
Mitigating DNS DoS Attacks

Hitesh Ballani
Cornell University

Ithaca, NY
hitesh@cs.cornell.edu

Paul Francis
Cornell University

Ithaca, NY
francis@cs.cornell.edu

ABSTRACT
This paper considers DoS attacks on DNS wherein attackers flood
the nameservers of a zone to disrupt resolution of resource records
belonging to the zone and consequently, any of its sub-zones. We
propose a minor change in the caching behavior of DNS resolvers
that can significantly alleviate the impact of such attacks. In our
proposal, DNS resolvers do not completely evict cached records
whose TTL has expired; rather, such records are stored in a sepa-
rate “stale cache”. If, during the resolution of a query, a resolver
does not receive any response from the nameservers that are re-
sponsible for authoritatively answering the query, it can use the
information stored in the stale cache to answer the query.

In effect, the stale cache is the part of the global DNS database
that has been accessed by the resolver and represents an insurance
policy that the resolver uses only when the relevant DNS servers are
unavailable. We analyze a 65-day DNS trace to quantify the bene-
fits of a stale cache under different attack scenarios. Further, while
the proposed change to DNS resolvers also changes DNS seman-
tics, we argue that it does not adversely impact any of the funda-
mental DNS characteristics such as the autonomy of zone operators
and hence, is a very simple and practical candidate for mitigating
the impact of DoS attacks on DNS.

Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Reliability, Availability.

General Terms: Reliability, Security.

Keywords: DNS, Denial of Service, stale cache.

1. INTRODUCTION
In the recent past, there have been many instances of flooding

attacks on the Domain Name System (DNS) aimed at preventing
clients from resolving resource records belonging to the zone un-
der attack [26-29]. While these attacks have had varying success in
disrupting the resolution of names belonging to the targeted zone,
the threat posed by them to DNS operation is obvious. As a mat-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

ter of fact, DNS’s pivotal role as a precursor to almost all Internet
services implies that such attacks represent a severe threat to the
Internet in general.

In response to such attacks, some of the DNS root-servers and
top-level domain (TLD) servers have been replicated through IP
Anycast [10]. Lately, a number of research efforts have proposed
new architectures for the Internet’s naming system. The key insight
behind these proposals is to decouple the distribution of DNS data
from the hierarchy of authority for the data [8,9]. Once this decou-
pling is done, several mechanisms can be used to make the data dis-
tribution infrastructure highly robust and to ensure its availability in
the face of attacks. For instance, efforts arguing for centralized data
distribution [8] and peer-to-peer based data distribution [7,9,22,24]
represent the two extremes of the design space for such a robust
distribution infrastructure.

However, we are not convinced of the need for a new DNS archi-
tecture involving a new dissemination mechanism to ensure DNS
operation when nameservers are unavailable. Rather, we argue that
a complementary and a much more modest tack to handle DoS at-
tacks on DNS infrastructure is to do away with the need for 100%
availability in the existing architecture. In this paper, we follow this
argument and show that the need for nameserver availability in the
existing DNS framework can be reduced simply through a minor
modification in the caching behavior of DNS resolvers.

Today, DNS resolvers cache the responses they receive from
nameservers to improve lookup performance and reduce lookup
overhead. A resolver can use the cached responses to answer queries
for a duration specified by the time-to-live (TTL) value associated
with the response. We propose to modify the operation of resolvers
such that they do not expunge cached records whose TTL value has
expired. Rather, such records are evicted from the cache and stored
in a separate “stale cache”. Given a query that cannot be answered
based on the cached information, resolvers today traverse down a
hierarchy of DNS zones by querying the authoritative nameservers
for the zone at each step. However, this resolution process fails
if all the nameservers for the zone at any step of this traversal are
unavailable. In such a scenario, we allow resolvers to use the in-
formation stored in their stale cache to answer the query for the
unavailable zone and thus, allow the resolution process to continue.

Modifying DNS resolvers as specified above results in normal
DNS operation when resolvers are able to access nameservers; only
when all the nameservers for a zone do not respond to the queries
from a resolver does the resolver resort to using records for the
zone from its stale cache (stale records). This modification im-
plies that DNS resolvers store the part of the global DNS database
that has been accessed by them and use it when the relevant DNS
servers are unavailable. Consequently, while attackers may be able
to flood nameservers and overwhelm them, resolvers would still

Client

Resolver

Cache

Root-Server

Nameserver
(.edu TLD)

Nameserver
(.cornell.edu)

A? www.cornell.edu

Traversal fails

Figure 1: Traversal down the DNS hierarchy during the reso-
lution of the A-record for www.cornell.edu fails if the .edu TLD
nameservers are under attack.

have the stale records to rely upon. To this effect, this paper makes
the following contributions:

• We present a simple modification in the caching behavior of
DNS resolvers that would make nameserver availability less
critical than it is today and hence, mitigate the impact of DoS
attacks on DNS infrastructure.

• We discuss some details concerning the implementation of a
stale cache in a DNS resolver. Further, our scheme has a num-
ber of practical advantages with regards to protection against
flooding attacks that we discuss in section 4.1.

• We analyze a 65-day DNS trace to quantify the benefits of hav-
ing a stale cache under different attack scenarios and find that
the stale cache can be used to resolve a significant fraction of
client queries even under severe attacks of long duration.

• Using trace-based simulation, we determine the memory foot-
print of the stale cache and find that maintaining even a month’s
worth of stale records requires a small amount of memory.

• While DNS resolvers rely on their stale cache only when the rel-
evant nameservers are unavailable, the fact that the TTL-value
for stale records has expired implies that it is possible that these
records may not be the same as those returned by the actual
nameservers (had they been available). We use the aforemen-
tioned trace to quantify this possibility and find that the proba-
bility of inaccurate records being returned in case of an attack
is very small (<0.5%).

On the flip side, our proposal changes DNS semantics. For ex-
ample, zone owners cannot expect the records served by their name-
servers to be completely evicted by all resolvers within one TTL
period. We analyze problems that may arise due to such semantic
changes; the impact of this and other drawbacks of our scheme are
discussed in section 4.2. This analysis leads us to conclude that
the scheme does not adversely impact any of the fundamental DNS
characteristics such as the autonomy of zone owners. Hence, we
believe that the proposed resolver modification represents a very
simple and practical candidate for alleviating the impact of DoS
attacks on DNS.

