are measured and tabulated on the controller. This ex-
periment illustrates the behavior of a more sophisticated monitoring
application.

We measured lines of code (up to 80 characters of properly-
indented Python, excluding non-essential whitespace) as well as
the total amount of controller traffic—control messages, switch
responses, and whole packets sent to the controller on flow-table
misses. We excluded the initial handshake, which is common to all
switch-controller combinations.

Results The results of our experiments, shown in Figure 7,
demonstrate that naive Frenetic achieves significant savings in code
complexity over NOX, but sends more traffic to the controller. The
data shows that naive Frenetic does not scale well. However, we
also see that optimized Frenetic does perform comparably with
the pure NOX implementations of each benchmark. Optimized
Frenetic’s performance in the WSS benchmark is an outlier be-
cause the benchmark exploits an inherent weakness in a reactive
flow installation strategy. While the pure NOX program can install
permanent static forwarding rules in the switch immediately after
coming online, Frenetic’s run-time waits for the switch to send a
packet to the controller before consulting the forwarding rules that
a program registers, even if they are static in nature.

Conversely, we also see in LSW where the optimized Frenetic
implementation actually (slightly) outperforms the traditional NOX
implementation in terms of traffic between the switch and the con-
troller. To deal with the two-tiered architecture of OpenFlow and
the finite size of the flow table, many NOX programs use flow
timeouts to evict installed flows from the switch. Using timeouts
ensures that installed rules “self-destruct” without the programmer
needing to perform extra bookkeeping to remember all of the in-
stalled rules. However, such timeouts result in additional packets
being sent to the controller for subsequent flow setups. In contrast,

8 2010/11/22

C
on

tr
ol

le
rT

ra
ffi

c
(k

B
)

Hosts

0

20

40

60

80

25 50

Frenetic
NOX

Figure 8. Controller traffic as number of hosts grows.

Frenetic’s run-time system can react to changes in the forwarding
logic and manage the set of installed rules, obviating the need for
short flow timeouts, without burdening the programmer.

Scalability In addition to the micro-benchmarks we measured,
we also conducted a host scalability analysis against a single bench-
mark to evaluate whether or not Frenetic programs could continue
performing comparably to traditional NOX programs as the number
of devices in the network grows. In the WSL experiment, we varied
the number of hosts fetching web resources on a single switch. The
results shown in Figure 8 demonstrate that not only does optimized
Frenetic perform comparably with pure NOX in this benchmark,
but it also scales with the pure NOX implementation.

8. Case Studies
This section describes two more substantial network applications
we have developed in Frenetic. The first is a monitoring application
that detects network scans as they occur and adaptively blocks the
scanning host from sending additional packets into the network.
The second is an in-network query router for the Memcached key-
value store that makes it possible to seamlessly add and remove
servers without rebooting clients.

Detecting and Blocking Scanning Traffic Malicious users often
scan the the hosts in a network to identify machines that are vulner-
able to attack. Although scanning also has legitimate uses, many
operators block scans to prevent unknown users from probing their
network. Using Frenetic, we implemented a proof-of-concept scan
detector that can be composed with the learning switch from Sec-
tion 4 to obtain a switch that adaptively responds to scans by block-
ing offending hosts from sending packets on the network.

The high-level architecture of the detector is shown in Fig-
ure 9(a). The LearningSwitch event function at the top-left of the
diagram subscribes to an event with source MACs and produces
an event carrying rules. The ScanDetect event function at the top-
right subscribes to an event with pairs of source-destination MACs
and produces a set of suspected scanners. We currently use a sim-
ple strategy to detect scanners—maintaining a table that counts
the number of unique destination hosts contacted recently by each
source and considering a host a scanner if the number exceeds a
threshold—but plan to explore more sophisticated strategies in the
future. Next, the Merge event function combines the rules and scan-
ners and the FilterScanners event function transforms the rules to
another set in which scanning hosts are explicitly prevented from
sending traffic on the network. The Register operator at the bottom
of the diagram represents a listener that registers this final set of
rules with the run-time.

This application demonstrates how Frenetic facilitates building
large programs in a compositional way. In particular, we did not
have to make any modifications to the learning switch—were able
to use it “off the shelf.” It also shows the benefits of being able to

ServerStatus

MakeRules ARPServer

Register Send

Merge

Register

(b)(a)

Send

Subscribe(src) Subscribe(src,dst)

PortChange Subscribe(DHCP)

Subscribe(ARP)
MakePartitions

DHCPServer

Learning
Switch

ScanDetect

Merge

FilterScanners

Figure 9. (a) Scan Detector (b) Memcached Request Router

subscribe to events identified by different, overlapping queries as
manually crafting rules for these subscribers would be tedious and
difficult to get right.

