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Abstract

The Smoke and Mirrors File System (SMFS) mirrors

files at geographically remote datacenter locations with

negligible impact on file system performance at the pri-

mary site, and minimal degradation as a function of

link latency. It accomplishes this goal using wide-area

links that run at extremely high speeds, but have long

round-trip-time latencies—a combination of properties

that poses problems for traditional mirroring solutions.

In addition to its raw speed, SMFS maintains good syn-

chronization: should the primary site become completely

unavailable, the system minimizes loss of work, even for

applications that simultaneously update groups of files.

We present the SMFS design, then evaluate the system

on Emulab and the Cornell National Lambda Rail (NLR)

Ring testbed. Intended applications include wide-area

file sharing and remote backup for disaster recovery.

1 Introduction

Securing data from large-scale disasters is important, es-

pecially for critical enterprises such as major banks, bro-

kerages, and other service providers. Data loss can be

catastrophic for any company — Gartner estimates that

40% of enterprises that experience a disaster (e.g. loss

of a site) go out of business within five years [41]. Data

loss failure in a large bank can have much greater conse-

quences with potentially global implications.

Accordingly, many organizations are looking at dedi-

cated high-speed optical links as a disaster tolerance op-

tion: they hope to continuously mirror vital data at re-

mote locations, ensuring safety from geographically lo-

calized failures such as those caused by natural disas-

ters or other calamities. However, taking advantage of

this new capability in the wide-area has been a chal-

lenge; existing mirroring solutions are highly latency

sensitive [19]. As a result, many critical enterprises op-

erate at risk of catastrophic data loss [22].

The central trade-off involves balancing safety against

performance. So-called synchronous mirroring solu-

tions [6, 12] block applications until data is safely mir-

rored at the remote location: the primary site waits for

an acknowledgment from the remote site before allow-

ing the application to continue executing. These are

very safe, but extremely sensitive to link latency. Semi-

synchronous mirroring solutions [12, 42] allow the ap-

plication to continue executing once data has been writ-

ten to a local disk; the updates are transmitted as soon

as possible, but data can still be lost if disaster strikes.

The end of the spectrum is fully asynchronous: not only

does the application resume as soon as the data is writ-

ten locally, but updates are also batched and may be

transmitted periodically, for instance every thirty min-

utes [6, 12, 19, 31]. These solutions perform best, but

have the weakest safety guarantees.

Today, most enterprises primarily use asynchronous or

semi-synchronous remote mirroring solutions over the

wide-area, despite the significant risks posed by such

a stance. Their applications simply cannot tolerate the

performance degradation of synchronous solutions [22].

The US Treasury Department and the Finance Sector

Technology Consortium have identified the creation of

new options as a top priority for the community [30].

In this paper, we explore a new mirroring option called

network-sync, which potentially offers stronger guaran-

tees on data reliability than semi-synchronous and asyn-

chronous solutions while retaining their performance. It

is designed around two principles. First, it proactively

adds redundancy at the network level to transmitted data.

Second, it exposes the level of in-network redundancy

added for any sent data via feedback notifications. Proac-

tive redundancy allows for reliable transmission with la-

tency and jitter independent of the length of the link, a

property critical for long-distance mirroring. Feedback

makes it possible for a file system (or other applications)

to respond to clients as soon as enough recovery data has

been transmitted to ensure that the desired safety level

has been reached. Figure 1 illustrates this idea.
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Figure 1: Remote Mirroring Options. (1) Synchronous mirroring provides a remote-sync guarantee: data is not lost

in the event of disaster, but performance is extremely sensitive to the distance between sites. (2) Asynchronous and

semi-synchronous mirroring give a local-sync guarantee: performance is independent of distance between mirrors,

but can suffer significant data loss when disaster strikes. (3) A new network-sync mirroring option with performance

similar to local-sync protocols, but with improved reliability.

Of course, data can still be lost; network-sync is not

as safe as a synchronous solution. If the primary site

fails and the wide-area network simultaneously parti-

tions, data will still be lost. Such scenarios are un-

common, however. Network-sync offers the developer

a valuable new option for trading data reliability against

performance.

Although this paper focuses on the Smoke and Mir-

rors File System (SMFS), we believe that many kinds of

applications could benefit from a network-sync option.

These include other kinds of storage systems where re-

mote mirroring is performed by a disk array (e.g. [12]), a

storage area network (e.g. [19]), or a more traditional file

server (e.g. [31]). Network-sync might also be valuable

in transactional databases that stream update logs from

a primary site to a backup, or to other kinds of fault-

tolerant services.

Beyond its use of the network-sync option, SMFS has

a second interesting property. Many applications update

files in groups, and in such cases, if even one of the files

in a group is out of date, the whole group may be useless

(Seneca [19] calls this atomic, in-order asynchronous

batched commits; SnapMirror [31] offers a similar ca-

pability). SMFS addresses the need in two ways. First,

if an application updates multiple files in a short period

of time, the updates will reach the remote site with min-

imal temporal skew. Second, SMFS maintains group-

mirroring consistency, in which files in the same file sys-

tem can be updated as a group in a single operation where

the group of updates will all be reflected by the remote

mirror site atomically, either all or none.

In summary, our paper makes the following contribu-

tions:

• We propose a new remote mirroring option called

network-sync in which error-correction packets are

proactively transmitted, and link-state is exposed

through a callback interface.

• We describe the implementation and evaluation

of SMFS, a new mirroring file system that sup-

ports both capabilities, using an emulated wide-area

network (Emulab [40]) and the Cornell National

Lambda Rail (NLR) Ring testbed [1]. This evalu-

ation shows that SMFS:

– Can be tuned to lose little or no data in the

event of a rolling disaster.

– Supports high update throughput, masking

wide-area latency between the primary site

and the mirror.

– Minimizes jitter when files are updated in

short periods of time.

• We show that SMFS has good group-update per-

formance and suggest that this represents a benefit

to using a log-structured file architecture in remote

mirroring.

The rest of this paper is structured as follows. We dis-

cuss our fault model in Section 2. In Section 3, we de-

scribe the network-sync option. We describe the SMFS

protocols that interact with the network-sync option in

Section 4. In Section 5, we evaluate the design and im-

plementation. Finally, Section 6 describes related work

and Section 7 concludes.