2. A SIMPLE IDEA

2.1 DNS Resolvers Today
Clients rely on DNS primarily to map service names to the IP ad-

dresses of the corresponding servers. Typically, clients issue their

queries to a local DNS resolver which maps each query to a match-
ing resource record set (hereon simply referred to as a matching
record) and returns it in the response.1 Each record is associated
with a time-to-live (TTL) value and resolvers are allowed to cache
a record till its TTL expires; beyond this, the record is evicted from
the cache. Given a query to resolve, a resolver executes the follow-
ing actions2:

1. Look up the cache for a matching record. If a matching record
is found, it is returned as the response.

2. If a matching record is not found in the cache, the resolver uses
the DNS resolution process to obtain a matching record. This
involves:

(a) Determine the closest zone that encloses the query and has
its information cached (if no such zone is cached, the en-
closing zone is the root zone and the resolver resorts to
contacting the DNS root-servers). For example, given an A-
record query for the name www.cornell.edu, the resolver de-
termines if records regarding the authoritative nameservers
for the zones .cornell.edu, or .edu (in that order) are present
in its cache.

(b) Starting from the closest enclosing zone, traverse down the
DNS zone hierarchy by querying subsequent sub-zones un-
til the zone responsible for authoritatively answering the
original query is reached or an error response from a zone’s
nameservers implies that the traversal cannot proceed. In
either case, the resolver returns the appropriate response to
the client. Also, all responses (including negative responses
indicating error) during this resolution process are cached
by the resolver.

3. In case the resolution process in (2.b) fails due to the inability
of the resolver to contact all the nameservers of the relevant
zone at any step of the traversal, return a response indicating the
failure. Note that the term “failure” refers only to the scenario
when the traversal is not completed due to the unavailability of
the nameservers of a zone. Figure 1 illustrates this scenario.

2.2 DNS Flooding Attacks
We consider DoS attacks on DNS servers where attackers flood

the nameservers of a zone to disrupt the resolution of records be-
longing to the zone and consequently, any of its sub-zones. In gen-
eral, flooding attacks aimed at denying service to clients take ad-
vantage of the skewed distribution of functionality between clients
and servers. In the case of DNS, the fact that the nameservers for a
zone are completely responsible for serving the zone’s records and
in turn, for the operation of any sub-zones implies that their avail-
ability is critical and makes them an attractive target for flooding
attacks.

2.3 Proposed Resolver Modification
We argue that changing the caching behavior of DNS resolvers

so that they shoulder more of the resolution burden, especially when
nameservers are unavailable, is an effective way to address DNS
flooding attacks. Further, such a modification is possible within

1Note that the matching record may not answer the query; for ex-
ample, it may reflect an error condition due to which the query can-
not be answered. Hence, the term “response” includes both positive
and negative responses.
2This is a simplification of the algorithm used by resolvers but suf-
fices for the purpose of exposition. See [14] for a more detailed
version.

Client

Resolver

Cache

Root-Server

Nameserver
(.edu TLD)

Nameserver
(.cornell.edu)

A? www.cornell.edu

Traversal fails

Stale Cache

NS Lookup
.cornell.edu

Lookup
successful

Figure 2: Resolution of the A-record for www.cornell.edu suc-
ceeds: a stale NS record for .cornell.edu allows the traversal to
continue even though the .edu TLD nameservers are inaccessi-
ble.

the existing DNS framework. To this effect, DNS resolvers should
store the responses of the queries they resolve beyond the TTL val-
ues associated with the respective responses and use stale informa-
tion if all the authoritative nameservers for a zone are unavailable.
Thus, the resolvers have the stale information to rely on, in case the
authoritative servers for a zone are overwhelmed due to a flood of
requests. More concretely, we propose the following change in the
operation of DNS resolvers–

Stale Cache: Resolvers do not completely expunge cached records
whose TTL value has expired. Rather, such records are evicted
from the cache and stored in a separate stale cache. In effect, the
stale cache together with the resolver cache represents the part of
the global DNS database that has been accessed by the resolver.

Resolving Queries: In our proposal, the first two steps executed by
a resolver when resolving a query are the same as before. Hence,
given a query, the resolver attempts to respond to it based on the
cached information or through the resolution process. The third
step is modified as follows:

3) In case the resolution process in (2.b) fails due to the inability of
the resolver to contact all the nameservers of the relevant zone at
any step of the traversal, search the stale cache for the required
record. If such a record is found, the resolution process in (2.b)
can continue based on this stale record. Figure 2 illustrates this
scenario.

This modification implies that when (and only when) the authorita-
tive nameservers for a zone are unavailable, the resolver can resort
to using responses from a previously resolved query.

Stale Cache clean-up: Existing resolvers cache the responses to
the queries made during the resolution process in step (2.b). In our
proposal, these responses are also used to evict the corresponding
stale records from the stale cache. For example, during the resolu-
tion of the A record for the name www.cornell.edu, the resolver may
query the authoritative nameservers of the zone .edu for the author-
itative nameservers of the sub-zone .cornell.edu. When a response
containing records regarding these nameservers is received, it is
cached and is also used to evict any nameserver records for .cor-
nell.edu present in the stale cache. Note that this newly cached re-
sponse will be evicted to the stale cache upon expiration of its TTL
value. Also note that all responses (including negative responses)
are used to evict the stale cache. For example, a NXDOMAIN re-
sponse from the nameserver for .edu indicating that the sub-zone
.cornell.edu no longer exists will also lead to eviction of the exist-

ing nameserver record for .cornell.edu in the stale cache. Hence,
this clean-up process ensures that a record stored in the stale cache
always corresponds to the latest authoritative information that the
resolver received.

2.4 Stale Cache Details
From an implementation point of view, a resolver can perform

steps (2.b) and (3) of the query lookup concurrently. For instance,
continuing the earlier example, while the resolver queries the zone
.edu’s nameserver for the nameservers of the sub-zone .cornell.edu,
it can lookup its stale cache for information regarding the name-
servers for .cornell.edu. As mentioned earlier, the information from
the stale cache is used only if the resolver is unable to contact all
the nameservers for .edu and hence, the latency of the stale cache
lookup is not critical. Consequently, the stale cache can even be
maintained on the resolver’s disk. However, as we show in sec-
tion 3.3, even a month’s worth of stale records require a small
amount of storage space and hence, we envision resolvers main-
taining their stale cache in memory.