Routing Requests to Memcached Servers Memcached [2] is a
distributed key-value store used by many online services to cache
data objects in memory. In a typical usage scenario, a collection
of Memcached servers handles get and set requests from clients,
with the keyspace partitioned between the servers. The current
Memcached configures a static set of servers at each client, a
restriction that prevents services from automatically adapting to
new servers becoming available or existing servers failing.

We developed a novel “plug-and-play” solution to this problem
in Frenetic that adapts dynamically to server churn. We introduce a
layer of indirection between the clients and servers: clients are con-
figured with a large number of virtual addresses and an OpenFlow
switch translates between these virtual addresses and server’s phys-
ical addresses. When a server fails, the controller program reas-
signs its virtual addresses to another server; when a new server be-
comes available, a virtual addresses belonging to some other server
is remapped to it. As this solution works entirely in the network, it
can be used with existing, unmodified servers and clients.

Figure 9(b) depicts the high-level structure of the Frenetic Mem-
cached application. The DHCPServer event function at the top
right of the figure implements a DHCP server that subscribes to
DHCP requests, generates responses, and emits them onto the net-
work using a Packet listener. The DHCP server also generates
an event with tuples of the form (p,m, a), where p is a physi-
cal switch port, m is a MAC address, and a is the IP address as-
signed to m. The ServerStatus event function at the top left mon-
itors PortChange events and produces an event with sets of active
physical ports. This event is merged with the DHCP event and the
result is supplied to the MakePartitions function, which reconciles
the set of known servers with the set of active ports and generates
a event with the mapping between virtual and physical addresses.
MakeRules converts the event with the current partitioning into
the forwarding policy, which is installed in the run-time using a
Register listener. In the future, we plan to add a heartbeat mecha-
nism to help cope with soft failures, where servers have not crashed
outright but applications are unresponsive. Because Frenetic sup-
ports a compositional style of programming, we believe this exten-
sion should be easy to integrate into our existing application.

9. Related Work
Frenetic’s event functions are modeled after functional reactive lan-
guages such as Yampa and others [8, 20, 22, 23]. Its push-based im-
plementation is based on FrTime [6]. The key differences between

9 2010/11/22

Frenetic and these previous languages are in the application domain
(networking as opposed to animation, robotics and others) and in
the design of our query language and run-time system, which uses
the capabilities of switches to avoid sending packets to the con-
troller. The Flask [18] language applies FRP in a staged language
to assemble efficient programs for sensor networks.

The most similar language to Frenetic is Nettle [25]. Nettle is
also based on FRP, but it operates at a different level of abstraction
than Frenetic: Nettle is an effective substitute for NOX; Frenetic,
in contrast, sits on top of NOX, and, in the future, could potentially
sit on top of Nettle. In other words, Nettle is designed to issue
streams of (low-level) OpenFlow commands directly; it does not
have any analogue of Frenetic’s run-time system or its support for
composition of possibly overlapping modules.

Another related language is NDLog, which has been used to
specify and implement routing protocols, overlay networks, and
services such as distributed hash tables [16, 17]. NDLog differs
from Frenetic in that it is designed for distributed systems (rather
than a centralized controller) and is based on logic programming.
Also based on logic programming, FML focuses on specifying
policies such as access control in OpenFlow networks [13]. Finally,
the SNAC OpenFlow controller [4] provides a GUI for specifying
access control policies using high-level patterns similar to the ones
we have developed for Frenetic. However, SNAC provides a much
less general programming environment than Frenetic.

One of the main challenges in the implementation of Frenetic
involves splitting work between the (powerful but slow) controller
and the (fast but limited) switches. A similar challenge appears
in the implementation of Gigascope [7], a stream database for
monitoring networks. In terms of expressiveness, Gigascope is
more limited than Frenetic, as it only supports querying traffic and
cannot be used to control the network itself.

10. Conclusions and Future Work
This paper describes the design and implementation of Frenetic, a
new language for programming OpenFlow networks. Frenetic ad-
dresses some serious problems with the OpenFlow/NOX platform
by providing a high-level, compositional, and unified program-
ming model. It includes a collection of operators for transforming
streams of network traffic, and a run-time system that handles all of
the details related to installing and uninstalling switch-level rules.

