
In Proceedings AAAI-92

Polynomial-Time Learning with Version Spaces

Haym Hirsh

Department of Computer Science

Rutgers University

New Brunswick, NJ 08903

hirsh@cs.rutgers.edu

Abstract

Although version spaces provide a useful concep-

tual tool for inductive concept learning, they often

face severe computational di�culties when imple-

mented. For example, the G set of traditional

boundary-set implementations of version spaces

can have size exponential in the amount of data

for even the most simple conjunctive description

languages

[

Haussler, 1988

]

. This paper presents a

new representation for version spaces that is more

general than the traditional boundary-set repre-

sentation, yet has worst-case time complexity that

is polynomial in the amount of data when used

for learning from attribute-value data with tree-

structured feature hierarchies (which includes lan-

guages like Haussler's). The central idea under-

lying this new representation is to maintain the

traditional S boundary set as usual, but use a list

N of negative data rather than keeping a G set as

is typically done.

1. Introduction

Concept learning can be viewed as a problem of search

[

Simon and Lea, 1974; Mitchell, 1982

]

|to identify

some concept de�nition out of a space of possible def-

initions expressible in a given concept description lan-

guage. Mitchell

[

1982

]

formalized this view of general-

ization as search in his development of version spaces:

A version space is the set of all classi�ers expressible

in the description language that correctly classify a set

of data. Mitchell furthermore noted that the relative

generality of concepts imposes a partial order that al-

lows e�cient representation of a version space by the

This paper owes a great debt to William Cohen, in front

of and with whom much of this work developed. The ar-

rangement of facilities by Paul Rosenbloom at ISI (under

DARPA and ONR contract number N00014-89-K-01555)

so I could escape from New Jersey and work in the Califor-

nia sun is tremendously appreciated. Discussions with and

comments from William Cohen, Steve Norton, and an ony-

mous reviewer (Oren Etzioni) are also greatly appreciated.

boundary sets S and G containing the most speci�c

and most general concept de�nitions in the space. The

S and G sets delimit the set of all concept de�nitions

consistent with the given data. Incremental learning

is accomplished with the candidate-elimination algo-

rithm, which manipulates only the boundary sets of a

version space: as each new example is obtained, S and

G are modi�ed so that they represent a new version

space containing those concept de�nitions that cor-

rectly classify all the previously processed data plus

the new example.

Although version spaces have been successful as a

conceptual framework for learning, they have had se-

rious computational limitations as a way to imple-

ment learning systems. This paper addresses the is-

sue of the computational complexity of implementing

version-space learning algorithms by proposing an al-

ternative representation of version spaces that main-

tains the S set as usual, but uses a list N of neg-

ative data rather than the traditional G set. The

bene�t of this new representation is that unlike the

[S;G] representation of version spaces where the G set

can have size exponential in the amount of data even

for very simple conjunctive languages

[

Haussler, 1988

]

,

this [S;N ] representation requires space and time only

polynomial in the amount of data. It furthermore ex-

tends the version-space approach to situations where

the boundary-set representation cannot be used.

The remainder of this paper is structured as fol-

lows. Section 2 discusses criteria for evaluating version-

space representations, including various operations a

representation should tractably support. Section 3

then presents the [S;N ] representation in more de-

tail, including implementations of various operations

using this representation. Descriptions of how these

implementations can be instantiated for conjunctive

languages over tree-structured attribute hierarchies to

yield polynomial-time version-space algorithms follows

in Section 4. Section 5 discusses some of the issues

raised by this work, including the generality of the

[S;N ] representation and some open problems, and

Section 6 concludes the paper with a summary of the

main points of this work.



2. Representing Version Spaces

The key idea in this paper is to develop an alternative

representation of version spaces for which computa-

tional intractability does not occur. However, before

describing the alternative representation, it is useful to

elaborate a bit further on what is meant by a repre-

sentation of a version space.