2 What’s the Worst that Could

Happen?

We argue that our work responds to a serious impera-

tive confronted by the financial community (as well as by

other critical infrastructure providers). As noted above,

today many enterprises opt to use asynchronous or semi-

synchronous remote mirroring solutions despite the risks

they pose, because synchronous solutions are perceived

as prohibitively expensive in terms of performance [22].

In effect, these enterprises have concluded that there sim-

ply is no way to maintain a backup at geographically re-
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Figure 2: Example Failure Events. A single failure event may not result in loss of data. However, multiple nearly-

simultaneous failure events (i.e. rolling disaster) may result in data loss for asynchronous and semi-synchronous

remote mirroring.

mote distances at the update rates seen within their data-

centers. Faced with this apparent impossibility, they lit-

erally risk disaster.

It is not feasible to simply legislate a solution, be-

cause today’s technical options are inadequate. Finan-

cial systems are under huge competitive pressure to sup-

port enormous transaction rates, and as the clearing time

for transactions continues to diminish towards immedi-

ate settlement, the amounts of money at risk from even

a small loss of data will continue to rise [20]. Asking

a bank to operate in slow-motion so as to continuously

and synchronously maintain a remote mirrored backup

is just not practical: the institution would fail for reasons

of non-competitiveness.

Our work cannot completely eliminate this problem:

for the largest transactions, synchronous mirroring (or

some other means of guaranteeing that data will survive

any possible outage) will remain necessary. Nonetheless,

we believe that there may be a very large class of ap-

plications with intermediary data stability needs. If we

can reduce the window of vulnerability significantly, our

hypothesis is that even in a true disaster that takes the

primary site offline and simultaneously disrupts the net-

work, the challenges of restarting using the backup will

be reduced. Institutions betting on network-sync would

still be making a bet, but we believe the bet is a much

less extreme one, and much easier to justify.

Failure Model and Assumptions: We assume that

failures can occur at any level — including storage de-

vices, storage area network, network links, switches,

hubs, wide-area network, and/or an entire site. Further,

we assume that they can fail simultaneously or even in

sequence: a rolling disaster. However, we assume that

the storage system at each site is capable of tolerating

and recovering from all but the most extreme local fail-

ures. Also, sites may have redundant network paths con-

necting them. This allows us to focus on the tolerance of

failures that disable an entire site, and on combinations of

failures such as the loss of both an entire site and the net-

work connecting it to the backup (what we call a rolling

disaster). Figure 2 illustrates some points of failure.

With respect to wide-area optical links, we assume that

even though industry standards essentially preclude data

loss on the links themselves, wide-area connections in-

clude layers of electronics: routers, gateways, firewalls,

etc. These components can and do drop packets, and at

very high data rates, so can the operating system on the

destination machine to which data is being sent. Accord-

ingly, our model assumes wide-area networks with high

data rates (10 to 40 Gbits) but sporadic packet loss, po-

tentially bursty. The packet loss model used in our exper-

iments is based on actual observations of TeraGrid, a sci-

entific data network that links scientific supercomputing

centers and has precisely these characteristics. In partic-

ular, Balakrishnan et al. [10] cite loss rates over 0.1% at

times on uncongested optical-link paths between super-

computing centers. As a result, we emulate disaster with

up to 1% loss rates in our evaluation of Section 5.

Of course, reliable transmission protocols such as TCP

are typically used to communicate updates and acknowl-

edgments between sites. Nonetheless, under our assump-

tions, a lost packet may prevent later received packets

from being delivered to the mirrored storage system. The

problem is that once the primary site has failed, there

may be no way to recover a lost packet, and because

TCP is sequenced, all data sent after the lost packet will

be discarded in such situations — the gap prevents their

delivery.

Data Loss Model: We consider data to be lost if an

update has been acknowledged to the client, but the cor-

responding data no longer exists in the system. Today’s

remote mirroring regimes all experience data loss, but



the degree of disaster needed to trigger loss varies:

• Synchronous mirroring only sends acknowledg-

ments to the client after receiving a response from

the mirror. Data cannot be lost unless both primary

and mirror sites fail.

• Semi-synchronous mirroring sends acknowledg-

ments to the client after data written is locally stored

at the primary site and an update is sent to the mir-

ror. This scheme does not lose data unless the pri-

mary site fails and sent packets do not make it to

the mirror. For example, packets may be lost while

resident in local buffers and before being sent on

the wire, the network may experience packet loss,

partition, or components may fail at the mirror.

• Asynchronous mirroring sends acknowledgments to

the client immediately after data is written locally.

Data loss can occur even if just the primary site

fails. Many products form snapshots periodically,

for example, every twenty minutes [19, 31]. Twenty

minutes of data could thus be lost if a failure dis-

rupts snapshot transmission.

Goals: Our work can be understood as an enhancement

of the semi-synchronous style of mirroring. The basic

idea is to ensure that once a packet has been sent, the

likelihood that it will be lost is as low as possible. We

do this by sending error recovery data along with the

packet and informing the sending application when error

recovery has been sent. Further, by exposing link state,

an error correcting coding scheme can be tuned to better

match the characteristics observed in existing high-speed

wide-area networks.

3 Network-Sync Remote Mirroring

Network-sync strikes a balance between performance

and reliability, offering similar performance as semi-

synchronous solutions, but with increased reliability. We

use a forward-error correction protocol to increase the re-

liability of high-quality optical links. For example, a link

that drops one out of every 1 trillion bits or 125 million

1 KB packets (this is the maximum error threshold be-

yond which current carrier-grade optical equipment shuts

down) can be pushed into losing less than 1 out of ev-

ery 1016 packets by the simple expedient of sending each

packet twice — a figure that begins to approach disk re-

liability levels [7, 15]. By adding a callback when error

recovery data has been sent, we can permit the applica-

tion to resume execution once these encoded packets are

sent, in effect treating the wide-area link as a kind of net-

work disk. In this case, data is temporarily “stored” in

the network while being shipped across the wide-area to

the remote mirror. Figure 1 illustrates this capability.