We are currently working to extend Frenetic in several direc-
tions. We are developing applications for a variety of tasks includ-
ing load balancing, authentication and access control, and a frame-
work inspired by FlowVisor [24] for ensuring isolation between
programs. We are developing a front-end and an optimizer that will
transform programs into a form that can be efficiently implemented
on the run-time system. Finally, we are exploring a proactive strat-
egy that generates rules from the registered subscribers and for-
warding rules eagerly. We plan to compare the tradeoffs between
different rule generation strategies empirically.

Acknowledgments We wish to thank Matt Meola and Minlan
Yu for many helpful discussions. Our work is supported by ONR
grant N00014-09-1-0770 Networks Opposing Botnets. Any opin-
ions, findings, and recommendations are those of the authors and
do not necessarily reflect the views of the ONR.

References
[1] Beacon: A java-based openflow control platform. See http://

www.beaconcontroller.net, Nov 2010.
[2] Memcached: A distributed memory object caching system. See

http://www.memcached.org, Nov 2010.
[3] OpenFlow. See http://www.openflowswitch.org, Nov 2010.
[4] SNAC. See http://snacsource.org/, 2010.

[5] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking en-
terprise network control. Trans. on Networking., 17(4), Aug 2009.

[6] Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In ESOP, pages 294–308, 2006.

[7] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: A stream database for network applications.
In SIGMOD, pages 647–651, New York, NY, USA, 2003. ACM.

[8] Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP,
pages 163–173, Jun 1997.

[9] David Erickson et al. A demonstration of virtual machine mobility in
an OpenFlow network, Aug 2008. Demo at ACM SIGCOMM.

[10] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[11] Nikhil Handigol, Srinivasan Seetharaman, Mario Flajslik, Nick McK-
eown, and Ramesh Johari. Plug-n-Serve: Load-balancing web traffic
using OpenFlow, Aug 2009. Demo at ACM SIGCOMM.

[12] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiak-
oumis, Puneet Sharma, Sujata Banerjee, and Nick McKeown. Elastic-
Tree: Saving energy in data center networks. In NSDI, Apr 2010.

[13] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In WREN, pages 1–10, New York, NY, USA, 2009. ACM.

[14] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling,
Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hi-
roaki Inoue, Takayuki Hama, and Scott Shenker. Onix: A distributed
control platform for large-scale production networks. In OSDI, Oct
2010.

[15] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a
laptop: Rapid prototyping for software-defined networks. In HotNets,
pages 19:1–19:6, New York, NY, USA, 2010. ACM.

[16] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. SIGOPS, 39(5):75–90, 2005.

[17] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In SIGCOMM, pages 289–300, New York, NY, USA, 2005.
ACM.

[18] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged
functional programming for sensor networks. In ICFP, pages 335–
346, 2008.

[19] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[20] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and Shriram Krishnamurthi.
Flapjax: A programming language for Ajax applications. In OOPSLA,
pages 1–20, New York, NY, USA, 2009. ACM.

[21] Ankur Nayak, Alex Reimers, Nick Feamster, and Russ Clark. Reso-
nance: Dynamic access control in enterprise networks. In WREN, Aug
2009.

[22] Henrik Nilsson, Antony Courtney, and John Peterson. Functional
reactive programming, continued. In Haskell Workshop, pages 51–64,
Pittsburgh, Pennsylvania, USA, Oct 2002. ACM Press.

[23] John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion:
Controlling robots with Haskell. In PADL, Jan 1999.

[24] Rob Sherwood, Michael Chan, Glen Gibb, Nikhil Handigol, Te-Yuan
Huang, Peyman Kazemian, Masayoshi Kobayashi, David Underhill,
Kok-Kiong Yap, Guido Appenzeller, and Nick McKeown. Carving
research slices out of your production networks with OpenFlow. SIG-
COMM CCR, 40(1):129–130, 2010.

[25] Andreas Voellmy and Paul Hudak. Nettle: Functional reactive pro-
gramming of OpenFlow networks. In PADL, 2011. To appear.

10 2010/11/22

	Introduction
	Background on OpenFlow and NOX
	Analysis of OpenFlow/NOX Difficulties
	Interactions Between Concurrent Modules
	Low-Level Programming Interface
	Two-Tiered System Architecture

	Frenetic
	Basic Concepts
	The See-Every-Packet Abstraction
	High-Level Patterns
	Compositional Semantics
	Learning Switch
	Other Operators

	Subscribe Queries
	Frenetic Implementation
	Experiments
	Case Studies
	Related Work
	Conclusions and Future Work

