
CONMan: Taking the Complexity out of Network
Management

Hitesh Ballani
Cornell University

Ithaca, NY

hitesh@cs.cornell.edu

Paul Francis
Cornell University

Ithaca, NY

francis@cs.cornell.edu

ABSTRACT
Network management is difficult, costly, and error prone,
and this is becoming more so as network complexity in-
creases. We argue that this is an outcome of two fundamen-
tal flaws in the existing architecture: the management plane
depends on the data plane, and network device management
interfaces are varied, complex, and constantly evolving. In
this paper, we present Complexity Oblivious Network Man-
agement (CONMan), a network architecture in which the
management plane does not depend on the data plane and
all data plane protocols expose a simple generic management
interface. This restricts the operational complexity of pro-
tocols to their implementation and allows the management
plane to achieve high level policies in a structured fashion.

Keywords: Network management, Management plane,
Data plane, Protocol abstraction.

1. INTRODUCTION
IP networks are hard to manage. Network management

(installation, configuration, provisioning, monitoring, test-
ing, debugging) requires detailed knowledge of many differ-
ent network components, each with its own management in-
terface. To cope, network managers rely on a host of tools
ranging from sophisticated centralized network management
packages to home-brewed scripts and elementary tools such
as ping and traceroute. In spite of this, management costs
continue to rise. A recent survey [11] showed that 80% of
the IT budget in enterprises is devoted to maintain just the
status quo - in spite of this, configuration errors account for
62% of network downtime.

We believe that the management troubles of the Inter-
net are a consequence of two shortcomings of the existing
network architecture. First, the existing management plane
depends on the data plane. For example, SNMP operates
on top of the data plane and hence, management protocols
rely on the correct operation of the very thing they are sup-
posed to manage. When there is a low-level failure, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06 Workshops September 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

management tools may not be able to communicate with the
network. This dependency loop also increases the need for
(error-prone) manual configuration, since low-level protocols
must be configured before SNMP can operate [3, 8].

The second shortcoming is the fact that network devices
expose their raw internal details, leading to a deluge of com-
plexity which burdens the management plane. For example,
it is not uncommon for a network device to have hundreds of
manageable objects. A study of SNMP MIB modules found
more than 13,000 MIB objects in IETF MIBs alone [21].
A single router configuration file can consist of more than
10,000 command lines [27]. It takes considerable expertise
and sophistication on part of the network manager to under-
stand what effect each of these detailed objects has on the
network.

In addition to the inevitable errors that this complexity
engenders, the pace at which these details evolve makes it
difficult for any one management application to stay cur-
rent. As a result, vendors produce management solutions for
their own products, and network managers rely on low-level
scripts to bridge the gap. Consequently, no one management
approach suffices, leading to a plethora of tools, and further
increasing the complexity of the management problem. For
example, SNMPLink [19] lists more than 1000 management
applications, many of them being vendor specific command
line or HTML-based tools. Thus, the Internet management
plane doesn’t have anything analogous to the IP thin waist
around which the Internet data-plane is built.

All these shortcomings point to the two principles that,
we believe, should form the basis of a manageable network
architecture:

(a). Operationally independent, self bootstrapping manage-
ment plane. The management plane should be opera-
tionally independent of the data plane and should be
able to bootstrap without any pre-configuration as long
as physical connectivity exists. This was proposed as
part of the 4D project [8]. We embrace and extend 4D.

(b). A single, simple management interface for all data plane
protocols. The operational complexity of protocols
should be confined to their implementation and they
should express the information needed for managing
them through a simple management interface. This
puts the responsibility for detailed understanding of
protocol operation on the protocol implementor while
reducing the burden on management applications. Since
the protocol implementer requires this knowledge in
any event, this seems to be a smarter placement of
functionality.

With a goal towards stimulating discussion and new think-
ing about network management, this paper describes a net-
work management architecture, Complexity Oblivious Net-
work Management (CONMan), that follows these principles.
CONMan includes the 4D configuration-free management
channel. This channel is established and maintained sep-
arately from the data plane and hence, serves as a substrate
for the rest of the management framework. All protocols and
devices express their capability and their functionality using
a generic abstraction. This allows the management plane to
understand the potential of the underlying network, to con-
figure it in line with the desired high-level policies and to
fix it when something breaks, without being encumbered by
the details of the protocol/device implementation. Having a
fixed interface between the management plane and the data
plane also allows for independent evolution of the two.