One can imagine many ways of implementing this be-

havior (e.g. datacenter gateway routers). In general,

implementations of network-sync remote mirroring must

satisfy two requirements. First, they should proactively

enhance the reliability of the network, sending recovery

data without waiting for any form of negative acknowl-

edgment (e.g. TCP fast retransmit) or timeouts keyed

to the round-trip-time (RTT) to the remote site. Second,

they must expose the status of outgoing data, so that the

sender can resume activity as soon as a desired level of

in-flight redundancy has been achieved for pending up-

dates. Section 3.1 discusses the network-sync option,

Section 3.2 discusses an implementation of it, and Sec-

tion 3.3 discusses its tolerance to disaster.

3.1 Network-Sync Option

Assuming that an external client interacts with a primary

site and the primary site implements some higher level

remote mirroring protocol, network-sync enhances that

remote mirroring protocol as follows. First, a host lo-

cated at the primary site submits a write request to a lo-

cal storage system such as a disk array (e.g. [12]), stor-

age area network (e.g. [19]), or file server (e.g. [31]).

The local storage system simultaneously applies the re-

quested operation to its local storage image and uses a

reliable transport protocol such as TCP to forward the

request to a storage system located at the remote mirror.

To implement the network-sync option, an egress router

located at the primary site forwards the IP packets asso-

ciated with the request, sends additional error correcting

packets to an ingress router located at the remote site,

and then performs a callback, notifying the local storage

system which of the pending updates are now safely in

transit1. The local storage system then replies to the re-

questing host, which can advance to any subsequent de-

pendent operations. We assume that ingress and egress

routers are under the control of site operators, thus can

be modified to implement network-sync functionality.

Later, perhaps 50ms or so may elapse before the

remote mirror storage system receives the mirrored

request—possibly after the network-sync layer has re-

constructed one or more lost packets using the combina-

tion of data received and error-recovery packets received.

It applies the request to its local storage image, generates

a storage level acknowledgment, and sends a response.

Finally, when the primary storage system receives the re-

sponse, perhaps 100ms later, it knows with certainty that

the request has been mirrored and can garbage collect

any remaining state (e.g. [19]). Notice that if a client re-

quires the stronger assurances of a true remote-sync, the

possibility exists of offering that guarantee selectively,

on a per-operation basis. Figure 3 illustrates the network-

sync mirroring option and Table 1 contrasts it to existing

solutions.
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Mirror Mirror Mirror-ack Mirror-ack Rolling Disaster

Solution Update Receive Latency

Local-only Local + Local + Local+Mirror

Failure Pckt Loss NW Partition Failure

Local-sync Async- or Semi-sync N/A N/A Loss Loss Loss Loss

Remote-sync Synchronous Storage-level ack (7) WAN RTT No loss No loss No loss Maybe loss

Network-sync Semi-sync nw-sync feedback (3) ≈ Local ping ≈ No loss ≈ No loss Loss Loss

Table 1: Comparison of Mirroring Protocols.

3.2 Maelstrom: Network-sync Implemen-

tation

The network-sync implementation used in our work is

based on Forward Error Correction (FEC). FEC is a

generic term for a broad collection of techniques aimed

at proactively recovering from packet loss or corruption.

FEC implementations for data generated in real-time are

typically parameterized by a rate (r,c): for every r data

packets, c error correction packets are introduced into the

stream. Of importance here is the fact that FEC perfor-

mance is independent of link length (except to the extent

that loss rates may be length-dependent).

The specific FEC protocol we worked with is called

Maelstrom [10], and is designed to match the observed

loss properties of multi-hop wide-area networks such

as TeraGrid. Maelstrom is a symmetric network appli-

ance that resides between the datacenter and the wide-

area link, much like a NAT box. The solution is com-

pletely transparent to applications using it, and employs

a mixture of technologies: routing tricks to conceal itself

from the endpoints, a link-layer reliability protocol (cur-

rently TCP), and a novel FEC encoding called layered

interleaving, designed for data transfer over long-haul

links with potentially bursty loss patterns. To minimize

the rate-sensitivity of traditional FEC solutions, Mael-

strom aggregates all data flowing between the primary

and backup sites an operates on the resulting high-speed

stream. See Balakrishnan et al. [10] for a detailed de-

scription of layered interleaving and analysis of its per-

formance tolerance to random and bursty loss.

Maelstrom also adds feedback notification callbacks.

Every time Maelstrom transmits a FEC packet, it also is-

sues a callback. The local storage system then employs

a redundancy model to infer the level of safety associ-

ated with in-flight data packets. For this purpose, a local

storage system needs to know the underlying network’s

properties — loss rate, burst length, etc. It uses these to

model the behavior of Maelstrom mathematically [10],

and then makes worst-case assumptions about network

loss to arrive at the needed estimate of the risk of data

loss. We expect system operators monitor network be-

havior and periodically adjust Maelstrom parameters to

adapt to any changes in the network characteristics.

There are cases in which the Maelstrom FEC protocol

is unable to repair the loss (this can only occur if several

packets are lost, and in specific patterns that prevent us

from using FEC packets for recovery). To address such

loss patterns, we run our mirroring solution over TCP,

which in turn runs over Maelstrom: if Maelstrom fails to

recover a lost packet, the end-to-end TCP protocol will

recover it from the sender.



3.3 Discussion

The key metric for any disaster-tolerant remote mirror-

ing technology is the distance by which datacenters can

be separated. Today, a disturbing number of New York

City banks maintain backups in New Jersey or Brooklyn,

because they simply cannot tolerate higher latencies.

The underlying problem is that these systems typically

operate over TCP/IP. Obviously, the operators tune the

system to match the properties of the network. For exam-

ple, TCP can be configured to use massive sender buffers

and unusually large segments; also, an application can be

modified to employ multiple side-by-side streams (e.g.