3. EVALUATION
In order to evaluate the advantages of a stale cache, we collected

DNS traffic at the link that connects the Cornell Computer Science
department’s network to the Internet. The network comprises of
≈1300 hosts. The trace was collected for a period of 65 days – from
21st Nov, 2007 to 24th Jan, 2008. It consists of 84,580,513 DNS
queries and 53,848,115 DNS responses for a total of 4,478,731
unique names. Each collected packet was anonymized to preserve
the privacy of the network’s clients. This included anonymizing the
source and destination IP addresses and the names and addresses in
the DNS part of packet. The fact that the trace was collected at the
network’s border router and not at the resolvers (i.e., the caching
nameservers) that reside inside the network implies that we do not
see all the queries generated by clients. Specifically, client queries
that can be answered based on the cached contents of the resolvers
do not appear in our trace. This quirk of the collection process has
important implications for the results presented here and we discuss
these later in the section.

Given the trace, we can simulate the operation of a stale cache
serving clients in the network under different attack scenarios. Such
a simulation is governed by two key parameters:

• Stale cache size: A stale cache size of x days implies that stale
records are kept in the stale cache for a maximum of x days. In
our simulations, we vary the stale cache size from 1 to 30 days.
Further, in section 3.3 we measure the actual memory footprint
for a stale cache of x days.

• Attack duration: This allows us to evaluate the operation of the
stale cache under attacks of varying durations. For any given
type of attack, we simulate the attack lasting for a duration of 3,
6, 12 and 24 hours.

Hence, to simulate the operation of a 7-day stale cache under an
attack lasting 3 hours, we populate the stale cache using the DNS
queries and responses in the first 7 days of the trace. We then sim-
ulate an attack every 3 hours while ensuring that the stale cache
contains trace data for the past 7 days. This allowed us to have 464
simulation runs ((65-7) days * 8 simulations per day) for a 3-hour
attack while using a 7-day stale cache. Thus, we were able to sim-
ulate a number of attacks for any given stale cache size and attack
duration.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

Stale Cache Size (days)

03 Hr
06 Hr
12 Hr
24 Hr

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

Stale Cache Size (days)

03 Hr
06 Hr
12 Hr
24 Hr

Figure 3: Fraction of Queries Answered using a stale cache of
varying size during an attack wherein none of the nameservers
are operational.

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

3021141075321

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

03 Hr
06 Hr
12 Hr
24 Hr

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

3021141075321

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

03 Hr
06 Hr
12 Hr
24 Hr

Figure 4: Fraction of Accurate Records in responses based on
a stale cache of varying size during an attack wherein none of
the nameservers are operational.

3.1 Is history useful?
We wanted to determine if there is any value to maintaining his-

torical information in the form of DNS records beyond their TTL-
values. To this effect, we consider an attack wherein none of the
DNS nameservers are operational and hence, all queries that cannot
be answered based on the information cached at the resolvers rely
on the simulated stale cache. Note that this is does not represent
a realistic flooding attack; instead, the objective here is to use an
extreme scenario to test the limits of the value of keeping around
stale DNS information.

We simulated the attack scenario described above for varying
attack durations and varying stale cache sizes. Here we focus on
those queries that cannot be answered based on the resolver cache.
Figure 3 plots the fraction of such queries that can be answered
based on the stale cache. The figure shows that a 1-day stale cache
can be used to answer 68% of such queries over the course of a
3-hour attack. The fraction of queries answered increases with the
stale cache size; for instance, a 3-day stale cache can answer 73.7%
and a 14-day stale cache can answer 79.6% of the queries. How-
ever, increasing the stale cache size beyond 14 days yields dimin-
ishing returns; for instance, a 21-day stale cache can answer 80.7%
and a 30-day stale cache can answer 81.5% of the queries.3 Past
studies have found that the popularity of DNS names follows a zipf
distribution [11] and the diminishing returns from increasing the
stale cache size appear to be a consequence of this.

The variation of the fraction of queries answered with the at-

3For clarity, the X-axis in figure 3 and the figures in the rest of this
section is limited to some chosen stale cache sizes.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 N
S

-Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 N
S

-Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

(a) NS-queries

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 A
-Q

ue
rie

s
A

ns
w

er
ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 A
-Q

ue
rie

s
A

ns
w

er
ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

(b) A-queries

Figure 5: For (a) NS-queries and (b) A-queries, Fraction of
Queries Answered and Accurate Records when using a stale
cache during an 3-hour attack.

tack duration for a given stale cache size is a little more compli-
cated. For a small stale cache (<=2 days), the fraction of queries
answered increases with attack duration. While non-intuitive, this
can be explained based on the facts that, 1). for attacks of short-
duration, many queries can be answered based on the resolver’s
cache and 2). the focus here is on queries that can be answered
using the stale cache. Consequently, for an attack lasting 3 hours,
many queries can already be answered based on the resolver’s cache
and the probability that a query whose answer is not cached can be
answered based on the stale cache is small. For attacks of longer
duration, most of the cached records have expired and hence, the
stale cache is able to answer more queries.

However, this effect diminishes for larger stale caches. The fig-
ure shows that for larger stale cache sizes, there is a small reduction
in the fraction of queries answered as the attack duration increases.
For instance, a 14-day stale cache can be used to answer 79.4% of
the queries during an attack lasting 6 hours and 79% of the queries
during an attack lasting 24 hours.

As mentioned earlier, an important thing to note is that the trace
does not include queries that are answered based on the cached
contents of the network’s resolvers. This implies that the numbers
regarding the fraction of queries answered (and similar numbers in
the rest of this section) vastly underestimate the actual fraction of
client queries that succeed in case of an attack with a stale cache in
place.

However, the fact that the TTL-value for the stale records has
expired implies that responses to client queries based on the stale
cache may not be the same as the responses that would be received
in case the actual nameservers were operational. This leads to the
notion of accurate and inaccurate records. Note that using an inac-
curate record in the resolution process does not necessarily imply
that the name being queried is resolved to a wrong address. In-

stead, in spite of the use of an inaccurate record, a name may be
resolved properly or may not be resolved at all – we discuss these
possibilities and their implications in section 4.2.