First some basic terminology. Concept learning

problems traditionally assume the presence of some

concept description language, CDL, in which results

must be expressed. Each concept de�nition in CDL

applies to a universe of objects, or instances, I, some

of which it classi�es as positive (the concept de�nition

is said to cover the instance) and some of which it

classi�es as negative. The extension of a concept de-

scription c 2 CDL is the set of all objects it classi�es as

positive. A learning problem is a triple hCDL; I

+

; I

�

i,

where I

+

; I

�

� I. I

+

is the set of positive training

data, and I

�

is the set of negative training data. A

concept de�nition c 2 CDL is consistent with I

+

and

I

�

, written cons(c; I

+

; I

�

), if it covers every element

of I

+

and doesn't cover any element of I

�

.

The version-space approach to concept learning

[

Mitchell, 1982

]

is to determine everything in a con-

cept description language that is consistent with I

+

and I

�

. The version space of all elements of CDL con-

sistent with I

+

and I

�

, VS

CDL

(I

+

; I

�

), is equal to

fc 2 CDL j cons(c; I

+

; I

�

)g. When clear from context,

the CDL subscript will be left out.

A representation of a version space for a class C of

description languages is a �nite data structure from

which VS

CDL

(I

+

; I

�

) can be de�ned for all CDL 2 C.

For example, the following are all representations of a

version space:

1. The tuple [S = min(VS(I

+

; I

�

)); G = max(VS(I

+

;

I

�

))] is a representation of a version space for the

class C of admissible languages,

1

since for admissible

languages VS(I

+

; I

�

) = fc 2 CDL j 9s 2 S; 9g 2

G; s � c � gg.

2. VS(I

+

; I

�

), i.e., listing all elements in the version

space, is trivially a representation of a version space

for the class C of �nite concept description languages.

3. The tuple [I

+

; I

�

] is a representation of a version

space for all languages, since VS(I

+

; I

�

) = fc 2

CDL j cons(c; I

+

; I

�

)g.

While all of these are version-space representations,

the key question that must be asked is how tractably a

set of data can be processed for a particular represen-

tation. This can be formalized as follows. A version-

space representation is tractable for a class of descrip-

tion languages if the representation of VS(I

+

; I

�

) can

be computed for all I

+

and I

�

in time polynomial in

1

Admissibility is a property that must hold for a concept

description language to guarantee that a version space can

be represented by its boundary sets

[

Gunter et al., 1991;

Hirsh, 1991; Mitchell, 1978

]

jI

+

j, jI

�

j, and relevant properties of the description

language (such as the number of features for feature-

based description languages).

2

For example, consider the tractability of the version-

space representations discussed above:

1. The [S;G] representation is not tractable for con-

junctive languages of tree-structured features, since

Haussler has shown that the G set can have size

exponential in jI

�

j for even the simple subcase of

monomial languages.

2. VS(I

+

; I

�

) (explicitly listing the entire version

space) is only tractable if the description language is

small, i.e., it has size polynomial in jI

+

j, jI

�

j, and

relevant properties of the description language.

3. The [I

+

; I

�

] representation is tractable for conjunc-

tive tree-structured languages since the [S;N ] repre-

sentation of the version space can be computed from

it, and as shown later this second representation is

tractable.

In addition to processing a set of data, there are

a number of operations that are useful when learning

with version spaces, and a good representation should

support as many of them as possible. This can be for-

malized as follows. A version-space representation is

epistemologically adequate for a set of operations and

a class of description languages if all the operations can

be implemented using the representation. A represen-

tation is heuristically adequate for a set of operations

and a class of description languages if each of the oper-

ations can be computed in time polynomial in the size

of the operation's inputs and in relevant properties of

the description language.

Among the operations that have generally proven

useful for version space are the following:

1(a) Collapsed?(VS) ! true or false:

If data are inconsistent or if there is no description

that can distinguish between all given positive and

negative data, the version space will be empty.

This operation returns true if version space VS is

empty, and otherwise it returns false.

(b) Converged?(VS) ! true or false:

The ideal result of learning will be a version space

that contains only a single item. This operation

returns true if version space VS contains exactly

one concept de�nition, otherwise it returns false.

