A Measurement-based Deployment Proposal for IP Anycast

Hitesh Ballani (Cornell University) Paul Francis (Cornell University) Sylvia Ratnasamy (Intel-Research)

IMC 2006

One-to-Any communication with no changes to Internet routing and clients

One-to-Any communication with no changes to Internet routing and clients

One-to-Any communication with no changes to Internet routing and clients

IP Anycast as a Service Discovery Primitive

- Distributes client load across servers
- Reduces access latency for clients
- Offers network-level resilience to DDoS attacks

- Anycasting of six of the thirteen root-servers (C-Root, F-Root, I-Root, J-Root, K-Root, M-Root)
- IPv4-to-IPv6 transition [RFC 3068]
- Rendezvous discovery for IP multicast [RFC 3446]
- Other usage scenarios
 - AS112 Project
 - Commercial CDNs
 - DDos sinkholes

[http://as112.net]

- [http://cachefly.net]
- [Greene et. al., NANOG'03]

- Anycasting of six of the thirteen root-servers (C-Root, F-Root, I-Root, J-Root, K-Root, M-Root)
- ► IPv4-to-IPv6 transition [RFC 3068]
- Rendezvous discovery for IP multicast [RFC 3446]
- Other usage scenarios
 - AS112 Project
 - Commercial CDNs
 - DDos sinkholes

[http://as112.net]

- [http://cachefly.net]
- [Greene et. al., NANOG'03]

- Anycasting of six of the thirteen root-servers (C-Root, F-Root, I-Root, J-Root, K-Root, M-Root)
- IPv4-to-IPv6 transition [RFC 3068]
- Rendezvous discovery for IP multicast [RFC 3446]
- Other usage scenarios
 - AS112 Project
 - Commercial CDNs
 - DDos sinkholes

[http://as112.net] [http://cachefly.net]

[Greene et. al., NANOG'03]

- Anycasting of six of the thirteen root-servers (C-Root, F-Root, I-Root, J-Root, K-Root, M-Root)
- IPv4-to-IPv6 transition [RFC 3068]
- Rendezvous discovery for IP multicast [RFC 3446]
- Other usage scenarios
 - AS112 Project [http://as112.net]
 - Commercial CDNs [http://cachefly.net]
 - DDos sinkholes [Greene et. al., NANOG'03]

In spite of growing usage, IP Anycast and its interaction with IP Routing is not well understood!

IP Anycast is not well understood

Are clients routed to close-by anycast servers?

What is the impact of the failure of an anycast server?

Is the client load across the anycast server sites balanced?

Are subsequent packets from a client routed to the same anycast site?

IP Anycast is not well understood

Are clients routed to close-by anycast servers?
Proximity offered by IP Anycast

What is the impact of the failure of an anycast server?

Failover properties of IP Anycast

Is the client load across the anycast server sites balanced?

Load-distribution across deployments

Are subsequent packets from a client routed to the same anycast site?

Affinity offered by IP Anycast

A sneak peek at the study's results

Property	Proximity	Failover	Load	Affinity
IP Anycast				
Ad-Hoc Deployment				
Planned Deployment				

A sneak peek at the study's results

Property	Proximity	Failover	Load	Affinity
IP Anycast				
Ad-Hoc Deployment	×	×	×	
Planned Deployment			×	

A sneak peek at the study's results

Talk Outline

- Introduction
- Terminology
- Deployments Measured
- Methodology
- Measurements
 - Proximity
 - Failover
 - Load-distribution
 - Affinity
- Conclusions

Terminology

Study focusses on Inter-domain IP Anycast

Terminology

Anycast Servers advertise the Anycast Prefix into BGP through their Upstream Provider

Deployments Measured

External Deployments

- F-Root : 27 servers
- J-Root : 13 servers
- AS112 : 20 servers

Deployments Measured

F-Root Deployment: Anycast Servers are DNS Servers

Internal Deployment: Anycast Servers can run DNS Servers

Anycast Servers can be probed using DNS queries

Anycast Servers can be probed using DNS queries

Query the Recursive DNS Server such that it queries the Anycast Server

Response from the Anycast Server is forwarded onto the Measurement Host

Measurements: 1). Anycast Server being accessed by C2). Latency from C to the Anycast Server