Our trace-based simulation allows us to determine the accuracy
of the DNS records in responses that utilize the stale cache. Specif-
ically, for each query received during a simulated attack, we com-
pare the response based on the stale cache and the actual response
from the nameserver had it been accessible (we get this information
from the trace) and all matching records are counted as accurate
records. Figure 4 plots the fraction of accurate records for varying
stale cache size and attack duration. The accuracy percentage in-
creases with increasing stale cache size. This results from the fact
that as the stale cache increases in size, it can answer more and
more queries for NS records that tend to be more stable and hence,
the increase in accuracy.4 However, the increase tapers off beyond a
stale cache size of 10-14 days; a 10-day stale cache yielded 99.6%
accurate records during a 3-hour attack. Also, the fraction of ac-
curate records reduces by a small amount as the attack duration
increases.

Next, we focussed on different kinds of queries. Specifically, we
studied queries for NS-records (i.e. NS-queries) and queries for A-
records (i.e. A-queries) and determined the fraction of such queries
that can be answered using the stale cache and the accuracy of the
corresponding stale records. In case of an attack lasting 3-hours,
the values for these fractions are plotted in figure 5. The figures
show that while the fraction of queries answered increases with
increasing stale cache size in both cases, the fraction of NS-queries
answered is much less than the fraction of A-queries answered. For
instance, a 14-day stale cache can answer 63% of NS-queries and
85.4% of A-queries.

This results from the fact that NS-records tend to have higher
TTL values as compared to A-records (especially A-records for
names not belonging to nameservers). Consequently, most of the
NS queries can be answered using the resolver cache. Further, if a
NS-query cannot be answered through the resolver cache, it is more
likely that the corresponding NS-records weren’t queried for in the
past and hence, would not be present in the stale cache too. This
also implies that the fraction of NS-queries answered hits the point
of diminishing returns much later than the fraction of A-queries
answered. The figure also shows that, as expected, the accuracy
of NS-records is higher than that of A-records. In both cases, the
accuracy of the stale records returned to clients increases with the
stale cache size and is >99.5% with a stale cache of more than 10
days.

Overall, these results show that even in the extreme attack sce-
nario considered here, the stale cache can answer a significant frac-
tion of the client queries in a surprisingly accurate fashion.

3.2 Performance under different attack sce-
narios

We now evaluate the performance of the stale cache under three
different attacks scenarios. The first attack involves the root-servers
not being accessible to the clients. Today, such an attack would
cause any queries for NS records corresponding to the top-level
domains (TLDs) to fail.5 However, in case of the trace-based simu-
lation of a stale cache, all such queries succeeded. This is because,
for the query and response pattern captured in our trace, the NS
records for all the TLDs were present either in the cache or the stale
cache at all times. Thus, the stale cache would have ensured that all

4We explain the increase in the fraction of NS-queries answered
later in the section.
5This assumes that the NS records are not present in the cache of
the network resolvers or have expired since the attack started.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

Figure 6: Fraction of Queries (for two-level names) Answered
and Accurate Records when using a stale cache during an 3-
hour attack on the TLD nameservers.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

Figure 7: Fraction of Queries (for three-level names) Answered
and Accurate Records when using a stale cache during an 3-
hour attack on second-level nameservers.

names would still resolve and hence, would effectively shield the
network from an attack on the root-servers.

The second attack involves clients not being able to access TLD
nameservers. Today, this would cause queries for any records cor-
responding to two-level names such as a.com to fail. Further, any
queries for longer names that rely on the resolution of two-level
names would fail too. Here we restrict ourselves to the queries
for two-level names that cannot be answered based on the resolver
cache. Figure 6 plots both the fraction of such queries that the stale
cache can answer and the fraction of records in these responses
that are accurate in case of a 3-hour attack. The trends for longer
duration attacks are similar. The fraction of queries answered in-
creases with an increasing stale cache size though it tapers off for a
stale cache of more than 14 days. A 14-day stale cache can answer
75% of the queries for two-level names. The reason for the lower
fraction of queries answered is that clients typically access the NS
records for names such as a.com and these records tend to have a
high TTL-value. As explained earlier, this implies that most such
queries are answered based on the resolver cache and if a record is
not cached, there is a higher probability that it has not been queried
at all and hence, is not present in the stale cache too. Of course,
the fraction of total client queries that succeed when using the stale
cache is much higher. The graph also shows that records from a
14-day stale cache are 99.4% accurate and accuracy increases with
the stale cache size too.

Similarly, the last attack scenario involves second-level name-
servers being inaccessible. This would cause queries for any records
corresponding to a three-level name such as b.a.com to fail. We
focus on such queries that are not cached by the network’s re-

 0

 500

 1000

 1500

 2000

 2500

 3000

302520151051
 0

 50

 100

 150

 200

 250

 300

 350
S

ta
le

 C
ac

he
 S

iz
e

 (

of
 r

ec
or

ds
 in

 th
ou

sa
nd

s)

S
ta

le
 C

ac
he

 S
iz

e
(M

B
)

Stale Cache Size (days)

of records
MB

 0

 500

 1000

 1500

 2000

 2500

 3000

302520151051
 0

 50

 100

 150

 200

 250

 300

 350
S

ta
le

 C
ac

he
 S

iz
e

 (

of
 r

ec
or

ds
 in

 th
ou

sa
nd

s)

S
ta

le
 C

ac
he

 S
iz

e
(M

B
)

Stale Cache Size (days)

of records
MB

Figure 8: Stale cache memory footprint

solvers. Figure 7 plots the fraction of such queries answered using
stale records during a 3-hour attack and the accuracy of these stale
records. As before, the fraction of queries answered increases with
an increasing stale cache size. However, in this case, the returns
from increasing the stale cache size are diminished much sooner
that the previous attack scenario. A 14-day stale cache can answer
85% of the queries for three-level names. Both A and NS records
for names such as b.a.com are accessed by clients and these tend to
have lower TTL-values than the records for two-level names. This
explains the higher percentage of queries answered. The graph also
shows that records from a 4-day stale cache are 99.8% accurate.