Note that CONMan does not change the operation of data
plane protocols nor does it dictate the way they are imple-
mented – only the management interface of each protocol
should conform to our proposal. Thus, while the manage-
ment interface gives the appearance of protocol modularity,
the protocol implementation itself may be modular or mono-
lithic.

2. CONMan ARCHITECTURE

2.1 Terminology and Overview
Our architecture consists of devices (routers, switches, hosts,

etc.) and one or more network managers (NMs). Though
there are a number of issues associated with operating mul-
tiple NMs, in this paper we assume a single NM. Many such
issues and the way CONMan deals with them are detailed
in [2]. A NM is a software entity that resides on one of the
network devices and manages some or all of them. Each de-
vice has a globally unique, topologically independent identi-
fier (device-id) that may carry cryptographic meaning. Each
device also has an internal management agent (MA) that
is responsible for the device’s participation in the manage-
ment plane. While the rest of the paper talks about a device
performing management tasks, in actuality it is the device’s
MA that is responsible for these. All protocols and appli-
cations in devices are modeled as protocol modules. Each
protocol module has a name as well as an identifier that is
unique within the device. Examples of module names include
“IPv4”, “RFC791”, or even a URI (which might be useful
for naming applications). Thus, modules can be uniquely re-
ferred to using tuples of the form <module Name,module-
id,device-id>.

CONMan achieves the first principle by borrowing tech-
niques used by 4D for its discovery and dissemination plane [8].
As long as there is physical connectivity, 4D provides a ro-
bust management channel that allows NMs and devices to
discover and communicate with each other. Devices can
communicate indirectly by passing messages through an NM.
For lack of space, we omit the details of how this is done and
refer the reader to [8].

In order to satisfy the second principle, protocol modules
self describe themselves using a generic abstraction - this
is the Module Abstraction. The driving idea behind our ab-
straction is to identify the basic characteristics that virtually
all protocols share. Consequently, we model every protocol
module as a node with connections to other nodes, certain
generic switching capabilities, certain generic filtering ca-

IP

ETH

IKE

UDPIP- Sec

Up-Pipe

Down-Pipe

Performance

Filtering Switching

Security

Module
Dependency

Figure 1: Modules, pipes, and dependencies form a
graph that describes the operation of a device (in
particular) and the network (in general). The fig-
ure on the right shows the major components of the
module abstraction. Note that some modules may not
require all elements of the abstraction to describe
themselves.

pabilities, certain performance and security characteristics,
and certain dependencies. This abstraction captures what
the protocol is capable of (capabilities) and what it depends
on (dependencies). Also, the module can be configured to
achieve the desired functionality by creating and deleting
various components of the abstraction.

Together, the management channel and the module ab-
straction allow the NM to manage the network based on
high-level policies and goals in a structured fashion. Each
device uses the management channel to inform the NM of its
physical connectivity, all modules that it contains and their
respective module abstractions. This provides the NM with
the real picture of the network - it does not need to reverse
engineer numerous low-level and non-intuitive parameters.
The module abstraction allows the NM to understand ex-
actly how packets may flow (or not flow) through a given
module and hence, from application to application.

Given the network’s real picture and the high-level goals
and policies that need to be satisfied, the NM builds a graph
of modules in various devices that satisfy these. This graph
captures how each module should function and hence, how
each module should be configured. The NM then configures
the modules accordingly through the management channel.
Thus, the NM can configure the entire network from the
ground up with a minimum of protocol-specific knowledge.
We believe that such as approach would ameliorate most of
the problems afflicting network management today.

2.2 Module abstraction
There are two kinds of modules: data plane modules and

control plane modules. Examples of data plane modules (or
data modules for short) include TCP1, IP, Ethernet, while
examples of control plane modules (or control modules for
short) include routing algorithms and negotiation algorithms
like IPSec’s IKE or PPP’s LCP and NCPs.