23,858 Recursive DNS Servers used as Vantage Points

Region	No. of clients	% of Total
North America	12931	54.827
Central America	317	1.344
South America	461	1.954
Europe	5585	23.680
Asia	2402	10.184
S.E. Asia	566	2.400
Oceania	1196	5.071
Africa	187	0.792
Arctic Region	9	0.038
Unknown	204	0.864
Total	23858	100.000

Talk Outline

- Introduction
- ► Terminology
- Deployments Measured
- Methodology
- Measurements
 - Proximity
 - Failover
 - Load-distribution
 - Affinity
- Conclusions

Anycast Server is chosen by Inter-Domain Routing

Ideally, Clients would be routed to a close-by Anycast Server

Poor choice of Anycast Server is possible!

Probe the Deployment's Anycast Address from the client Probe Latency = Anycast Latency

Client probes individual Anycast Servers Latency to closest Anycast Server = Min. Unicast Latency

STRETCH = (Anycast Latency - Minimum Unicast Latency)

Proximity

All four deployments offer poor Proximity

Client probes Anycast address of Internal Deployment

Client probes Anycast address of Internal Deployment Routed to Ithaca (NY) instead of Berkeley (CA)

See this example at http://pias.gforge.cis.cornell.edu/trace.html

Level3 has two paths of 2 AS-hops: through ATT and WCG Level3 does not realize that these lead to different locations

Anycast Servers should have the same Upstream ISP

Anycast Servers should have the same Upstream ISP

Multiple Providers: Geographically cover all providers

Anycast probes from client(s) routed to ISP X

Server chosen is based on X's intra-domain routing

Verifying our hypothesis

A subset of the Internal Deployment

Verifying our hypothesis

Verifying our hypothesis

Planned Anycast Deployment \Rightarrow good Proximity

Address (pre-failure)

Clients are re-routed to a different Anycast Server

Clients are re-routed to a different Anycast Server What is the failover time?

Ithaca and Cambridge servers have slow failover

BGP Withdrawal propagated beyond WCG Global Routing Event → Slow convergence

BGP Withdrawal restricted to ATT Local Routing Event - Faster convergence

Planned Deployment ---- Fast Failover

Distribution of client-load across Anycast Servers

- Can operators control this load?
- Used AS-Path Prepending for controlling load

AS-Path Prepending a BGP Advertisement

- Changing the advertisement's AS-Path length
- *n*-hop Prepending: Add *n* ASs to the AS-Path

IP Anycast is a network-layer service

Client can flap to a different Anycast Server

Client can flap to a different Anycast Server What is the Affinity offered by IP Anycast?

Conclusions

Property	Proximity	Failover	Load	Affinity
IP Anycast				
Ad-Hoc Deployment	X Poor	X Slow		

Conclusions

Conclusions

Property	Proximity	Failover	Load	Affinity		
Anycast						
Ad-Hoc Deployment	X Poor	Slow	Skewed			
Planned Deployment	Good	Fast	X Manipulatable			
BGP Traffic Engineering techniques						

Conclusions

Property	Proximity	Failover	Load	Affinity
IP				
Anycast				
Ad-Hoc	×	×	×	
Deployment	Poor	Slow	Skewed	Good*
Planned			X	
Deployment	Good	Fast	Manipulatable	Good*

Conclusions

Property	Proximity	Failover	Load	Affinity
IP				
Anycast	<u></u>			
Ad-Hoc	×	×	×	
Deployment	Poor	Slow	Skewed	Good*
Planned			×	
Deployment	Good	Fast	Manipulatable	Good*

Traces http://pias.gforge.cis.cornell.edu/measure.php

Alleviating Poor Proximity

Only Proximity measurements for the External Deployments

Probes to External Deployments Cannot determine the identity of the responding server