3.3 Memory Footprint
We now evaluate the memory requirements of the stale cache.

Figure 8 plots both the number of DNS records and the actual mem-
ory used by a stale cache of size 1 to 30 days. As one would expect,
the memory requirements of the stale cache increase as the number
of days increase. Note that the simulated stale cache stores DNS
records without any encoding and hence, there is scope for further
reducing the memory required for the stale cache. More impor-
tantly, the figure shows that even for a network with 1300 hosts and
a query-response rate of ≈25 DNS packets per second, the stale
cache memory footprint is very small. For instance, maintaining
stale records for a period of 30 days given the query pattern in our
trace requires <313MB of storage space.

Of course, the stale cache memory requirements depend on the
number of clients being served by the resolver and their query pat-
terns. Also, the evaluation in the previous section shows that the
gains to be obtained from stale records older than two weeks are
minimal. These factors suggest that, in practice, resolvers will keep
stale records only for a configurable number of days, for example
stale records for the past couple of weeks. Further, the resolver
will be limited to at most a certain amount of memory for the stale
cache. In case the stale cache fills up, the resolver would evict
records based on some criterion. For instance, the resolver could
use the query pattern of clients to evict the least recently used DNS
records (LRU eviction). However, given the amount of memory on
modern machines, we believe that resolvers should easily be able to
maintain a stale cache containing records for a couple of weeks and
there shouldn’t be a need for more complex eviction algorithms. In
section 4.2 we discuss how placing a limit on the duration for which
stale records are kept addresses some of the practical concerns aris-
ing out of the use of stale information.

4. DISCUSSION
There have been a number of “clean-slate” proposals to make

the availability of specific nameservers less critical for the oper-
ation of Internet’s naming system. These proposals [7-9,12,22,24]

decouple the ownership of names from the task of distributing them
and try to architect a robust mechanism for distributing the names.
However, such an approach could increase the total DNS overhead
many times over, especially in the face of the use of DNS for load
balancing purposes. On a more general note, while most of us agree
that DNS is afflicted by a few problems, we think that a majority
of them can be attributed to misconfigurations, improper imple-
mentations, violations of best current practices, or even a lack of
motivation to address them and not to major architectural flaws.
For example, problems regarding high lookup latency can mostly
be attributed to misconfigurations (i.e. broken and inconsistent del-
egations) [22] and the long timeouts used by resolvers in case of
errors [19]. Consequently, despite a number of proposals arguing
to the contrary, we do not see a pressing need for an architectural
change. Guided by this observation, our proposal represents an
exercise in showing how minor operational modifications can ad-
dress DNS problems; specifically, modifying the caching behav-
ior of DNS resolvers can reduce the impact of flooding attacks on
DNS.

In the rest of this section we discuss the advantages of the pro-
posed modification and a few possible objections to it.

4.1 Pros
DNS Robustness. The proposed modification ensures that re-

solvers can respond to queries for a zone even if the zone’s author-
itative nameservers are unavailable, assuming that the resolver has
queried the zone at some point in past and the previous response is
present in the resolver’s stale cache. The evaluation in the previ-
ous section showed that a stale cache can indeed make DNS more
robust to DoS flooding attacks. Further, while past attempts such
as the anycasting of DNS nameservers provide nameserver opera-
tors with a mechanism, albeit a very expensive one, to protect the
name resolution for their zones, our modification represents an in-
surance policy that can be adopted by the resolver operators and
hence, provides some control to the client.

Simplicity. The biggest argument in favor of the stale cache as a
means of increasing DNS robustness is its simplicity. The proposed
scheme:

• Does not change the basic protocol operation and infrastruc-
ture; only the caching behavior of resolvers is modified.

• Does not impose any load on DNS, since it does not involve any
extra queries being generated.

• Does not impact the latency of query resolution, since the stale
cache is utilized only when the query resolution fails.

Incremental Deployment. Any single resolver can adopt the mod-
ifications proposed in this paper and achieve significant protec-
tion from attacks against the DNS servers it and its clients access.
Hence, the proposal can be incrementally deployed.

Motivation for Deployment. Modifying a resolver is beneficial
for the clients being served by the it since the resolver can resolve
queries for zones that have been accessed by it in the past even
if the nameservers for the zones are not available. Hence, there
is motivation for the resolver operators to switch to the modified
resolver.

4.2 Objections
DNS caching semantics and the possibility of inaccurate infor-

mation being used. The biggest objection against the proposed
modification is that it changes the semantics of DNS caching. With
the current DNS specifications, a zone operator can expect the reco-
-rds served by the zone’s authoritative nameservers to be completely

expunged by resolvers within TTL seconds. With our proposal,
such records would be evicted to the stale cache. The problem with
such an approach is best explained through an example. Let’s con-
sider a zone whose records have been updated. Also, consider a
resolver that has accessed the zone but not since the update and so
the zone’s records in the resolver’s stale cache are obsolete or in-
accurate. Given this, if the resolver needs to resolve a query for
the zone at a time when all the zone’s authoritative nameservers are
unreachable, it would resort to using the inaccurate records present
in its stale cache.

The problematic scenario described above arises only when two
conditions are met:

1. The DNS records for the zone in question have been updated
since the last access by the resolver.

2. The nameservers for the zone are currently inaccessible.

Condition (1) can arise due to several reasons: for instance, the
nameservers for a zone have been moved, the service itself has mi-
grated or there have been address space changes, DNS based load-
balancing across the nameservers or the application servers, etc.
We consider these below.

First, if the nameservers have been moved, the name resolution
may fail while if the service migrates, the name may be resolved
to the wrong address. Both these are undesirable scenarios. How-
ever, restricting the duration for which resolvers can keep records
in their stale cache helps us avoid these. Specifically, to account
for this, a nameserver/service needs to be run on both its old and
new address for a couple of weeks after migration. This allows for
the old records to be flushed from the stale cache of resolvers. Note
that zone operators anyway need to do this today since a large num-
ber of misbehaving resolvers disregard TTL values and use expired
records even when the nameservers for a zone are available [32,34].

Second, if the DNS records have been changed to balance client
load, the name would probably resolve properly but this might in-
terfere with the load across the servers. In a recent study, Poole et.
al. [21] found that name-to-IP mappings tend to be very stable with
less than 2% of DNS names changing IP addresses more than once
a week. Further, most of these names can be attributed CDNs like
Akamai trying to balance client load across their servers.6 This im-
plies that not only is condition (1) rare, in a vast majority of cases
where it does occur, using the stale records would not lead to wrong
resolution. While this is far from perfect, the small possibility of
load imbalance across the servers when they are under attack (in
which case the load balancing isn’t working anyway) seems like a
small price to pay for the robustness offered by a stale cache. Also,
the possibility of a resolver using inaccurate records for a zone is
much less for zones that the resolver frequently accesses.