Data modules connect to each other to carry data packets.
These connections are called pipes. Control modules also
connect to data modules using pipes for delivery services.
Data modules may require the use of a control module; we
refer to this as a dependency. For instance, in Figure 1,
the IPsec module has a (data plane) pipe to IP, and has
a dependency on IKE, which in turn has a pipe to UDP.
Ultimately, modules, pipes, and dependencies form a graph

1The paper does not provide citations or acronym definitions
for standard protocols.

that in some sense describes the operation of the network.
The actual module abstraction, as shown on the right in fig-
ure 1, tries to capture the capabilities, the dependencies and
the functionality of protocol modules in generic and abstract
terms. In the following, we briefly describe the components
of the module abstraction: pipes, switches, filters, perfor-
mance, and security.

2.2.1 Pipes
Up and Down pipes connect modules to other modules

above and below themselves in the same device, and are
point-to-point. Physical links are Across pipes, and can be
point-to-point or broadcast. The path between two mod-
ules in two different devices is the sequence of up-down and
physical across pipes through which packets travel.

Because they are physical, the NM cannot create across
pipes per se, but can discover and enable them. On the
other hand, the NM can create up and down pipes to con-
struct paths between modules. The NM can also discover
and potentially disallow up and down pipes created by other
means. For example, a HTTP-client initiating a TCP con-
nection results in a pipe between the HTTP-client module
and the TCP module which will be discovered by the NM.
Each module lists with which other modules it may have
up/down pipes. Each module also lists what it considers to
be its peer modules. For instance, TCP modules are peers
with each other, and HTTP-client modules are peers with
HTTP-server modules. Note that pipes may have depen-
dencies that need to be satisfied before they can be created
or enabled. For example, a pipe may require other pipes to
be created or switch state to be specified (see below) before
it can be created.

2.2.2 Switch
Modules use the switch abstraction to self-describe how

packets potentially or actually flow between pipes. Each
switch entry can be unicast or multicast, and can have a
small number of basic configurations: packets pass between
down and up pipes ([down ⇒ up] and [up ⇒ down] switch-
ing, e.g. TCP module), [down ⇒ down] switching (e.g. IP
module with forwarding enabled), [up ⇒ up] switching (e.g.
IP module with loopback functionality), [up ⇒ physical] and
[physical ⇒ up] switching (eg. Ethernet module). Within
this basic configuration, more detailed switching informa-
tion may be configured by the NM, or via other means, for
instance a routing protocol.

2.2.3 Filters
The filter abstraction allows modules to describe whether

and how they can filter packets. Filters are described in
terms of other abstracted components: pipes, module types,
device, or specific modules. Note that in configuring a fil-
ter, the NM only needs to specify the component names or
identifiers that need to be filtered - it is the protocol imple-
mentation that is responsible for determining the relevant
protocol fields.

2.2.4 Security
A module may have the means to ensure the integrity,

authenticity or confidentiality (or some combination of the
three) of its communication with any given peer. Such mod-
ules advertise their ability to establish secure communica-
tion. The state associated with these security features, for

Name Caller Callee Description

showPotential NM MA of device Sec. 2.3.1
showActual NM MA of device Sec. 2.3.1

create, delete NM MA of device Sec. 2.3.1
conveyMessage Module NM Sec. 2.3.1

(source)
conveyMessage NM Module Sec. 2.3.1

(destination)
test NM Module Sec. 2.3.2

listFieldsAndValues Module NM Sec. 2.4
(Inspecting)

listFieldsAndValues NM Module Sec. 2.4
(Target)

Table 1: Functions that are part of the CONMan
architecture

example the keying material, may be determined by the
module through interaction with the peer module (exam-
ple, SSL). In other cases, this state may have to be provided
by an external entity and is advertised as a dependency (ex-
ample, IP-Sec dependency on IKE).

2.2.5 Performance
Unlike the above components, which are quite specific in

nature, performance is harder to specify and manipulate. In
our current abstraction, performance is reported in terms of
six generic performance metrics - delay, jitter, bandwidth,
loss-rate, error-rate, and ordering. These encompass most of
the IP performance metrics proposed by IETF [25] (though
in our architecture the metrics can be used by any module
that has the ability to describe its performance, not just
the IP module). Additional metrics, such as power, can be
added as needed.

