URL Normalization for De-duplication of Web Pages

Amit Agarwal '

Krishna Prasad
Chitrapura

Hema Swetha Koppula

Sachin Garg

Krishna P. Leela

Pavan Kumar GM

Yahoo! Labs
Bangalore, India

{amitja,shema,krishna,pkrishna,gsachin,pavank}@yahoo-inc.com

ABSTRACT

Presence of duplicate documents in the World Wide Web ad-
versely affects crawling, indexing and relevance, which are
the core building blocks of web search. In this paper, we
present a set of techniques to mine rules from URLs and
utilize these learnt rules for de-duplication using just URL
strings without fetching the content explicitly. Our tech-
nique is composed of mining the crawl logs and utilizing
clusters of similar pages to extract specific rules from URLs
belonging to each cluster. Preserving each mined rules for
de-duplication is not efficient due to the large number of
specific rules. We present a machine learning technique to
generalize the set of rules, which reduces the resource foot-
print to be usable at web-scale. The rule extraction tech-
niques are robust against web-site specific URL conventions.
We demonstrate the effectiveness of our techniques through
experimental evaluation.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search pro-
cess; 1.7.0 [Document and Text Processing]: General

General Terms

Algorithms, Performance

Keywords

Search engines, URL de-duplication, Page importance, De-
cision tree

1. INTRODUCTION

Our focus in this paper is on efficient and large-scale de-
duplication of documents on the WWW. Web pages which

*The author’s current affiliation is Infibeam, Bangalore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’09, November 2—-6, 2009, Hong Kong, China.

Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

have the same content but are referenced by different URLs,
are known to cause a host of problems. Crawler resources are
wasted in fetching duplicate pages, indexing requires larger
storage and relevance of results are diluted for a query.

Duplicate URLs, referencing the same page are present
due to many reasons. These include session-ids or cookie
information being stored in the URLs, e.g., ytsession in
http://www.youtube.com/index?&ytsession=YTAdOJpcz
and http://www.youtube.com/index?&ytsession=
72syqlgfF. URLs are made search engine friendly by
making both static and dynamic URL available, e.g.,
http://en.wikipedia.org/wiki/Casino_Royale and
http://en.wikipedia.org/?title=Casino_Royale. Also
there are a large number of URLs with irrelevant or super-
fluous components contained within them, e.g. Lord-Rings
in http://www.amazon.com/Lord-Rings/dp/B000634DCW
instead of URL http://www.amazon.com/dp/B000634DCW.
Sometimes webmasters construct URLs with custom delim-
iters making detection of duplicates difficult, e.g., http://
catalog.ebay.com/The-Grudge_UPC_043396062603_WOQQ_
fc1sZ1QQ_pcatidZ1QQ_pidZ43973351QQ_tabZ2 and http:
//catalog.ebay.com/The-Grudge _UPC_043396062603_W0?
_fcls=1&_pcatid=1&_pid=43973351&_tab=2.

An estimate by [6] shows that approximately 29 percent
of web-pages are duplicates and the magnitude is increas-
ing. Clearly, this prompts for an efficient solution that can
perform de-duplication without fetching the content of the
page. As duplicate URLs have specific patterns which can
be utilized for de-duplication of web-pages, in this paper we
will focus on the problem of de-duplication using just URLs
without fetching the content.

1.1 Related Work

Conventional methods to identify duplicate documents in-
volved fingerprinting each document’s content and group
documents by defining a similarity on the fingerprints. Many
elegant and effective techniques using fingerprint based sim-
ilarity for de-duplication have been devised [4, 8, 10]. [8, 10]
also emphasized and showed results with large scale experi-
ments. However, with the effectiveness also comes the cost of
fingerprinting and clustering of documents. Recently, more
cost-effective approach of using just the URLs information
for de-duplication has been proposed, first by Bar-Yossef
et.al. [2] and extended by Dasgupta et.al. [5].