GridFTP). Yet even with such steps, the protocol remains

purely reactive—recovery packets are sent only in re-

sponse to actual indications of failure, in the form of

negative acknowledgments (i.e. fast retransmit) or time-

outs keyed to the round-trip-time (RTT). Consequently,

their recovery time is tightly linked to the distance be-

tween communicating end-points. TCP/IP, for example,

requires a minimum of around 1.5 RTTs to recover lost

data, which translates into substantial fractions of a sec-

ond if the mirrors are on different continents. No mat-

ter how large we make the TCP buffers, the remote data

stream will experience an RTT hiccup each time loss oc-

curs: to deliver data in order, the receiver must await the

missing data before subsequent packets can be delivered.

Network-sync evades this RTT issue, but does not pro-

tect the application against every possible rolling disaster

scenario. Packets can still be queued in the local-area

when disaster strikes. Further, the network can parti-

tioned in the split second(s) before a primary site fails.

Neither proactive redundancy or network-level callbacks

will prevent loss in these cases. Accordingly, we en-

vision that applications will need a mixture of remote-

sync and network-sync, with the former reserved for par-

ticularly sensitive scenarios, and the latter used in most

cases.

Another issue is failover and recovery. Since the

network-sync option enhances remote mirroring proto-

cols, we assume that a complete remote mirroring proto-

col will itself handle failover and recovery directly [19,

22, 20]. As a result, in this work, we focus on evaluating

the fault tolerant capabilities of a network-sync option

and do not discuss failover and recovery protocols.

4 Mirroring Consistency via SMFS

We will say that a mirror image is inconsistent if out of

order updates are applied to the mirror, or the applica-

tion updates a group of files, and a period ensues during

which some of the mirrored copies reflect the updates but

others are stale. Inconsistency is a well-known problem

when using networks to access file systems, and the is-

sue can be exacerbated when mirroring. For example,

DiskInodeDirectory

dir1 dir2

file1 file2 /

Log

Data

Figure 4: Format of a log after writing a file sys-

tem with two sub directories /dir1/file1 and

/dir2/file2.

suppose that one were to mirror an NFS server, using the

standard but unreliable UDP transport protocol. Primary

and remote file systems can easily become inconsistent,

since UDP packets can be reordered on the wire, par-

ticularly if a packet is dropped and the NFS protocol is

forced to resend it. Even if a reliable transport protocol is

used, in cases where the file system is spread over multi-

ple storage servers, or applications update groups of files,

skew in update behavior between the different mirrored

servers may be perceived as an inconsistency by applica-

tions.

To address this issue, SMFS implements a file sys-

tem that preserves the order of operations in the struc-

ture of the file system itself, a distributed log-structured

file system (distributed-LFS)2, where a particular log is

distributed over multiple disks. Similar to LFS [35, 27],

it embeds a UNIX tree-structured file system into an ap-

pend only log format (Figure 4). It breaks a particular log

into multiple segments that each have a finite maximum

size and are the units of storage allocation and cleaning.

Although log-structured file systems may be unpopu-

lar in general settings (due to worries about high cleaning

costs if the file system fills up), a log structure turns out to

be nearly ideal for file mirroring. First, it is well known

that an append-only log-structure is optimized for write

performance [27, 35]. Second, by combining data and

order of operations into one structure — the log — iden-

tical structures can be managed naturally at remote loca-

tions. Finally, log operations can be pipelined, increasing

system throughput. Of course, none of this eliminates

worries about segment cleaning costs. Our assumption is

that because SMFS would be used only for files that need

to be mirrored, such as backups and checkpoints, it can

be configured with ample capacity—far from the tipping

point at which these overheads become problematic.

In Sections 4.1 and 4.2, we describe the storage sys-

tems architecture and API.

4.1 SMFS Architecture

The SMFS architecture is illustrated in Figure 5. It works

as follows. Clients access file system data by communi-
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Figure 5: File System Architecture: Applications com-

municate with the file server through (possibly) a NFS

interface. The file server in turn communicates with the

metadata server through the create() function call.

The metadata server allocates space for the newly created

log on storage servers that it selects. The file server then

interacts directly with the storage server for append(),

read(), and free() operations.

cating with a file server (e.g. using the NFS protocol).

File servers handle writes in a similar fashion to LFS.

The log is updated by traversing a file system in a depth-

first manner, first appending modified data blocks to the

log, storing the log address in an inode, then appending

the modified inode to the log, and so on [27, 29]. Reads

are handled as in any conventional file system; starting

with the root inode (stored in memory or a known loca-

tion on disk) pointers are traversed to the desired file in-

ode and data blocks. Although file servers provide a file

system abstraction to clients, they are merely hosts in the

storage system and stable storage resides with separate

storage servers.

4.2 SMFS API

File servers interact with storage servers through a thin

log interface—create(), append(), read(), and

free(). create() communicates with a metadata

server to allocate storage resources for a new log; it as-

signs responsibility for the new log to a storage server.

After a log has been created, a file server uses the

append() operation to add data to the log. The file

server communicates directly with a log’s storage server

to append data. The storage server assigns the order of

each append—assigns the address in the log to a par-

ticular append—and atomically commits the operation.

SMFS maintains group-mirroring consistency, in which

a single append() can contain updates to many dif-

ferent files where the group of updates will all be re-

flected by the storage system atomically, either all or

none. read() returns the data associated with a log

address. Finally, free() takes a log address and marks

the address for later cleaning. In particular, after a block

has been modified or file removed, the file system calls

free() on all blocks that are no longer referenced. The

create(), append(), and free() operations are

mirrored between the primary site and remote mirror.

5 Evaluation

In this section, we evaluate the network-sync remote mir-

roring option, running our SMFS prototype on Emu-

lab [40] and the Cornell National Lambda Rail (NLR)

Rings testbed [1].

5.1 Experimental Environment

The implementation of SMFS that we worked was im-

plemented as a user-mode application coded in Java.

SMFS borrows heavily from our earlier file system, An-

tiquity [39]; however, the log address was modified to be

a segment identifier and offset into the segment. A hash

of the block can optionally be computed, but it is used as

a checksum instead of as part of the block address in the

log. We focus our evaluation on the append() opera-

tion since that is by far the dominant operation mirrored

between two sites.