Modules and pipes report on their performance with these
metrics. They can also advertise the ability to offer perfor-
mance trade-offs. For example, many MAC layer protocols
offer optional error correcting checksums which represent a
trade-off between error-rate on one hand and bandwidth and
delay on the other. Similarly, the amount of buffering done
by the IP module provides a trade-off between loss-rate and
delay/jitter. Instead of exposing the low-level options and
the associated parameters, modules specify the trade-offs
they can enforce. Just as with filters, the module might
allow these trade-offs to be applied to specific traffic classes
as specified by the names of modules or pipes and this too
is advertised. The NM, based on some high-level perfor-
mance goals, can choose from the trade-offs offered by these
modules which can then configure and coordinate the low
level values. Similarly, modules may also advertise their per-
formance enforcement capabilities, for example their ability
to queue or shape packets or their ability to enforce cer-
tain service classes. The NM can then use this to satisfy
network-wide performance goals. Due to space constraints
we do not discuss how performance enforcement in modeled
in the CONMan abstraction – [2] details this and describes
a real-world performance management example.

2.3 Network Manager (NM)
Using the two-way communications channel provided by

4D between itself and the devices, the NM discovers the
physical topology of the network, as well as the actual and
potential logical protocol structure. This section describes
the set of primitive functions used by the NM and device
MAs to configure and debug the network.

Parameter What is advertised?

Name <Module-name,Module-ID,Device-ID>

Up and Information about up and down pipes such as
Down pipes connectable-modules, dependencies etc.
Physical Information about the physical across pipes (if
across pipes any) connected to the module
Peerable-Mod. Set of modules that can be peers of this module
Filter Classification based on which filtering can be

done - this includes what can be filtered and
where it can be filtered

Switch Possible switching between up, down and
physical pipes; the kind of switch state that
governs the switching and if it is generated
locally or needs to be provided externally

Performance Performance metrics that are reported for the
Reporting module’s pipes, filters, switch etc.
Performance Traffic classes to which performance trade-offs
Trade-Offs can be applied and the possible trade-offs
Security Ability to secure communication with the peer

modules. If the state needed for this is to be
provided, it is advertised as a dependency.

Table 2: Module abstraction; showPotential () describes

each module using this abstraction

2.3.1 Network Configuration
The following functions capture the NM’s interaction with

the devices in the network as part of network configuration.
Table 1 shows these and other functions offered by the NM,
the MAs of devices, and the modules themselves.

• showPotential () allows the NM to determine a device’s
potential configuration. The device returns a list of
modules with their abstractions. The type of informa-
tion returned for each module is shown in table 2.

• showActual () allows the NM to determine the actual
connectivity and state of modules in a device. The
state of each module includes state for all the pipes,
the switch, filters, trade-offs, performance and security
enforcement elements. Also returned is a report on
the performance parameters. In effect, the NM is pre-
sented with the network reality - a module graph and
associated information which allows it to understand
how the device (and hence, the network) is or should
be behaving. By contrast, in the current set up, the
NM is presented with all kinds of MIB objects from
which it must deduce network behavior.

• create () and delete () allow the NM to create and
delete pipes, filter-rules, switch-rules, trade-offs to be
enforced and performance enforcement state. Note that
the showPotential () function provides the NM with all
the information it needs to create and delete compo-
nents.

The NM needs very little protocol specific knowledge to
use these primitives. For instance, it can create up and down
pipes simply by satisfying their dependencies and invoking
the create function. It is the protocol implementation that
is responsible for all the protocol-specific exchange and con-
figuration that needs to be done to actually install the state
that instantiates the pipe. For example, establishing an up
pipe for a GRE module amounts to creating a new GRE tun-
nel, which in turn requires the module to communicate with
its peer GRE module about the tunnel key values to be used.
The GRE module advertises this need for peer coordination
as a dependency. To facilitate the actual co-ordination be-
tween peer modules, the NM provides:

• conveyMessage () allows modules to convey messages
to each other through the NM (see detailed example in
section 2.5).