Bar-Yossef et al. [2] call the problem, “DUST: Different

Offline Rule Generation

Online Application in Crawler

-

<URLs URL i
I]up-cluster! Dup-cluster>

Pair-wise Rule
Generation

Rule Generalized Rule Metrics | Final Rules,

/ Raw URLs
Rule Application "_ Crawler }1

w

Genheration Metrice

Generalization

J

|
I
I
|
I
I
|
I
I
|
I
I
Pair-wise Rules |
I
|
I
I
T
I
I
|
I
I

\

~

K World Wide

Hormmalized Y Web
URL=
Crawled
Pages

/

Figure 1: Flow diagram showing the Offline Rule Generation and Online Rule Application

URLSs with Similar Text” and propose a technique to uncover
URLs pointing to similar pages. The DUST algorithm fo-
cuses on discovering substring substitution rules, which are
used to transform URLs of similar content to one canonical
URL. Dasgupta et. al. [5] extended this formulation by con-
sidering a broader set of rule types, subsuming DUST rules.
Different rule types which they consider are: DUST rules,
session-id rules, irrelevant path components and complicate
rewrites. We extend this work by proposing scalable tech-
niques to learn high precision rules which can attain better
de-duplication of URLs.

The rest of the paper is organized as follows. In Section 2
we formalize the problem and describe the representations
of a URL and a Rule. Section 3 presents the algorithm
with details of each technique. Experimental evaluation is
presented in Section 4 and we conclude in Section 5.

2. PROBLEM DEFINITION

In this section, we present the problem definition using
the URL and Rule representations from [5].

A URL is tokenized using standard delimiters and the pri-
mary components of the URL, namely protocol, hostname,
path components and query-args [3] are extracted. A URL
u can be represented as a function from K — V where K
is composed of keys and V' is composed of values from both
static path components and query-args. While query-arg
keys inherit the key name from the query name, the path
component keys k,, are indexed with an integer n, where n
is the position index from the start of the URL with proto-
col corresponding to n equals 1. For example, http://en.
wikipedia.org/wiki?title=Web_crawler is represented as
{k1 = hitp, k2 = en.wikipedia.org, ks = wiki and ke =
Web_crawler}.

A Rule is generated from a source, target URL pair and
is composed of context and transformation. “Context” rep-
resents the source URLs, i.e., the URLs on which the Rule
can be applied. “Transformation” represents the changes
on the source URL to transform it to the target URL.
The changes include change in the value of a key, addi-
tion of new keys and removal of keys. New value for a
key, if already present in the source URL for a different
key, is represented using a key reference. For example, the
Rule with context c¢(k1) = http, c(k2) = en.wikipedia.org,
c(ks) = wiki, c(kiie) = Web_crawler and transformation

t(ka) = ktitie, t(ktize) =L is formed from source URL http:
//en.wikipedia.org/wiki?title=Web_crawler and target
URL http://en.wikipedia.org/wiki/Web_crawler. Com-
plete definitions of URL and Rule are supplied in Definition
1 and 2 respectively.

DEFINITION 1. (URL) A URL u is defined as a func-
tion u : K — VU{L} where K represents the set of all keys
from the URL set and V' represents the set of all values. A
key not present in the URL is denoted by _L.

DEFINITION 2. (RULE) A Rule r is defined as a func-
tion r : C' — T where C represents the context and T repre-
sents the transformation of the URL. Context C' is a func-
tion C' : K — V U {x} and transformation T is a function
T:K — VU{L,K}, where * represents any value.