SMFS uses the Maelstrom network appliance [10] as

the implementation of the network-sync option. Mael-

strom can run as a user-mode module, but for the ex-

periments reported here, it was dropped into the operat-

ing system, where it runs as a Linux 2.6.20 kernel mod-

ule with hooks into the kernel packet filter [2]. Packets

destined for the opposite site are routed through a pair

of Maelstrom appliances located at each site. More im-

portantly, situating a network appliance at the egress and

ingress router for each site creates a virtual link between

the two sites, which presents many opportunities for in-

creasing mirroring reliability and performance.

The Maelstrom egress router captures packets, which

it processes to create redundant packets. The original IP

packets are forwarded unaltered; the redundant packets

are then sent to the ingress router using a UDP channel.

The ingress router captures and stores a window consist-

ing of the last K IP packets that it has seen. Upon re-

ceiving a redundant packet it checks it against the last K

IP packets. If there is an opportunity to recover any lost

IP packet it does so, and forwards the newly recovered

IP packet through a raw socket to the intended destina-

tion. Note that each appliance works in both egress and

ingress mode since we handle duplex traffic.

To implement network-sync redundancy feedback, the

Maelstrom kernel module tracks each TCP flow and

sends an acknowledgment to the sender. Each acknowl-

edgment includes a byte offset from the beginning of the

stream up to the most recent byte that was included in an

error correcting packet that was sent to the ingress router.

We used the TCP Reno congenstion control algorithm

to communicate between mirrored storage systems for

all experiments. We experimented with other congestion

control algorithms such as cubic; however, the results



were nearly identical since we were measuring packets

lost after a primary site failure due to a disaster.

We tested the setup on Emulab [40]; our topology em-

ulates two clusters of eight machines each, separated by

a wide-area high capacity link with 50 to 200 ms RTT

and 1 Gbps. Each machine has one 3.0 GHz Pentium

64-bit Xeon processor with 2.0 GB of memory and a 146

GB disks. Nodes are connected locally via a gigabit Eth-

ernet switch. We apply load to these deployments using

up to 64 testers located on the same cluster as the pri-

mary. A single tester is an individual application that has

only one outstanding request at a time. Figure 3 shows

the topology of our Emulab experimental setup (with the

difference that we used eight nodes per cluster, and not

four). Throughout all subsequent experiments, link loss

is random, independent and identically distributed. See

Balakrishnan et al [10] for an analysis with bursty link

loss. Finally, all experiments show the average and stan-

dard deviation over five runs.

The overall SMFS prototype is fast enough to saturate

a gigabit wide-area link, hence our decision to work with

a user-mode Java implementation has little bearing on

the experiments we now report: even if SMFS was im-

plemented in the kernel in C, the network would still be

the bottleneck.

5.2 Evaluation Metrics

We identify the following three metrics to evaluate the

efficacy of SMFS:

• Data Loss: What happens in the event of a disas-

ter at the primary? For varying loss rates on the

wide-area link, how much does the mirror site di-

verge from the primary? We want our system to

minimize this divergence.

• Latency: Latency can be used to measure both per-

formance and reliability. Application-perceived la-

tency measures (perceived) performance. Mirroring

latency, on the other hand, measures reliability. In

particular, the lower the latency, and the smaller the

spread of its distribution, the better the fidelity of

the mirror to the primary.

• Throughput: Throughput is a good measure of per-

formance. The property we desire from our sys-

tem is that throughput should degrade gracefully

with increasing link loss and latency. Also, for mir-

roring solutions that use forward error correcting

(FEC) codes, there is a fundamental tradeoff be-

tween data reliability and goodput (i.e. application

level throughput); proactive redundancy via FEC in-

creases tolerance to link loss and latency, but re-

duces the maximum goodput due to the overhead

of FEC codes. We focus on goodput.

Layered Interleaving r 8

FEC Params[10] c 3

Network-sync Parameters segment size 100 MB

append size 512 kB

block size 4 kB

Experiment Parameters expt duration 3 mins

Table 2: Experimental Configuration Parameters

For effective comparison, we define the following five

configurations; all configurations use TCP to communi-

cate between each pair of storage servers.

• Local-sync: This is the canonical state-of-the-art

solution. It is a semi-synchronous solution. As soon

as the request has been applied to the local storage

image and the local kernel buffers a request to send

a message to the remote mirror, the local storage

server responds to the application; it does not wait

for feedback from remote mirror, or even for the

packet to be placed on the wire.

• Remote-sync: This is the other end of the spec-

trum. It is a synchronous solution. The local stor-

age server waits for a storage-level acknowledg-

ment from the remote mirror before responding to

the application.

• Network-sync: This is SMFS running with a

network-sync option, implemented by Maelstrom

in the manner outlined in Section 3 (e.g. with

TCP over FEC). The network-sync layer provides

feedback after proactively injecting redundancy

into the network. SMFS responds to the application

after receiving these redundancy notification.

• Local-sync+FEC: As a comparison point, this

scheme is the local-sync mechanism, with Mael-

strom running on the wide-area link, but without

network-level callbacks to report when FEC pack-

ets are placed on the wire (i.e. storage servers are

unaware of the proactive redundancy). The local

server permits the application to resume execution

as soon as data has been written to the local storage

system.

• Remote-sync+FEC: As a second comparison

point, this scheme is the remote-sync mechanism,

again using Maelstrom on the wide-area link but

without upcalls when FEC packets are sent. The

local server waits for the remote storage system to

acknowledge updates.

These five SMFS configurations are evaluated on each

of the above metrics, and their comparative performance

is presented. The Network-sync, Local-sync+FEC, and
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Figure 6: Data loss as a result of disaster and wide-area

link failure, varying link loss (50ms one-way latency and

FEC params (r,c) = (8,3)).

Remote-sync+FEC configurations all use the Maelstrom

layered interleaving forward error correction codes with

parameters (r,c) = (8,3), which increases the tolerance

to network transmission errors, but reduces the goodput

by as much as 8/11 of the maximum throughput without

any proactive redundancy. Table 2 lists the configuration

parameters used in the experiments described below.

5.3 Reliability During Disaster

We measure reliability in two ways:

• In the event of a disaster at the primary site, how

much data loss results?

• How much are the primary and mirror sites allowed

to diverge?