2

Tractability should not be confused with the impor-

tant question of sample complexity (such as is addressed

in the pac-learning literature), namely how much data is

necessary to learn well with a particular class of descrip-

tion languages. The results in this paper guarantee that

if the sample complexity is polynomial in relevant features

of the language|such as to "-exhaust a version space with

high probability

[

Haussler, 1988

]

|processing the data us-

ing the [S;N ] representation will have polynomial compu-

tational complexity; there are no such guarantees for the

[S;G] representation.



2(a) Update(I;VS)! VS

0

:

For each new example learning must remove those

elements of the version space that classify the ex-

ample incorrectly. This operation updates version

space VS to re
ect new instance I.

(b) Classify(I;VS) ! +, �, or ?:

If all elements of a version space agree on the clas-

si�cation of an example, the example can be given

the unanimous classi�cation accorded by the ver-

sion space. This operation returns \+" if every el-

ement of VS classi�es I as positive, returns a \�"

if every element of VS classi�es I as negative, and

otherwise returns \?" since some elements of VS

classify I as positive and some as negative.

3(a) Member(C;VS) ! true or false:

A version space is simply a set of concept de�ni-

tions. This operation checks if concept de�nition

C is in version space VS.

4(a) VS

1

\VS

2

! VS

0

:

Version spaces are sets and thus can be inter-

sected. This operation returns the version space

VS

0

that is the intersection of VS

1

and VS

2

.

(b) VS

1

[VS

2

! VS

0

:

As for intersections, version spaces can also be

unioned together. This operation returns the ver-

sion space VS

0

that is the union of VS

1

and VS

2

.

(c) VS

1

� VS

2

, VS

1

= VS

2

! true or false:

One set can always be a subset of another. Sim-

ilarly, two sets can be equal. These operations

return true if VS

1

is a subset of VS

2

or if VS

1

is

equal to VS

2

, respectively.

The operations in 1, 2, 3, and 4a were described by

Mitchell

[

1978

]

. The operations in 4 have also proven

useful for an alternative form of boundary-set-based

version-space learning

[

Hirsh, 1990

]

.

To make this tangible, consider the adequacy of the

three representations discussed earlier:

1. The [S;G] representation is epistemologically ade-

quate for the set of operations listed above for the

class of admissible description languages, and it is

heuristically adequate for the operations above for

conjunctive languages of tree-structured features.

2. VS(I

+

; I

�

) (explicitly listing the entire version

space) is epistemologically adequate for �nite de-

scription languages, and is only heuristically ade-

quate for small description languages.

3. The [I

+

; I

�

] representation is epistemologically ad-

equate for the above operations for admissible de-

scription languages, since at worst the [S;N ] repre-

sentation can be computed from it. It is furthermore

heuristically adequate for all operations but 4b by

computing the associated [S;N ] representation.

Since VS(I

+

; I

�

) can be (although in theory need

not be) computed by sequentially processing the in-

dividual elements of I

+

and I

�

with a series of Up-

date operations, one might think that the heuristic ad-

equacy of a representation for the Update operation

implies tractability for processing a set of data within

the representation. This is not the case; for example

Haussler has shown that for the boundary-set repre-

sentation each Update can potentially double the size

of the G set, yielding a result with size exponential in

jI

�

j. Tractability can be established if the representa-

tion is heuristically adequate for Update and if for all

I

+

and I

�

the size of the representation of VS(I

+

; I

�

)

is guaranteed to be polynomial in jI

+

j, jI

�

j, and rele-

vant properties of the description language.

This paper is not the �rst to consider alternative

representations of version spaces. Most relevant to this

work is the representation used by INBF

[

Smith and

Rosenbloom, 1990

]

. It represents a version space using

the standard S set and using a G set that is only up-

dated with a subset of the negative data|those that

are \near misses"|and instead also maintains a list

of \far miss" negative data. They show that for con-

junctive tree-structured languages their representation

is epistemologically and heuristically adequate for op-

erations 1a, 1b, and 2a, and that it is furthermore

tractable.