Further, resolvers may choose to apply the modified caching sch-
-eme to infrastructure records only. Infrastructure records, as de-
fined by [17], refer to records used to navigate across delegations
between zones and include the NS records (and the corresponding
A records) for zones. Past studies show that such records change
even more infrequently [9,17] than other DNS records and hence,
this would further reduce the possibility of resolvers using inaccu-
rate records while still providing a large robustness gain.

Finally, it is also possible to make changes on the client-side
DNS software to make applications aware of the use of stale records.
A resolver could use the RCODE field in the DNS header (a 4-
bit field; values 5-16 for this field have been reserved for future

6The fact that the actual DNS names in our trace have been
anonymized implies that we cannot determine if the changed map-
pings observed by us can also be attributed to CDNs.

use [14]) to inform the querying client that the response is based
on the stale cache. Similarly, the client gethostbyname and the
relevant libresolv functions could be modified to interpret the
new RCODE value and inform applications of the same. With these
changes in place, applications would have the flexibility of being
able to account for the possibility of inaccurate records and decide
whether to use stale records or not based on application seman-
tics and/or user choice. However, most applications that need to
make sure that they are accessing the right resource use application-
specific authentication anyway; for instance, financial web-sites
commonly use personalized site-keys for this purpose [33]. This,
combined with the fact that the possibility of stale records being
inaccurate (especially ones that lead to wrong resolution of names)
is miniscule, implies that we don’t feel that the overhead of modi-
fying the DNS-software at all clients is justified.

Autonomy for zone operators. Another important concern is that
the proposed modification would seem to move autonomy away
from zone operators to resolver operators. Allowing resolvers to
store records after their TTL value has expired suggests that zone
operators do not control the access to their sub-zones; for instance,
they could not kill off their sub-zones when they wish to.

However, this is not the case. The fact that we don’t modify
DNS’s hierarchical resolution process implies that resolvers still
need to go through the nameservers for a zone in order to access
its sub-zones and hence, the autonomy of zone operators is not af-
fected. For instance, let’s assume that the operator for the zone
.com needs to kill off the sub-zone .rogue.com. Typically, this
would involve .com’s zone operator configuring the zone’s author-
itative nameservers to respond to any queries regarding .rogue.edu
with a NXDOMAIN, implying that no such domain exists. Con-
sequently, a resolver trying to resolve a query like the A record
for www.rogue.- -com by traversing down the DNS zone hierar-
chy would receive a NXDOMAIN response from one of the .com
nameservers and would forward this to the client that originated
the query. Further, this response would be cached and eventually
be evicted to the stale cache. Thus, if there are any such future
queries at a time when all the .com nameservers are unavailable,
the resolver would still return a NXDOMAIN response.

Attackers attempting to force the use of inaccurate information.
Apart from the possibility of inaccurate data being used, there is
also the possibility of attackers taking advantage of the stale cache
maintained by resolvers to force the use of inaccurate records. At-
tackers may keep track of updates to the records of a zone and start
flooding the authoritative nameservers for the zone as soon as some
of the records are updated. If the attack overwhelms the zone’s
nameservers, resolvers trying to resolve the zone’s records would
rely on the obsolete data stored in their stale cache. In effect, at-
tackers can now flood the nameservers for a zone in order to delay
the propagation of updates to the zone’s records for the duration of
the attack. While we cannot imagine many cases where such an
attack could be used, one scenario where it does appear to be harm-
ful is to undermine the autonomy of zone-operators. In the exam-
ple above, the owners of the .rouge.com zone may flood the .com
nameservers to force the use of stale NS records for their zone and
hence, prevent their zone from being killed. The bigger problem
here is that there is incentive to flood the nameservers of a zone
to prevent sub-zones from getting killed. This problem captures
an inherent trade-off that the use of stale records exposes: when a
zone’s nameservers are being flooded, all sub-zones, including sub-
zones that were deleted in the recent past, are accessible. While this
is certainly a serious concern, it is important to note that the sub-
zones will stay alive only as long as the zone’s nameservers are
inaccessible. Given that measures to counter flooding attacks on

nameservers, such as filtering by ISPs, are usually applied within a
day or two of the attack, the sub-zones would be able to stay alive
for not too long a duration.

Privacy Concerns. With our proposal, DNS resolvers store DNS
records long beyond their TTL-values. This leads to privacy con-
cerns in case the resolver is broken into. Specifically, if a resolver
were to be compromised, the attacker would gain access to all the
stale cache records and hence, would have a heap of information
about what the resolver’s clients have been querying and in turn,
their web-access patterns. However, the stale cache would not pro-
vide the attacker with information about queries from individual
clients. Also, this is certainly no worse than other DoS mitigation
proposals that require DNS resolvers to query entities other than a
zone’s authoritative nameservers to resolve the zone’s records and
hence, leak out private information as an integral part of their oper-
ation.

Resolution latency in the face of an attack. In our proposal, if a
resolver is unable to reach the authoritative nameservers of a zone,
it resorts to using the zone’s records in the stale cache. Conse-
quently, the resolver must query each of the nameservers for the
zone, wait for the query to timeout (and possibly retry) before it
can use the stale cache. With the current timeout values used by
resolvers, this would entail a high lookup latency in the face of at-
tacks (i.e. when the nameservers for a zone are unavailable). For
example, the default configuration for the BIND8 resolver [31] in-
volves sending queries to each nameserver for 30 seconds with an
exponentially increasing period between consecutive retries. So,
clients accessing a zone with two authoritative nameservers at a
time when both of them are unavailable would need to wait for 60
seconds before receiving a reply. However, most resolvers allow
the retry and timeout values to be configured and hence, the lookup
latency problem can be solved by using aggressive values for these
timers. As a matter of fact, past work has already suggested that
these timer values are major contributors to the high lookup latency
when errors are encountered [19].