Given clusters of URLs with similar page content (such a
cluster is referred to as a duplicate cluster or a dup-cluster),
we learn Rules from URL strings which can identify dupli-
cates. These learnt Rules can then be utilized for normal-
izing duplicate URLs into an unique normalized URL. Fig-
ure 1 demonstrates the various steps involved in offline Rule
generation and the online application of the generated Rules
by a crawler. The first step in offline processing is tokeniz-
ing the URLs into <key,value> tuples. These tuples along
with the dup-cluster information are used for the Rule gen-
eration. Pair-wise Rules are generated from selected URL
pairs with in a dup-cluster and then the pair-wise Rules are
generalized, as described in Section 3.2. Generalization not
only reduces the number of Rules but also give Rules which
can efficiently normalize unseen URLs. Various performance
metrics for the generalized Rules are computed. The metrics
we used are described in Section 4. These metrics can be
used for Rule selection based on the precision requirements.
Applications such as crawlers, while crawling obtain a set
of new URLs to crawl. These URLs are normalized using
Rules generated from offline processing. Normalized URLs
are compared with already crawled URLs to find duplicates.
This process of de-duplication avoids the overhead of crawl-
ing duplicate documents. As crawlers and other real-time
applications have resource constraints, offline processing has
to generate a small set of Rules which can achieve maximum
reduction in duplicates.

3. ALGORITHM

In Section 3.1, we discuss two techniques for extracting
tokens from URLs: generic tokenization and host specific
tokenization. Section 3.2 covers Rule generation algorithms:
pair-wise Rule generation, which generates Rules specific to
URL pairs and Rule generalization, which generalizes both
context and transformation of pair-wise Rules.

3.1 URL Preprocessing

Tokenization is performed on URLs to generate a set of
< key,value > pairs as represented in Definition 1. This
involves two stages of tokenization. In the first stage, Ba-
sic Tokenization, the URLs are tokenized by parsing them
according to RFC 1738 [3]. The standard delimiters are
used to extract the protocol, hostname, path components
and query-args from the URL. The second stage, Deep Tok-
enization, further tokenizes these tokens using host-level de-
limiters learnt from the URLs of a host. We use an unsuper-
vised technique to learn the custom encodings and extract
syntactic features from URLs. Our technique is influenced
by sequence based techniques of computational biology [7].

Starting with the generic pattern x, the Deep Tokenization
algorithm recursively detects more specific patterns match-
ing the given set of tokens. This results in generation of a
pattern tree for a given set of tokens. For example, pattern
cat-*.html matches all tokens matching the pattern regex.
The algorithm refines this pattern into specific patterns,
eg. cat-*-sku-*.html and cat-*-sort-*.html each of which
matches a subset of the tokens. Once a leaf pattern in
the tree is reached, it is used to extract deep tokens from
corresponding tokens. For example the token cat-1205234-
sku-BO0006HW5W-item-ibm_128mb_thinkpad.html can be
tokenized into deep tokens cat, —, 1205234, —, sku, —,
BO000O6HW5S5W, —, item, —, ibm_128mb_thinkpad, . and
hitml using the pattern cat-*-sku-*-item-*.html. The deep
tokens thus obtained are also represented as <key,value>
pairs similar to the rest of the tokens in the URL.

3.2 Rule Generation

The Rule generation stage involves generation of Rules
for pairs of URLs within a dup-cluster and then generaliz-
ing these pair-wise Rules to form a smaller set of generalized
Rules. The generalized Rules can accommodate new values,
making them applicable to unseen URLs. The smaller mem-
ory footprint of the generalized Rules makes them usable
on-the-fly by the crawlers.

3.2.1 Pair-wise Rule Generation

Pair-wise Rule Generation Algorithm generates pair-wise
Rules for selected URL pairs within dup-clusters. A Rule is
constructed from a source, target URL pair by setting the
source URL as the Context of the Rule. All changes required
to transform source URL to target URL are added to the
Transformation of the Rule. At web scale generating the
pair-wise Rules for all pairs of URLs within a dup-cluster is
not feasible. The number of URL pairs in all the dup-clusters
is), C? where C; is the number of URLs contained in dup-
cluster ¢. This number can run in billions due to large sized
dup-clusters. These large sized dup-clusters are common on
web due to presence of session-ids and irrelevant components
in the URLs. Due to the scale problems of pair-wise Rule
generation, we introduce an approach for selective sampling
of source and target URLs.