Also related is the work of Idestam-Almquist

[

1989

]

,

whose primary focus is not on the tractability of ver-

sion spaces, but rather on retracting data as a way to

handle inconsistent data. Idestam-Almquist assumes

conjunctive languages over ranges and tree-structured

features. However, rather than representing S and G

sets he instead maintains where the S and G set would

be for each feature after processing each of the train-

ing examples in isolation. Idestam-Almquist shows

that his representation is epistemologically and heuris-

tically adequate for conjunctive languages over ranges

and tree-structured hierarchies for the operations in

categories 1 and 2 plus his instance retraction opera-

tion.

The representation described in this paper bears

many similarities to that of Smith and Rosenbloom,

but does away with the G set altogether, extending the

approach to non-feature-based languages and further

version-space operations. Some of Idestam-Almquist's

implementations of the operations in categories 1 and

2 are special cases of the implementations to be de-

scribed in the next section.

3. Version Spaces without G Sets

The whole point of this paper is that a version space

can be represented as a tuple [S,N ], where S repre-

sents the S boundary set of the traditional candidate-

elimination algorithm (i.e., S = min(VS(I

+

; I

�

))),

and N is a list of the observed negative data (i.e.,

N = I

�

). Initially S contains the empty concept that

says nothing is positive

3

and N is empty.

3

This should not be confused with an empty S set|the

S set here has one concept de�nition whose extension is

empty

[

Hirsh, 1990

]

.



First, observe that this is indeed a representa-

tion of version spaces for admissible description lan-

guages, since VS(I

+

; I

�

) = fc 2 CDL j 9s 2 S; s �

c; cons(c; ;; N )g.

The remainder of this section presents epistemolog-

ical adequacy conditions for the [S;N ] representation.

The following shows that the representation is episte-

mologically adequate for operations 1a, 2a&b, 3a, and

4a for admissible languages (including proof sketches

for the correctness of the given algorithms):

1(a) Collapsed?([S;N ]): If S is empty return true, oth-

erwise return false. (Cf. the algorithm for Up-

date.)

Proof: If S is empty the version space has no

minimal element, which means it must be empty

(since the CDL is admissible). 2

2(a) Update(I; [S;N ]): If I is negative add I to N and

remove those elements of S that cover I; if I is pos-

itive replace S with the minimal generalizations of

S that cover I but cover no element n of N .

Proof: The proof for the S set parallels that

for the candidate-elimination algorithm

[

Mitchell,

1978

]

; the proof for the N set is obvious. 2

(b) Classify(I; [S;N ]): If I is below every s in S, re-

turn \+" (as in the standard boundary-set imple-

mentation of version spaces). Otherwise compute

the new version space [S

0

; N ] that would arise if

I were positive. If S

0

is empty (i.e., the version

space collapses), I must be negative so return \�".

Otherwise return \?".

Proof: If I is below every element of S every ele-

ment of the version space must classify it positive.

If treating I as positive causes the version space to

collapse every element of the version space must

classify it as negative. Otherwise some classify it

as positive and some as negative. 2

3(a) Member(C; [S;N ]): If C is above some s in S and

covers no n in N return true, otherwise return

false.

Proof: If a de�nition is above some element of

S and doesn't cover any element of N it is in the

version space. 2

4(a) [S

1

; N

1

] \ [S

2

; N

2

]: Compute the minimal pair-

wise generalizations of elements from S

1

and S

2

.

Throw away those that cover some element of N

1

or N

2

. The S set for the new version space con-

tains the minimal elements of the result of this

computation. The new N set is simply the union

of N

1

and N

2

.