DoS’ing the application servers. The proposed modification does
not reduce the vulnerability of nameservers to DoS attacks. Con-
sequently, attackers can still flood them so that they are unable to
serve (and update) the records of the corresponding zones. Rather,
the modification makes the availability of DNS nameservers less
critical and hence, significantly reduces the impact of DoS attacks
on DNS.

Further, the proposal does not address the general DoS problem
and attackers can deny service to clients by attacking the applica-
tion servers instead of the corresponding DNS nameservers. As a
matter of fact, a flooding attack that chokes the network bottleneck
for a zone’s nameservers is also likely to hamper the availability of
the zone’s application servers. In such a scenario, there isn’t much
value to being able to resolve the names for the application servers
since clients would not be able to reach them anyway.7 In effect,
this concern boils down to how common is it for application servers
and their nameservers to share a network bottleneck. We intend to
measure this for nameservers on the Internet as part of our future
work.

Interaction with DNSSec. The proposal does not have any harm-
ful interactions with or implications for DNSSec. In case the re-
solver cannot reach the nameservers of a zone and relies on the cor-
responding records in the stale cache, the records ought to be classi-

7Note that there is still a lot of value to being able to access the sub-
zones when a zone’s nameservers are being flooded. For example,
being able to access the rest of the name system when the root-
servers are being flooded.

fied as “Undetermined” by the resolver.8 Hence, any DNSSec poli-
cies expressed by the resolver operator for undetermined records
naturally apply to the stale records.

5. RELATED WORK
A number of recent efforts [7-9,22,24] have proposed new ar-

chitectures for the next generation Internet naming system that ad-
dress DNS’s performance and robustness problems. Other propos-
als to change the DNS architecture include multicasting the global
DNS database to specialized servers to reduce the response time
for clients [12] and augmenting the DNS structure with additional
pointers that can be used to access sub-zones and hence, increase
DNS robustness against flooding attacks [25]. [20] argues for tak-
ing advantage of site multihoming by spreading the identity of end
hosts and rate-limiting name resolution requests to mitigate DoS
attacks. Balakrishnan et al. [1] propose to replace the hierarchical
DNS (and URL) namespace with flat identifiers. We show that a
minor operational change to resolvers in the existing DNS frame-
work can significantly mitigate the impact of DoS attacks on DNS.

The use of caches and more generally, of stale data to improve
system availability shows up in many aspects of computer science.
Examples include using stale data to improve availability of ser-
vices [13] and even shared memory multiprocessors [23]. [15] pro-
poses and evaluates the use of stale data to reduce the measurement
overhead for placement of services on the Internet. This paper eval-
uates the efficacy of stale data in increasing DNS availability.

Pappas et al. [17] argue for the use of long TTL values for in-
frastructure DNS records as a means of alleviating the impact of
DoS attacks on DNS. We share with their proposal the basic notion
of using records already present in the resolver cache for a longer
period. While our proposal involves changing the caching behavior
of resolvers, using longer TTL values for a zone’s records involves
a minor configuration change at the zone’s nameservers and hence,
does not necessitate any software update. However, using long TTL
values represents a technique that can be used by nameserver op-
erators. Also, long TTL-values make it harder for operators to up-
date their records. In subsequent work [18], the authors augment
their proposal and argue for resolvers proactively renewing the in-
frastructure records present in their cache as a means of mitigating
attack impact. This scheme has an important advantage over the
use of stale records: it does not modify DNS caching semantics.
However, as shown in [18], proactive renewal of DNS records by
resolvers, when used in isolation, increases DNS traffic many times
over. Further, the overhead of such an approach implies that it can-
not be used for non-infrastructure DNS records, a large fraction of
which don’t change very rapidly.

In past work [2], we discuss the use of stale DNS records as a
DoS mitigation mechanism. This paper follows up on that proposal
and quantifies the advantage of a stale cache and the possibility of
using obsolete information through trace-based simulations. Non-
amed [35] is a quasi DNS resolver that provides users the option
of using stale DNS information which maybe be useful for opera-
tion when disconnected from the Internet. We argue for the use of
a zone’s stale records only when all nameservers for the zone are
unavailable. Cohen and Kaplan [6] propose the use of stale DNS
records for improving DNS performance. This involves fetching
data based on the stale records and issuing a DNS query to refresh
the stale record concurrently. CoDNS [19] is a cooperative DNS
lookup service designed to alleviate client-side DNS problems. We
share with their proposal the notion of client-side (i.e. resolver-

8Undetermined records correspond to records resulting from a non-
DNSSec lookup [30].

side) changes to address DNS problems. While CoDNS involves
resolvers co-operating amongst each other to mask resolver-side
issues, we propose that resolvers use local storage to insure them-
selves (and their clients) against DoS attacks on DNS.

There have also been studies to determine the characteristics of
the existing DNS architecture. Jung et. al. [11] use DNS traces to
study client-perceived DNS performance and the effectiveness of
client caching. They found name accesses to be heavy-tailed which
also shows up in our measurements as the diminishing returns of
increasing the stale cache size. [16] studied both the deployment
patterns and the availability of DNS name servers while [4] mea-
sured the performance of the E root-server and observed instances
of DoS attacks wherein the root-server was used as reflector.

6. FUTURE WORK
This paper presents a very simple modification to the caching be-

havior of DNS resolvers. A preliminary evaluation based on DNS-
traces collected at Cornell University shows that stale records can
be quite effective in mitigating the impact of DoS attacks on DNS.
While the proposed modification certainly has some drawbacks, the
cost-benefit ratio, especially given the frequency and the impact of
DoS attacks, appears to favor the use of the stale cache. However,
a few aspects of our proposal require more work. For instance,
privacy concerns implied that we had to anonymize the collected
DNS traces and hence, were not able to study the DNS records that
would have been inaccurate had they been used as stale records
in the face of an attack. Specifically, we would have liked to de-
termine if this was due to load-balancing across nameservers and
if the clients would still have been able to access the desired re-
source. We are in the process of obtaining the relevant part of the
unanonymized trace to answer this and similar questions.

We are currently implementing the proposed modification into
dbjdns [3], a popular DNS resolver. We also intend to explore the
possibility of implementing this as an add-on to the CoDNS reso-
lution service [19] running on PlanetLab [5]. Apart from clearing
up the implementation issues, such an exercise would help us ana-
lyze the advantages of maintaining a stale cache in the face of ac-
tual attacks (which occur frequently enough to make this exercise
worthwhile!).