These questions are highly related; we distinguish be-

tween them as follows: The maximum amount by which

the primary and mirror sites can diverge is the extent of

the bandwidth-delay product of the link between them;

however, the amount of data lost in the event of fail-

ure depends on how much of this data has been ac-

knowledged to the application. In other words, how of-

ten can we be caught in a lie? For instance, with a

remote-sync solution (synchronous mirroring), though

bandwidth-delay product – and hence primary-to-mirror

divergence – may be high, data loss is zero. This, of

course, is at severe cost to performance. With a local-

sync solution (async- or semi-synchronous mirroring),

on the other hand, data loss is equal to divergence. The

following experiments show that the network-sync solu-

tion with SMFS achieves a desirable mean between these

two extremes.

Disaster Test Figure 6 shows the amount of data loss

in the event of a disaster for the local-sync, local-

sync+FEC, and network-sync solutions; we do not test
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Figure 7: Data loss as a result of disaster and wide-area

link failure, varying FEC param c (50ms one-way la-

tency, 1% link loss).

the remote-sync and remote-sync+FEC solutions in this

experiment since these solutions do not lose data.

The rolling disaster, failure of the wide-area link and

crash of all primary site processes, occurred two minutes

into the experiment. The wide-area link operated at 0%

loss until immediately before the disaster occurred, when

loss rate was increased for 0.5 seconds, thereafter the link

was killed (See Section 2 for a description of rolling dis-

asters). The x-axis shows the wide-area link loss rate

immediately before the link is killed; link losses are ran-

dom, independent and identically distributed. The y-axis

shows both the total number of messages sent and total

number of messages lost—lost messages were perceived

as durable by the application but were not received by

the remote mirror. Messages were of size 4 kB.

The total number of messages sent is similar for all

configurations since the link loss rate was 0% for most

of the experiment. However, local-sync lost a signif-

icant number of messages that had been reported to

the application as durable under the policy discussed in

Section 3.1. These unrecoverable messages were ones

buffered in the kernel, but still in transit on the wide area

link; when the sending datacenter crashed and the link

(independently) dropped the original copy of the mes-

sage, TCP recovery was unable to overcome the loss.

Local-sync+FEC lost packets as well: it lost packets

still buffered in the kernel, but not packets that had al-

ready been transmitted — in the latter case, the proac-

tive redundancy mechanism was adequate to overcome

the loss. The best outcome is visible in the right-most

histogram at 0.1%, 0.5%, and 1% link loss: here we

see that although the network-sync solution experienced

the same level of link-induced message loss, all the lost

packets that had been reported as durable to the sender

application were in fact recovered on the receiver side

of the link. This supports the premise that a network-

sync solution can tolerate disaster while minimizing loss.
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Figure 8: Latency distribution as a function of wide-area link loss (50ms one-way latency).

Combined with results from Section 5.4, we demonstrate

that the network-sync solution actually achieves the best

balance between reliability and performance.

Figure 7 quantifies the advantage of network-sync

over local-sync+FEC. In this experiment, we run the

same disaster scenario as above, but with 1% link loss

during disaster and we vary the FEC parameter c (i.e.

the number of recovery packets). At c = 0, there are no

recovery packets for either local-sync+FEC or network-

sync—if a data packet is lost during disaster, it cannot be

recovered and TCP cannot deliver any subsequent data

to the remote mirror process. Similarly, at c = 1, the

number of lost packets is relatively high for both local-

sync+FEC and network-sync since one recovery packet

is not sufficient to mask 1% link loss. With c > 1, the

number of recovery packets is often sufficient to mask

loss on the wide-area link; however, local-sync+FEC

loses data packets that did not transit outside the local-

area before disaster, whereas with network-sync, primary

storage servers respond to the client only after receiving

a callback from the egress gateway. As a result, network-

sync can potentially reduce data loss in a disaster.

Latency Figure 8 shows how latency is distributed

across all requests for local-sync, local-sync+FEC, and

network-sync solutions. Latency is the time between a

local storage server sending a request and a remote stor-

age server receiving the request. We see that these solu-

tions show similar latency for zero link loss, but local-

sync+FEC and network-sync show considerably better

latency than local-sync for a lossy link. Furthermore,

the latency spread of local-sync+FEC and network-sync

solutions is considerably less than the spread of the local-

sync solution — particularly as loss increases; proactive

redundancy helps to reduce latency jitter on lossy links.

Smaller variance in this latency distribution helps to en-

sure that updates submitted as a group will arrive at the

remote site with minimum temporal skew, enabling the

entire group to be written instead of not.

5.4 Performance

System Throughput Figure 9 compares the perfor-

mance of the five different mirroring solutions. The x-

axis shows loss probability on the wide-area link being
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Figure 9: Effect of varying wide-area one-way link loss

on Aggregate Throughput.

increased from 0% to 1%, while the y-axis shows the

throughput achieved by each of these mirroring solu-

tions. All mirroring solutions use 64 testers over eight

storage servers.

At 0% loss we see that the local-sync and remote-

sync solutions achieve the highest throughput because

they do not use proactive redundancy, thus the good-

put of the wide-area link is not reduced by the overhead

of any forward error correcting packets. On the other

hand, local-sync+FEC, remote-sync+FEC, and network-

sync achieve lower throughput because the forward error

correcting packets reduce the goodput in these cases. The

forward error correction overhead is tunable; increasing

FEC overhead often increases transmission reliability but

reduces throughput. There is a slight degradation of per-

formance for network-sync since SMFS waits for feed-

back from the egress router instead of responding im-

mediately after the local kernel buffers the send request.

Finally, the remote-sync and remote-sync+FEC achieve

comparable performance to all the other configurations

since there is no loss on the wide-area link and the stor-

age servers can saturate the link with overlapping mirror-

ing requests.

At higher loss rates, 0.1%, 0.5%, and 1%, we

see that any solution that uses proactive redundancy

(local-sync+FEC, remote-sync+FEC, and network-sync)

achieves more than an order of magnitude higher
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Client Throughput.

throughput over any solution that does not. This illus-

trates the power of proactive redundancy, which makes it

possible for these solutions to recover from lost packets

at the remote mirror using locally-available data. Fur-

ther, we observe that these proactive redundancy solu-

tions perform comparably in both asynchronous and syn-

chronous modes: in these experiments, the wide-area

network is the bottleneck since overlapping operations

can saturate the wide-area link.