2.3.2 Debugging
In CONMan, modules provide a test () function with which

the NM can test connectivity of the module to any of its
peer modules. Invoking the test function causes the module
to check protocol specific parameters with the desired peer
module through the management channel (using conveyMes-
sage). Testing might also require modules to send packets to
their peer over the data plane. Some existing protocol imple-
mentations, for example Cisco’s GRE implementation [30],
already have something akin to such a test function. Also,
Microsoft is currently working on adding a similar function-
ality to help users debug the Windows network stack [23].
Here, a process is able ask protocol modules if they believe
themselves to be healthy.

Given a problem in communication between two applica-
tion modules, the NM can debug it by tracing and testing
the sequence of modules and pipes between them. We think
that through such a structured debugging approach, the NM
can determine the root-cause of most network problems.

2.4 Hiding Complexity
Much of the complexity reduction of CONMan comes from

the fact that the NM operates in terms of the abstract com-
ponents, while the protocol modules themselves translate
these into concrete protocol objects.

For example, the NM can simply ask a module to filter
packets between two given modules - “check if the packet is
from module <IP,B,y> and going to <FOO,C,z>” (where
FOO is an application module with up-down pipes to TCP).
The inspecting module itself is responsible for determining
the actual protocol fields. For example, given the high-level
specification above, the inspecting module determines that it
needs to “filter packets from source address 128.19.2.3 and
destined to address 20.3.4.5, port 592”. This ensures that
the NM, while being opaque to protocol-specific fields, can
trace the paths between applications and hence, can reason
about its policies regarding a particular application-module.

In some cases, the inspecting module may know what fields
and field values to check for on its own. But in other cases,
it may not. To address this, CONMan modules provide a
listFieldsAndValues () function. This allows other modules
to query the target module for the low-level fields and field
values corresponding to the identifiers associated with its
components. Hence, in the example above, the inspecting
module can send queries to the target modules <IP,B,y>

and <FOO,C,z> (via the NM), as well as to the modules be-
low them, and ask those modules what field values it should
be checking for.

Such an approach also allows for maintenance of network
state dependencies - the need to update the relevant state
in different modules when some low-level value in a given
module changes. To ensure this, the NM maintains the de-
pendencies between component identifiers (that have been
resolved) and low-level fields. Also, the NM installs triggers
in the target modules telling them to inform the NM when
their low-level values change.

Note that not all detailed protocol values can be or should
be determined by the protocols themselves. For instance, it
appears difficult to expect IP modules to chat among them-

selves and assign IP addresses. This is best done by the NM
having explicit knowledge of how to assign IP addresses (as
DHCP servers do today). Similarly, some filtering instances
such as matching on regular expressions in HTML are best
left to specialized NMs such as Intrusion Detection Systems.
Where to draw the line between what to abstract and what
to make explicit is part of the design challenge of CONMan.

Finally, many data-plane protocols rely on externally gen-
erated state for their operation. In the Internet, control-
plane protocols generate some of this state. For example,
routing protocols generate the IP routing table. Similarly,
LCP generates PPP configuration state. With CONMan,
control modules do not fit into the generic module abstrac-
tion presented above. Instead, control modules advertise
their ability to provide the state for certain data modules
and the NM simply uses them. For example, the PPP mod-
ule could advertise that is has a dependency on external state
(say X) and the LCP module advertises that it can satisfy
dependency X. However, this approach does not address the
issue of the configuration required by the control modules.
It also hinders the ability of the NM to do root-cause anal-
ysis since the NM does not understand the operation of the
control modules nor does it understand the state generated
by them. For example, the NM does not understand BGP
and hence, cannot be expected to debug routing flaps and
the resulting prefix dampening. Alternatively, CONMan can
possibly be used to replace some existing control protocols,
such as DHCP and LCP, especially those that operate within
a single domain. Indeed, the 4D authors argue that central-
ized configuration of IP routing tables and filters via the 4D
management channel should replace existing decentralized
routing protocols like OSPF. A characterization of the sce-
narios in which existing protocols need to be retained against
the ones in which they should be replaced is part of our fu-
ture work.