Proof: The proof for the S set parallels that for

version-space merging

[

Hirsh, 1990

]

; the proof for

the N set is obvious. 2

In addition, the [S;N ] representation is epistemolog-

ically adequate for Converged? for the following two

languages:

� If learning uses a conjunctive tree-structured lan-

guage, then Smith and Rosenbloom

[

1990

]

have

shown that convergence requires one \near-miss" for

each feature in the S set that has not been gener-

alized to be a \don't care". Thus it is possible to

check convergence for such languages by checking if

N contains the necessary near misses.

Proof: [Smith and Rosenbloom, 1990]. 2

� If it is possible to generate all minimal generaliza-

tions of a concept de�nition (i.e., for a concept def-

inition c it is possible to generate all terms c

i

for

which c

i

is more general that c and there is no c

0

between c and c

i

), then simply compute the set of

minimal generalizations of the S set (if it is single-

ton) and if each minimal generalization covers some

element n in N the version space has converged.

Proof: If there is no more general term that ex-

cludes all negative data, the singleton element of the

S set must be the most general term consistent with

the data as well as the most speci�c, and thus it is

the only thing in the version space. 2

These algorithms cover all of Mitchell's original op-

erations, and only leave operations 4b and 4c. Note

that the [S;N ] representation is not epistemologically

adequate for computing unions, since it is not even

possible to represent arbitrary unions of version spaces

for conjunctive tree-structured languages in the [S;N ]

representation (generating an example that demon-

strates this is left as an exercise due to space limita-

tions). On the other hand, the [S;N ] representation is

epistemologically (and heuristically) adequate for sub-

set and equality testing for conjunctive tree-structured

languages by exploiting the results of Smith and Rosen-

bloom

[

1990

]

, but space considerations preclude pre-

senting details.

4. Polynomial-Time Learning with

Version Spaces

The previous section demonstrated the correctness of

the [S;N ] representation of version spaces and showed

that it is epistemologically adequate for all the given

operations (except 4b) for fairly weakly constrained de-

scription languages. However, to be a satisfactory rep-

resentation it must be both tractable and heuristically

adequate. This section demonstrates the tractability

and heuristic adequacy of the [S;N ] representation for

conjunctive tree-structure languages.

4

4

Although not discussed here, the algorithms of this sec-

tion also apply (with minor changes) more generally, such

as for real-valued data where the description language takes

the form of conjunctions of ranges over the various vari-

ables. However, characterizing the exact linguistic limits of

tractability for these algorithms is beyond the scope of this

paper.



The most important criterion for a version-space

representation is whether data can be processed in

polynomial time, i.e., whether the representation is

tractable, and this is the �rst question considered here.

As discussed earlier, tractability can be established by

establishing heuristic adequacy for Update plus estab-

lishing polynomial bounds on the space requirements

for representing VS(I

+

; I

�

) for any I

+

and I

�

. The

heuristic adequacy of Update is shown below. It is easy

to show the necessary space bounds by noting that the

[S;N ] representation of VS(I

+

; I

�

) (for the class of

conjunctive tree-structured languages) requires space

linear in only jI

�

j and the number of features, since

the S set will always be singleton, and the size ofN can

never be larger than the amount of negative training

data (in contrast to the traditional [S;G] representa-

tion, which may require exponential space). Thus the

[S;N ] representation is tractable.

The remainder of this section shows the heuristic

adequacy of the [S;N ] representation for conjunctive

tree-structured languages for all the operations in cat-

egories 1 through 3 plus operation 4a using the algo-

rithms of the previous section. Key to these results

is the fact that comparing two concept de�nitions for

relative generality and computing the minimal general-

ization of two de�nitions requires time at worst linear

in the number of features and the sizes of the general-

ization hierarchies, as does comparing an instance to

a concept de�nition or computing the minimal gener-

alization of a de�nition that covers an instance. The

goal here, of course, is to show that each resulting im-

plementation requires time at worst polynomial in the

size of the inputs (e.g., jN j), the number of features,

and the size of the feature hierarches.

1(a) Collapsed?([S;N ]): This simply checks if S is

empty, and is thus trivially tractable.

(b) Converged?([S;N ]): For attribute-value data with

generalization hierarchies the result of Smith and

Rosenbloom

[

1990

]

mentioned above can be used.