Figure 10 shows the system throughput of the

network-sync solution as the wide-area one-way link la-

tency increases from 25 ms to 100 ms. It demonstrates

that the network-sync solution (or any solution that uses

proactive redundancy) can effectively mask latency and

loss of a wide-area link.

Application Throughput The previous set of exper-

iments studied system-level throughput, using a large

number of testers. An interesting related study is pre-

sented here, of individual-application throughput in each

SMFS configuration. Figure 11 shows the effect of in-

creasing loss probability on the throughput of a applica-

tion, with only one outstanding request at a time.
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Figure 12: Data loss as a result of disaster and wide-area

link failure (Cornell NLR-Rings, 37 ms one-way delay).

We see now that local-sync(+FEC) and network-

sync solutions perform better than remote-sync(+FEC).

The reason for this difference is that with asynchrony,

network-sync can return an acknowledgment to the ap-

plication as soon as a request is on the wide-area link,

providing an opportunity to pipeline requests. This is in

contrast to conventional asynchrony, where the applica-

tion would receive an acknowledgment as soon as a re-

quest is buffered. The advantage with the former is that

it provides performance gain without hurting reliability.

The disadvantage is that pure buffering is a local sys-

tem call operation, which can return to the application

sooner and can achieve higher throughput as seen by the

local-sync(+FEC) solutions. However, this increase in

throughput is at a sacrifice of reliability; any buffered

data may be lost in the event of a crash before it is sent

(See Figure 6).

5.5 Cornell National Lambda Rail Rings

In addition to our emulated setup and results, we are

beginning to physically study systems that operate on

dedicated lambda networks that might be seen in cut-

ting edge financial, military, and educational settings. To

study these “personal” lambda networks, we have cre-

ated a new testbed consisting of optical network paths of

varying physical length that start and end at Cornell, the

Cornell National Lambda Rail (NLR) Rings testbed.

The Cornell NLR-Rings testbed consists of three

rings: a short ring that goes from Cornell to New York

City and back, a medium ring that goes to Chicago down

to Atlanta and back, and a long ring that goes to Seat-

tle down to Los Angeles and back. The one-way latency

is 7.9 ms, 37 ms, and 94 ms, for the short, medium, and

long rings, respectively. The underlying optical network-

ing technology is state-of-the-art: a 10 Gbps wide-area

network running on dedicated fiber optics (separate from

the public Internet) and created as a scientific research

infrastructure by the NLR consortium [3]. Each ring



includes multiple segments of optical fiber, linked by

routers and repeaters. More importantly, for the medium

and long ring, each network packet traverses a unique

path without going along the same segment. See NLR [3]

for a map.

Though all rings in the testbed are capable of 10 Gbps

end-to-end, we are only able to operate at hundreds of

megabits per second at this time due to network con-

struction. Nonetheless, we are able to study the effects

of disaster on dedicated wide-area lambda networks and

hope to be able to use increasingly more bandwidth in

the future.

To study the effects of disaster in this wide-area

testbed, we conduct the same disaster experiment de-

scribed in Section 5.3. We induced loss on the wide-area

link 0.5 second before the primary site fails via a router

that we control. Later, when the primary site fails, the

wide-area link and all processes are killed. Figure 12

shows data loss during this disaster for the medium path

on the Cornell NLR-Rings testbed. The x-axis shows

the loss induced on the wide-area link (link losses are

random, independent and identically distributed) and the

y-axis shows the number of messages sent and the num-

ber of unrecoverable messages. There are two interest-

ing results illustrated. First, local-sync lost messages

even when no loss was induced on the wide-area link.

This may be because our wide-area testbed may drop

packets, which prevents local-sync protocols from de-

livering to the mirroring application. Local-sync+FEC

and network-sync, on the other hand, did not lose mes-

sages because both can mask wide-area link loss. Sec-

ond, due to the relatively low bandwidth, packets were

able to transit outside of the local-area, preventing loss

from occurring in the local-area and enabling both local-

sync+FEC and network-sync to mask wide-area link

loss.

6 Related Work

6.1 Mirroring modes

Synchronous mirroring, like IBM’s Peer-to-Peer Remote

Copy (PPRC) [6] and EMC’s Symmetrix Remote Data

Facility (SRDF) [12] is a technique often used in disas-

ter tolerance solutions. It guarantees that local copies of

data are consistent with copies at a remote site, and also

guarantees that the mirror sites are as up-to-date as possi-

ble. Naturally, the drawback is that of added I/O latency

to every write operation; furthermore, long distance links

make this technique prohibitively expensive.

An alternate solution is to use asynchronous remote

mirroring [19, 24, 31]. For example, SnapMirror [31]

provides asynchronous mirroring of file systems by peri-

odically transferring self-consistent data snapshots from

a source volume to a destination volume. Users are pro-

vided with a knob for setting the frequency of updates —

if set to a high value, the mirror would be nearly current

with the source, while setting to a low value reduces the

network bandwidth consumption at the risk of increased

data loss. Seneca [19] is a storage area network mirror-

ing solution and similarly attempts to reduce the amount

of traffic sent over the wide-area network.

SnapMirror works at the block level, using the

WAFL [17] file system active block map to identify

changed blocks and avoid sending deleted blocks. More-

over, since it operates at this level, it is able to optimize

data reads and writes. The authors showed that for up-

date intervals as short as one minute, data transfers were

reduced by 30% to 80%.

Similar to SnapMirror, Seneca [19] is another asyn-

chronous mirroring solution that attempts to reduce the

traffic sent over the wide-area network, but also increases

the risk of data loss. Seneca operates at the level of a stor-

age area network (SAN) instead of the file system level.