2.5 CONMan in action
We now use a GRE-IP tunnel configuration example to

elucidate the advantages of CONMan over the status quo.
A GRE-IP tunnel is characterized by a source and a des-
tination IP address and a key value - the source and the
destination must agree on the key for the tunnel to operate
correctly. Hence, configuring a GRE-IP tunnel involves de-
termining the IP addresses of the tunnel end-points, the key
values, whether to use sequence numbers (sequence num-
bers help with in-order delivery of tunneled packets) and
other protocol specific details such as tunnel TTL, the TOS
field for tunneled packets, whether to use checksums or not,
whether to use path-mtu-discovery or not.

In the current set-up, the management plane must spec-
ify all these low level configuration details. For example,
consider an ISP’s router (A) that needs to tunnel all traf-
fic from a customer facing interface to another router (B)
through a GRE-IP tunnel (as shown in figure 2). The figure
also shows a configuration snippet needed to achieve this on
a Linux router “Today”. Apart from the configuration being
complex, it leaves the door open for many kinds of errors.
Some such error possibilities have been marked with labels
adjacent to the snippet: (a). not configuring the host as
a router, (b). misconfiguring the underlying routing so that
traffic from the wrong customer goes into a tunnel or the tun-
neled traffic is delivered to the wrong customer at the other
end, (c). configuring the tunnel end points with the wrong

IP

GRE

ETH ETHETH

IP

GRE

ETHETHETH

Cust. 1

Cust. N

Cust. 1

Cust. N

Edge router (A) Edge router (B)

ISP

1

3
8 10

6

5

4 2

11

9

7
IP IP

(c,d)

(a)

(b)

"Today" "CONMan"
Configuration at router A Configuration at router A with

#!/bin/bash
Inserting the GRE-IP kernel module
insmod /lib/modules/2.6.10-1/ip_gre.ko

128.84.222.111 ikey 2001 okey 1001 icsum ocsum iseq oseq
ifconfig greA 192.168.1.3
Enable routing
echo 1 > /proc/sys/net/ipv4/ip-forward
Create IP routing state from customer to tunnel
echo 202 tun-1-2 > /etc/iproute2/rt_tables
ip rule add iff eth0 table tun-1-2
ip route add default dev greA table tun-1-2
Create IP routing state from tunnel to customer
echo 203 tun-2-1 > /etc/iproute2/rt_tables
ip rule add iff greA table tun-2-1
ip route add default dev eth0 table tun-2-1

create (pipe-2)
create (pipe-3)
create (switch-state,pipe-2,pipe-3)
create (pipe-4)
create (pipe-5)

Creating the GRE module with the appropriate key
ip tunnel add name greA mode remote 128.84.223.112 local\

NOTE: create (switch-state,pipe-2,pipe-3)
creates IP module switch state to switch

from pipe-2 to pipe-3

Figure 2: GRE-IP tunnels for ISPs’ customers - the
figure shows the module connectivity that the NM
aims to achieve. Also shown is a configuration script
on a Linux router needed to achieve this “Today”
and what the management plane would need to do
with “CONMan” in place.

key values and (d). using tunnel end point IP addresses that
are wrong or do not have IP connectivity between them.

As a contrast, with CONMan, the NM logic maps the high-
level tunneling goal into what it can do – building pipes and
modules. The NM uses the showPotential and showActual
primitive at A and B to determine the relevant modules and
their abstraction. It then maps the aforementioned goal of
tunneling packets between customers to the task of building
a path between the customer interfaces of devices A and B
that goes through the respective GRE modules. This path
labeled as (1) to (11) in figure 2. The NM realizes that pipes
(1) and (6) are physical pipes and hence, only needs to build
pipes (2) through (5) at router A. It does so by invoking
five primitives (shown in the figure) at the appropriate mod-
ules of router A. Note that similar invocations are needed
at router B. The module abstractions inform the NM of the
dependencies that need to be satisfied when invoking these
primitives. For example, the GRE abstraction (not shown
here in the interest of brevity) states that the creation of an
up pipe has a dependency on the peer module. Hence, when
the NM creates pipe-3, it needs to inform the GRE module
in router A of the peer GRE module in router B. This allows
the GRE modules in A and B to use the conveyMessage func-
tion to communicate and coordinate various protocol specific
values. For instance, it is these GRE modules that coordi-
nate the key values to be used by the tunnel and the NM
does not have to deal with any such protocol-specific details.
The modules similarly coordinate other details like sequence
number usage based on other abstract information provided
by the NM when invoking these primitives. Hence, while
this example leaves out a lot of details, it does capture the
essence of how most network management operations would
be simplified by having CONMan in place.