This simply requires scanning every element of N

and checking if it is a near miss by inspecting

S and the generalization hierarchies for each fea-

ture. This clearly takes time polynomial in jN j,

the number of features, and the size of the gener-

alization hierarchies.

2(a) Update(I; [S;N ]): For negative data this requires

at worst checking if the single element of S covers I

and adding I to N , which only requires time linear

in the number of features and the hierarchy sizes.

For positive data this requires computing the min-

imal generalization of S and I, then comparing the

result to each element of N , which requires time at

worst polynomial in jN j, the number of features,

and the generalization-hierarchy sizes.

(b) Classify(I; [S;N ]): At worst this requires compar-

ing I to S (requiring time linear in the number of

features and the hierarchy sizes), then updating

the version space with the example (which as just

described requires polynomial time), then �nally

checking if the resulting S set is empty. This all

requires polynomial time.

3(a) Member(C; [S;N ]): Checking whether C is above

the singleton S-set element requires time linear

in the number of features and the hierarchy sizes,

and checking that it covers no element of N re-

quires time polynomial in jN j, the number of fea-

tures, and the hierarchy sizes, and thus member-

ship takes at most polynomial time.

4(a) [S

1

; N

1

] \ [S

2

; N

2

]: Computing the generalization

of the singleton elements from S

1

and S

2

requires

time polynomial in the number of features and the

hierarchy sizes. Comparing it to all elements ofN

1

and N

2

requires at most jN

1

j+ jN

2

j comparisons,

and thus computing the new S set requires poly-

nomial time. Computing the new N set simply

requires unioning N

1

and N

2

, which is of course

tractable.

5. Discussion

This paper has described how the [S;N ] representa-

tion of a version space is epistemologically adequate

for most of the desired version-space operations with

few restrictions on description languages beyond ad-

missibility. It also showed the tractability and heuris-

tic adequacy of the [S;N ] representation when used in

learning from attribute-value data with tree-structured

feature hierarchies. This is particularly notable be-

cause it applies even in cases where the traditional

boundary-set implementation of version spaces must

store an exponential number of items in the G set, i.e.,

where the [S;G] representation is not tractable. Since

the approach described here does not maintain a G set

this exponential complexity never occurs.

Eliminating the G set has further bene�ts beyond

avoiding exponential G-set size. These include:

� If the G set is in�nite. For example, if I is in�-

nite and CDL contains one most general de�nition

whose extension contains all of I and the remaining

elements of CDL include all de�nitions that cover

exactly one or exactly two elements of I, after a

single positive example and a di�erent single neg-

ative example the G set would have in�nite size.

Nonetheless, the [S;N ] representation would still ap-

ply to this case. A more realistic example of this

is in the description logic Classic

[

Borgida et al.,

1989

]

, where there are an in�nite number of max-

imally general specializations of thing that would

exclude a description containing a cyclic same-as

construct; here, too, the G set would be in�nite.

� If the language is not admissible. Even if there

are unbounded ascending chains (which means there

may be no maximal term for a version space and

hence no G set), the [S;N ] representation may ap-

ply; all that is necessary is that the S set be repre-



sentable. This suggests that the notion of admissi-

bility can be separated into two parts: \lower" ad-

missibility for S-set representability and \upper" ad-

missibility for G-set representability. All the earlier

proofs only require lower admissibility.

� If it is intractable or undecidable to compute a single

minimal specialization of a concept de�nition. Since

the [S;N ] representation only requires generalizing

S-set elements, it applies even when G-set special-

izations cannot be computed.

Thus the [S;N ] representation of version spaces makes

it possible to implement version-space learning in situ-

ations where Mitchell's original version-space approach

would not have even applied.

This paper has suggested doing away with G sets

since most languages traditionally used with version

spaces tend to have singleton S sets and it is the G set

that causes di�culties. However, for some languages,

such as pure disjunctive languages, the G set remains

singleton and the S set can grow exponentially large.