Semi-synchronous mirroring is yet another mode of

operation, closely related to both synchronous and asyn-

chronous mirroring. In such a mode, writes are sent to

both the local and the remote storage sites at the same

time, the I/O operation returning when the local write

is completed. However subsequent write I/O is delayed

until the completion of the preceding remote write com-

mand. In [42] the authors show that by leveraging a log

policy for the active remote write commands the system

is able to allow a limited number of write I/O operations

to proceed before waiting for acknowledgment from the

remote site, thereby reducing the latency significantly.

6.2 Error correcting codes

Packet level forward error correcting (FEC) schemes typ-

ically transmit c repair packets for every r data packets,

using coding schemes with which all data packets can

be reconstructed if at least r out of r + c data and repair

packets are received [18]. In contrast, convolution codes

work on bit or symbol streams of arbitrary length, and

are most often decoded with the Viterbi algorithm [38].

Our work favors FEC: FEC schemes have the benefit of

being highly tunable – trading off overhead and timeli-

ness, and are very stable under stress – provided that the

recovery does not result in high levels of traffic.

FEC techniques are increasingly popular. Recent ap-

plications include FEC for multicasting data to large

groups [34], where FEC can be employed either by re-

ceivers [9] or senders [18, 28]. In general, fast, efficient

encodings like Tornado codes [11] make sender-based

FEC schemes very attractive in scenarios where dedi-

cated senders distribute bulk data to a large number of

receivers.

Likewise, FEC can be used when connections experi-

ence long transmission delays, in which case the use of



redundancy helps bound the delivery delays within some

acceptable limits, even in the presence of errors [18, 33].

For example, deep space satellite communications [43]

have been using error correcting codes for decades both

for achieving maximal information transfer over a re-

stricted bandwidth communication link and in the pres-

ence of data corruption.

SMFS is not the first system to propose exposing net-

work state to higher level storage systems [32]. The

difference, however, is that network-sync can be imple-

mented with gateway routers under the control of site op-

erators and does not require change to wide-area Internet

routers.

6.3 Reliable Storage & Recovery

Recent studies have shown that failures plague stor-

age and other components of large computing datacen-

ters [36]. As a result, many systems replicate data to

reduce risk of data loss [5, 14, 16, 25, 23, 37]. However,

replication alone is not complete without recovery.

Recovery in the face of disaster has been a problem

that has received a lot of attention [13, 21, 22]. In [20],

for example, the authors propose a reactive way to solve

the data recovery scheduling problem once the disas-

ter has occurred. Potential recovery processes are first

mapped onto recovery graphs — the recovery graphs

capture alternative approaches for recovering workloads,

precedence relationships, timing constraints, etc. The re-

covery scheduling problem is encoded as an optimization

problem with the end goal of finding the schedule that

minimizes some measure of penalty; several methods for

finding optimal and near-optimal solutions are given.

Aguilera et. al. [4] explore the tradeoff between the

ability to recover and the cost of recovery in enterprise

storage systems. They propose a multi-tier file system

called TierFS that employs a “recoverability log” used

to increase the recoverability of lower tiers by using the

highest tier.

Both LOCKSS [26] and Deep Store [44] address the

problem of reliably preserving large volumes of data for

virtually indefinite periods of time, dealing with threats

like format obsolescence and “bit-rot.” LOCKSS con-

sists of a set of low-cost, independent, persistent coop-

erating caches that use a voting scheme to detect and re-

pair damaged content. Deep Store eliminates redundancy

both within and across files; it distributes data for scal-

ability and provides variable levels of replication based

on the importance or the degree of dependency of each

chunk of stored data.

Baker et. al. [8] consider the problem of recovery from

failure of long-term storage of digital information. They

propose a “reliability model” encompassing latent and

correlated faults, and the detection time of such latent

faults. They show that a simple combination of audit-

ing (to detect latent faults) as soon as possible, automatic

recovery and independence of replicas yields the most

benefit with respect to the cost of each technique.

7 Conclusion

The conundrum facing many disaster tolerance and re-

covery designs is the tradeoff between loss of perfor-

mance and the potential loss of data. On the one hand,

it may not be desirable to slow application response time

until it is assured that data will not be lost in the event of

disaster. On the other hand, the prospect of data loss can

be catastrophic for many companies and organizations.

Unfortunately, there is not much of a middle ground in

the design space and designers must choose one or the

other.

The network-sync remote mirroring option poten-

tially offers an improvement, providing performance of

enterprise-level semi-synchronous remote mirroring so-

lutions while increasing their data reliability guarantees.

Like native semi-synchronous protocols, network-sync

protocols simultaneously send each update to the remote

mirror as the primary handles the update locally. Rather

than waiting for an acknowledgment from the remote

mirror, it delays only until it receives feedback from

an underlying communication layer, acknowledging that

data and repair packets have been placed on the exter-

nal wide-area network. This minimizes the loss of data

in the event of disaster. Applications requiring strong

remote-sync guarantees can still wait for a remote ac-

knowledgment, but for most purposes, network-sync rep-

resents an appealing new option. Our experiments show

that SMFS, a remote mirroring solution that uses the

network-sync option, exhibits performance that is inde-

pendent of link-latency, in marked contrast to most exist-

ing technologies.

Acknowledgments

We would like to thank our shepherd James Plank, the

anonymous reviewers, and Robbert van Renesse for their

comments that shaped the final version of this paper.

Also, we would like to thank all who contributed to

setting up the Cornell NLR-Rings testbed: Dan Freed-

man, Cornell Facilities Support Scott Yoest and Larry

Parmelee, CIT-NCS networking engineering Eric Cro-

nise and Dan Eckstrom, and NLR network engineering

Greg Boles, Brent Sweeny, and Joe Lappa. Finally, we

would like to thank Intel and Cisco for providing neces-

sary routing and computing equipment, and NSF TRUST

and AFRL Castor grant for funding support.

Notes
1Egress and ingress routers operate as gateway routers between dat-

acenter and wide-area networks, where egress routers send packets

from local datacenter networks to the wide-area network and ingress



routers receive packets from the wide-area network and forward pack-

ets to local datacenter networks. Generally, egress routers also function

as ingress routers and visa versa since they handle duplex traffic.
2A distributed log-structured file system can expose an NFS inter-

face to hosts; however, it stores data in a distributed log-structured file

system instead of a local UNIX file system (UFS).
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