3. RELATED WORK
There is a tremendous amount of past work in network

management, the most relevant of which we briefly cite here,
and none of which focuses on hiding management complexity
inside protocol implementations as CONMan does. On the
commercial side, SNMPLink [19] lists many existing man-

agement tools, from low-end tools like packet analyzers (eg,
Ethereal [28]), traffic monitors (eg, MRTG [24]), and SNMP
agents (eg, ITM [4]) to high-end managers like OpenView [29]).

A number of proposals ([7][18][14]) are aimed at dealing
with the complexity of management interfaces like SNMP
and RMON [22], but do not attempt to reduce complexity
per se. Policy-based management [9] standardizes a common
high-level policy framework for management of QoS ([20, 1])
and security [26], but again does not reduce complexity per
se, a fact that has been an impediment of the adoption of
this approach [10].

The 4D proposal [8] recognizes the complexity of the In-
ternet’s control and management plane and hence, argues
for restructuring them. We were motivated by, among other
things, 4D’s discovery and dissemination plane. In order
to allow for multiple NMs, we have also proposed some ex-
tensions to the 4D management channel which are detailed
in [2].

Recently, there has been a spurt of research detailing the
reasons for outages and anomalies in IP backbones [13, 16],
Internet services [17] and BGP routing [6, 15]. These studies
point to configuration errors as a major culprit. CONMan
reduces the management plane’s burden by restricting the
complexity of protocols to their operation and hence, can
reduce these errors, particularly the ones impacting data
plane operation. Finally, we believe that CONMan can sim-
plify the cross-layer database and interface proposed in [12],
and indeed may provide the basis for the Knowledge Plane
objectives laid out by Clark et. al. [5].

4. FUTURE WORK
In this paper we have outlined a network architecture

called CONMan that is amenable to management. While
CONMan shows promise, it is certainly too early for us to
claim that the abstraction presented here suffices for all data
plane protocols. There are many challenges to overcome, in-
cluding:

First there is the question of even how to evaluate CON-
Man, given that network management is a pervasive and
human-intensive activity. There are issues of scale and ro-
bustness associated with the 4D management channel and
centralized NM approach. There are issues of crossing ad-
ministrative domain and addressing domain (NAT) bound-
aries. There are issues of dominion where multiple NM’s try
to manage the same equipment. While we believe that CON-
Man will allow network managers to get a better handle on
network security, the CONMan architecture also introduces
new security concerns, where an attacker may get control of
the NM. Finally, there are issues of how to deploy CONMan.
It is likely to share IPv6’s conundrum: namely that complex-
ity has to be increased over the short-term in order to arrive
at reduced complexity over the long-term. In spite of this list
of issues, we believe that CONMan represents an interesting,
novel, and promising approach to network management.

5. REFERENCES
[1] Amiri, K., Calo, S., and Verma, D. Policy based management

of content distribution networks. IEEE Network Magazine
(March 2002).

[2] Ballani, H., and Francis, P. Complexity Oblivious Network
Management: A step towards network manageability. Tech.
Rep. cul.cis/TR2006-2026, Cornell University, Ithaca, NY, US,
2006.

[3] Caesar, M., Caldwell, D., Feamster, N., Rexford, J., Shaikh,

A., and van der Merwe, J. Design and Implementation of a

Routing Control Platform . In Proc. of 2nd Symp. on
Networked Systems Design and Implementation (NSDI)
(2005).

[4] Carsten Schmidt. Interface Traffic Monitor Pro.
http://software.ccschmidt.de/.

[5] Clark, D. D., Partridge, C., Ramming, J. C., and Wroclawski,

J. T. A knowledge plane for the internet. In Proc. of ACM
SIGCOMM (2003), pp. 3–10.

[6] Feamster, N., and Balakrishnan, H. Detecting BGP
Configuration Faults with Static Analysis. In Proc. of 2nd
Symp. on Networked Systems Design and Implementation
(NSDI) (2005).