Target Selection As target URLs are used for gener-
ating transformations, selecting better targets yield better
transformations and compact Rules. Typically, dup-clusters
have a small set of URLs which are close to the normal-
ized URL of that dup-cluster. Some of the characteristics
of an ideal normalized URL include static type of the URL,
shorter length of URL, minimum hop distance from the do-
main root and high number of in-links. As these set of char-
acteristics closely match with host-level page rank discussed
in [9], we considered this approach for ranking URLs and
selected the top-k as target URLs. This not only achieves
significant reduction in number of Rules but also generates
coherent Rules for better generalization.

Source Selection As source URLs are used for gener-
ating context, we select URLs with high importance. The
URLs seen by the crawlers and search engines follow power
law distribution where some URLSs are seen more often than
others. Learning Rules for these high traffic URLs will give
high reduction in duplicates. URL importance can be ob-
tained by URL ranking methods such as PageRank [11] or
the On-Line Page Importance [1]. For our experiments we
used the crawl time computed page importance metric [1],
available from the crawl logs. We sampled ranked URLs
from each duplicate cluster using stratified sampling. URLs
are divided into equal sized buckets based on the page im-
portance. URLs are sampled from each bucket proportional
to the contribution of the bucket to the total importance of
the dup-cluster.

As the number of target URLs selected per dup-cluster is
constant and the number of source URLSs selected is propor-
tional to the size of the dup-cluster, the number of pair-wise
Rules generated are linear in the number of URLs.

3.2.2 Rule Generalization

Rule generalization captures generic patterns out of the
pair-wise Rules and generalizes both the contexts and trans-
formations. Previous efforts used heuristics to perform gen-
eralization, however these heuristics do not guarantee pre-
cision of the Rules. We use a Decision Tree [12] for context
generalization. Advantages of Decision Tree over heuristics
are the proven error bounds and the robustness of the tech-
nique as it is used in multiple domains.

Context generalization involves constructing the decision
tree with transformations as Classes/Targets. The key set
K is considered as attributes and the value set V' U {x} is
considered as instances for the attributes. We construct a
decision tree where an attribute (or key k) is selected at ev-
ery iteration. Nodes at the current iteration are assigned
a particular value v of the selected attribute k. We assign
* (wildcard) to a node if there is no single value v which
holds majority. After constructing the decision tree, we tra-
verse it top-down to generate the generalized context and
corresponding transformation.

While context generalization is done through decision tree,
we also perform transformation generalization by consider-
ing all transformations corresponding to the same context.
If a key is generalized to take wildcard (%) in the context
and the same key takes multiple values in the transforma-
tion, then the value is replaced by wildcard in the transfor-
mation. The motivation for doing this generalization is, if
the generalized key in the context can take any value (x),
the key is irrelevant for any matched URL, and hence the
transformation can also have a wildcard for that key.

4. EXPERIMENTAL EVALUATION

In this section we present experimental setup and key met-
rics used for measuring the performance of our techniques.

Metrics We used the following metrics for our experi-
ments:

1. Coverage of a Rule is the number of URLs the Rule
applies to, denoted by 7cov

2. Precision is also a Rule level metric. If 7.0, is the
coverage of Rule r and f is the number of URL pairs
(u,v) 3 r(u) = v and w and v are not in the same
dup-cluster, precision of r is % * 100.

3. ReductionRatio is a metric for set of Rules. It is
the percentage reduction in the number of URLs af-
ter transforming the URLs with a set of Rules. It is

Uprigl—|U . ..
defined as w where Uorig is the original
orig

URL set and Uy orm is the normalized URL set.

We considered the data set presented in [5], consisting of
dup-clusters having size of at least 2. Data set consists of
7.87 million URLs from a set of 356 randomly selected hosts
and it contains 1.83 million dup-clusters. We performed 50-
50 test-train split by randomly assigning each dup-cluster to
either training set or test set. We learned Rules on the train
set and evaluated the Rules on the train+test set.