While this paper has described representing version

spaces by the S and N sets, by symmetry it is possible

to represent a version space by its G set and a list P of

positive data. In general one would want to represent

a version space by whichever of the two boundary sets

would remain small plus the data that correspond to

the other boundary set.

There are a number of questions that remain open.

This paper described how it is possible to do away

with one boundary set by instead saving a list of train-

ing data. The obvious next step would be to replace

both boundary sets with the lists of positive and nega-

tive data that give rise to them and perform all opera-

tions using these lists. While presented as a strawman

representation in Section 2, the general questions of

tractability and heuristic adequacy are worth explor-

ing.

Although the [S;N ] representation is heuristically

adequate for subset and equality testing for conjunc-

tive languages over both tree-structured hierarchies

and ranges, the general question of epistemological and

heuristic adequacy for these operations for more gen-

eral languages remains an open question. Lastly, the

tests for convergence presented here only apply in spe-

cial cases; while it would be interesting to show epis-

temological adequacy for a more general class of lan-

guages, the assumption that it is possible to compute

all minimal generalizations of a de�nition is likely to

be the most general case possible.

Finally, note that the [S;N ] representation is

not a perfect replacement for the traditional [S;G]

boundary-set representation. If unions are important,

or if it is necessary to have the G-set explicitly (such as

if false negatives are bad and thus very general terms

are desired), the [S;G] representation is the only one

known to be appropriate.

6. Summary

This paper has presented a new representation for ver-

sion spaces that maintains the S set of traditional

boundary-set implementations of version spaces, but

replaces the G set with a list N of negative data.

This [S;N ] representation was shown to support vari-

ous desired version-space operations. When applied to

attribute-value data with tree-structured feature hier-

archies learning has worst-case complexity that is poly-

nomial in the amount of data even in situations where

the candidate-elimination algorithm takes exponential

time and space. The learning algorithms also apply in

cases where boundary-set implementations of version

spaces cannot be used, such as when it is intractable

or impossible to compute G-set elements.

References

A. Borgida, R. J. Brachman, D. L. McGuiness, and

L. Resnick. CLASSIC: A structural data model for

objects. In Proceedings of SIGMOD-89, Portland,

Oregon, 1989.

C. A. Gunter, T.-H. Ngair, P. Panangaden, and

D. Subramanian. The common order-theoretic struc-

ture of version spaces and ATMS's (extended ab-

stract). In Proceedings of the National Conference on

Arti�cial Intelligence, pages 500{505, Anaheim, CA,

July 1991.

D. Haussler. Quantifying inductive bias: AI learning

algorithms and Valiant's learning framework. Arti�-

cial Intelligence, 26(2):177{221, Sept. 1988.

H. Hirsh. Incremental version-space merging. In

Proceedings of the Seventh International Conference

on Machine Learning, pages 330{338, Austin, Texas,

June 1990.

H. Hirsh. Theoretical underpinnings of version spaces.

In Proceedings of the Twelfth Joint International

Conference on Arti�cial Intelligence, pages 665{670,

Sydney, Australia, August 1991.

P. Idestam-Almquist. Demand networks: An alter-

native representation of version spaces. SYSLAB Re-

port 75, Department of Computer and Systems Sci-

ences, The Royal Institue of Technology and Stock-

holm University, 1989.

T. M. Mitchell. Version Spaces: An Approach to Con-

cept Learning. PhD thesis, Stanford University, De-

cember 1978.

T. M. Mitchell. Generalization as search. Arti�cial

Intelligence, 18(2):203{226, March 1982.

H. Simon and G. Lea. Problem solving and rule in-

duction. In H. Simon, editor,Models of Thought. Yale

University Press, 1974.

B. D. Smith and P. S. Rosenbloom. Incremental non-

backtracking focusing: A polynomially bounded gen-

eralization algorithm for version spaces. In Proceed-

ings of the National Conference on Arti�cial Intelli-

gence, pages 848{853, Boston, MA, August 1990.