[7] Goldszmidt, G., Yemini, Y., and Yemini, S. Network
management by delegation: the MAD approach. In Proc. of the
conference of the Centre for Advanced Studies on
Collaborative research (CASCON) (1991).

[8] Greenberg, A., Hjalmtysson, G., Maltz, D. A., Meyers, A.,
Rexford, J., Xie, G., Yan, H., Zhan, J., and Zhang, H. A clean
slate 4D approach to network control and management. ACM
SIGCOMM Computer Communications Review (October
2005).

[9] Halpern, J., and Ellesson, E. The IETF Policy Framework
Working Group. Online Charter.
http://www.ietf.org/html.charters/OLD/policy-charter.html.

[10] Jude, M. Policy-based Management: Beyond The Hype.
Business Communication Review (2001), 52–56.
http://www.bcr.com/bcrmag/2001/03/p52.php.

[11] Kerravala, Z. Enterprise Networking and Computing : the
Need for Configuration Management. Yankee Group report,
January 2004.

[12] Kompella, R. R., Greenberg, A., Rexford, J., Snoeren, A. C.,
and Yates, J. Cross-layer Visibility as a Service. In Proc. of
fourth workshop on Hot Topics in Networks (HotNet-IV)
(2005).

[13] Labovitz, C., Ahuja, A., and Jahanian, F. Experimental Study
of Internet Stability and Backbone Failures. In Proc. of the
Twenty-Ninth Annual International Symposium on
Fault-Tolerant Computing (FTCS) (1999).

[14] Lim, K.-S., and Stadler, R. Developing Pattern-Based
Management Programs. In Proc. of the 4th IFIP/IEEE
International Conference on Management of Multimedia
Networks and Services (MMNS) (2001).

[15] Mahajan, R., Wetherall, D., and Anderson, T. Understanding
BGP misconfiguration. In Proc. of ACM SIGCOMM (2002),
pp. 3–16.

[16] Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah,

C., and Diot, C. Characterization of Failures in an IP
Backbone. In Proc. of IEEE INFOCOMM (2004).

[17] Oppenheimer, D., Ganapathi, A., and Patterson, D. Why do
Internet services fail, and what can be done about it. In Proc.
of USENIX Symposium on Internet Technologies and Systems
(2003).

[18] Pham, V. A., and Karmouch, A. Mobile Software Agents: An
Overview. IEEE/ACM Trans. Netw. 36, 7 (1998).

[19] Pierrick Simier. SNMPLink. www.snmplink.org/Tools.html.
[20] Rajan, R., Verma, D., Kamat, S., Felstaine, E., , and Herzog,

S. A policy framework for integrated and differentiated services
in the internet. IEEE Network Magazine 13, 5 (September
1999).

[21] Schonwalder, J. Characterization of SNMP MIB Modules. In
Proc. of International Symposium on Integrated Network
Management (2005).

[22] Stallings, W. SNMP, SNMPv2, SNMPv3 and RMON 1 and
2. Addison-Wesley Publishers, 1999.

[23] Thaler, D. Automating Network Diagnostics to Help
End-Users . , June 2005. research.microsoft.com/events/
smnsummit/Presentations/thaler.ppt.

[24] Tobias Oetiker and Dave Rand. MRTG : Multi Router Traffic
Grapher. http://mrtg.hdl.com.

[25] Uijterwaal, H., and Zekauskas, M. IP Performance Metrics
(ippm). Online Charter, Jan 2006.
http://www.ietf.org/html.charters/ippm-charter.html.

[26] Verma, D. Simplifying Network Administration using Policy
based Management. IEEE Network Magazine (March 2002).

[27] Xie, G., Zhan, J., Maltz, D. A., Zhang, H., Greenberg, A., and

Hjalmtysson, G. Routing design in operational networks: a
look from the inside. In Proc. of ACM SIGCOMM (2004),
pp. 27–40.

[28] Ethereal : A Network Protocol Analyzer. www.ethereal.com.
[29] HP OpenView. www.openview.hp.com/.
[30] CISCO GRE Keepalives. , January 2006.

www.cisco.com/en/US/tech/tk827/tk369/

technologies tech note09186a008040a17c.shtml.