Acknowledgements
We would like to thank Larry Parmelee at CFS for his help and
patience with the DNS collection process. We are also grateful
to Paul Vixie at ISC for helpful discussions on why this proposal
should “not” be incorporated in DNS resolvers.

7. REFERENCES

[1] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, and M. Walfish, “A Layered
Naming Architecture for the Internet,” in Proc. of ACM
SIGCOMM, 2004.

[2] H. Ballani and P. Francis, “A Simple Approach to DNS
DoS Mitigation,” in Proc. of workshop on Hot Topics in
Networks, Nov 2006.

[3] D. J. Bernstein, “djbdns: Domain Name System Tools,”
Apr 2008, http://cr.yp.to/djbdns.html.

[4] N. Brownlee, k claffy, and E. Nemeth, “DNS
Measurements at a Root Server,” in Proc. of Globecom,
2001.

[5] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “PlanetLab: An

Overlay Testbed for Broad-Coverage Services,” ACM
SIGCOMM Computer Communication Review, vol. 33,
no. 3, July 2003.

[6] E. Cohen and H. Kaplan, “Proactive Caching of DNS
Records: Addressing a Performance Bottleneck,” in Proc.
of Symposium on Applications and the Internet, 2001.

[7] R. Cox, A. Muthitacharoen, and R. T. Morris, “Serving
DNS using a Peer-to-Peer Lookup Service,” in Proc. of
IPTPS, 2002.

[8] T. Deegan, J. Crowcroft, and A. Warfield, “The Main
Name System: An Exercise in Centralized Computing,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, 2005.

[9] M. Handley and A. Greenhalgh, “The Case for Pushing
DNS,” in Proc. of Hotnets-IV, 2005.

[10] T. Hardy, “RFC 3258 - Distributing Authoritative Name
Servers via Shared Unicast Addresses,” April 2002.

[11] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS
performance and the effectiveness of caching,”
IEEE/ACM Trans. Netw., vol. 10, no. 5, 2002.

[12] J. Kangasharju and K. W. Ross, “A Replicated
Architecture for the Domain Name System,” in Proc. of
INFOCOM, 2000.

[13] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat,
“Providing high availability using lazy replication,” ACM
Trans. Comput. Syst., vol. 10, no. 4, 1992.

[14] P. Mockapetris, “RFC 1035, DOMAIN NAMES -
IMPLEMENTATION AND SPECIFICATION,” Nov
1987.

[15] D. Oppenheimer, B. Chun, D. Patterson, A. C. Snoeren,
and A. Vahdat, “Service placement in a shared wide-area
platform,” in Proc. of the USENIX ’06 Annual Technical
Conference, 2006.

[16] J. Pang, J. Hendricks, A. Akella, R. D. Prisco, B. Maggs,
and S. Seshan, “Availability, usage, and deployment
characteristics of the domain name system,” in Proc. of
Internet Measurement Conference, 2004.

[17] V. Pappas, B. Zhang, E. Osterweil, D. Massey, and
L. Zhang, “Improving DNS Service Availability by Using
Long TTLs,” draft-pappas-dnsop-long-ttl-02, June 2006.

[18] V. Pappas, D. Massey, and L. Zhang, “Enhancing DNS
Resilience against Denial of Service Attacks,” in Proc. of
Conference on Dependable Systems and Networks (DSN),
2007.

[19] K. Park, V. Pai, L. Peterson, and Z. Wang, “CoDNS:
Improving DNS Performance and Reliability via
Cooperative Lookups,” in Proc. of USENIX OSDI, 2004.

[20] D. S. Phatak, “Spread-Identity mechanisms for DOS
resilience and Security,” in Proc. of SecureComm, 2005.

[21] L. Poole and V. S. Pai, “ConfiDNS: leveraging scale and
history to improve DNS security,” in Proc. of the 3rd
USENIX Workshop on Real, Large Distributed Systems
(WORLDS), 2006.

[22] V. Ramasubramanian and E. G. Sirer, “The Design and
Implementation of a Next Generation Name Service for
the Internet,” in Proc of ACM SIGCOMM, 2004.

[23] D. Soring, “Using lightweight checkpoint/recovery to
improve the availability and designability of shared
memory multiprocessors,” Ph.D. dissertation, University
of Wisconsin-Madison, 2002.

[24] M. Theimer and M. B. Jones, “Overlook: Scalable Name
Service on an Overlay Network,” in Proc. of ICDCS,
2002.

[25] H. Yang, H. Luo, Y. Yang, S. Lu, and L. Zhang,
“HOURS: Achieving DoS Resilience in an Open Service
Hierarchy,” in Proc. of Conference on Dependable
Systems and Networks (DSN), 2004.

[26] “Microsoft DDoS Attack, NetworkWorld,” Jan 2001,
http://www.networkworld.com/news/2001/
0125mshacked.html.

[27] “Root Server DDoS Attack, RIPE Mail Archive,” Nov
2002, https://www.ripe.net/ripe/maillists/archives/eof-list/
2002/msg00009.html.

[28] “Akamai DDoS Attack, Internet Security News,” Jun
2004, http://www.landfield.com/isn/mail-archive/2004/
Jun/0088.html.

[29] “UltrDNS DDoS Attack, Washington Post,” May 2005,
http://blog.washingtonpost.com/securityfix/2006/05/
blue security surrenders but s.html.

[30] “CISCO DNSSEC page,” Aug 2006,
http://www.cisco.com/web/about/ac123/ac147/
archived issues/ipj 7-2/dnssec.html.

[31] “Internet Systems Consortium,” Aug 2006,
http://www.isc.org/.

[32] “SLASHDOT: Providers Ignoring DNS TTL?” Aug
2006, http://ask.slashdot.org/article.pl?sid=05/04/18/
198259&tid=95&tid=128&tid=4.

[33] “SiteKey at Bank of America,” Jul 2007,
http://www.bankofamerica.com/privacy/sitekey/.

[34] “DNS - What do big sites do?” Aug 2008, http:
//forum.powweb.com/archive/index.php/t-54961.html.

[35] “nonamed - Man page,” Aug 2008,
http://www.minix3.org/previous-versions/Intel-2.0.3/
wwwman/man8/nonamed.8.html.