Results Pair-wise Rule generation produced 12.37 million
Rules on the data set. The generalization, which includes
both context and transformation generalization, reduced the
Rule set to 93,230 Rules. During our evaluation, we observed
that there are large number of generalized Rules which have
very less coverage. So we have filtered Rules with coverage
< 10. This gave us a final set of 38,830 Rules. At 100% pre-
cision, with 649 Rules we achieved 6.2% reduction compared
to 3% reduction of [5].

Precision Num Rules | % of Rules | Reduction
threshold Ratio (%)
precision = 1 649 1.67 6.2
>= .95 1707 4.40 26.42
>=9 2375 6.12 32.98
>= .80 3547 9.13 41.53
All 38830 100.00 68.65

Table 1: Metrics comparison with URL rewrite ap-
proach for small data set

In Table 1 we present reduction ratio and number of Rules
for different levels of precision. It can be seen that our ap-
proach achieves good reduction ratios with a small number
Rules. High reduction ratios with less number of Rules holds
for all precision levels above 80%.

S. CONCLUSIONS

In this paper we presented a set of scalable and robust
techniques for de-duplication of URLs. Our techniques are
scalable to Web due to feasible computational complexity.
We presented basic and deep tokenization of URLs to ex-
tract all possible tokens from URLs which are mined by
our Rule generation techniques for generating normaliza-
tion Rules. We presented a novel Rule generation technique

which uses efficient ranking methodologies for reducing the
number of pair-wise Rules. Pair-wise Rules thus generated
are consumed by decision tree algorithm to generate pre-
cise generalized Rules. We evaluated the effectiveness of our
techniques on 7.78M URL data set. Our results show that
we perform significantly well on key metrics.

6. ADDITIONAL AUTHORS

Additional authors: Chittaranjan Haty (Yahoo! Inc., Ban-
galore, India. email: chitta@yahoo-inc.com), Anirban Roy
(Yahoo! Inc., Bangalore, India. email: anirbanr@yahoo-
inc.com) and Amit Sasturkar (Yahoo! Inc., Sunnyvale, CA.
email: asasturk@yahoo-inc.com).

7. REFERENCES

[1] S. Abiteboul, M. Preda, and G. Cobena. Adaptive
on-line page importance computation. In WWW “03:
Proceedings of the 12th international conference on
World Wide Web, pages 280—-290, May 2003.

[2] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not
crawl in the dust: different urls with similar text. In
WWW °07: Proceedings of the 16th international
conference on World Wide Web, pages 111-120, May
2007.

[3] T. Berners-Lee, L. Masinter, and M. McCabhill.
Uniform resource locators (url), 1994.

[4] A. Broder. On the resemblance and containment of
documents. In SEQUENCES ’97: Proceedings of the
Compression and Complezity of Sequences 1997,
page 21, June 1997.

[5] A. Dasgupta, R. Kumar, and A. Sasturkar. De-duping
urls via rewrite rules. In KDD ’08: Proceeding of the
14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 186194,
August 2008.

[6] D. Fetterly, M. Manasse, and M. Najork. On the
evolution of clusters of near-duplicate web pages. In
LA-WEB ’03: Proceedings of the First Conference on
Latin American Web Congress, page 37, November
2003.

[7] D. Gusfield. Algorithms on strings, trees, and
sequences: computer science and computational
biology. Cambridge University Press, New York, 1997.

[8] M. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR ’06:
Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 284-291, August 2006.

[9] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub.
Exploiting the block structure of the web for
computing pagerank. Technical report, Stanford
University, 2003.

[10] G. S. Manku, A. Jain, and A. D. Sarma. Detecting
near-duplicates for web crawling. In WWW 07:
Proceedings of the 16th international conference on
World Wide Web, pages 141-150, May 2007.

[11] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, November 1999.

[12] J. R. Quinlan. Induction of decision trees. Mach.
Learn., 1(1):81-106, March 1986.

