GraphLab: A New Framework for Parallel Machine Learning

Yucheng Low, Aapo Kyrola, Carlos Guestrin, Joseph Gonzalez, Danny Bickson, Joe Hellerstein

Presented by Guozhang Wang

DB Lunch, Nov.8, 2010
Overview

- Programming ML Algorithms in Parallel
 - Common Parallelism and MapReduce
 - Global Synchronization Barriers
- GraphLab
 - Data Dependency as a Graph
 - Synchronization as Fold/Reduce
- Implementation and Experiments
- From Multicore to Distributed Environment
Parallel Processing for ML

- **Parallel ML is a Necessity**
 - 13 Million Wikipedia Pages
 - 3.6 Billion photos on Flickr
 - etc

- **Parallel ML is Hard to Program**
 - Concurrency v.s. Deadlock
 - Load Balancing
 - Debug
 - etc
MapReduce is the Solution?

- High-level abstraction: Statistical Query Model [Chu et al, 2006]

Weighted Linear Regression: only sufficient statistics

$$\Theta = A^{-1}b, \ A = \sum w_i (x_i x_i^T), \ b = \sum w_i (x_i y_i)$$
MapReduce is the Solution?

- High-level abstraction: Statistical Query Model [Chu et al, 2006]

Embarrassingly Parallel independent computation

No Communication needed
ML in MapReduce

- Iterative MapReduce needs global synchronization at the single reducer
 - K-means
 - EM for graphical models
 - gradient descent algorithms, etc
Not always Embarrassingly Parallel

- Data Dependency: not MapReducable
 - Gibbs Sampling
 - Belief Propagation
 - SVM
 - etc

- Capture Dependency as a Graph!
Overview

• Programming ML Algorithms in Parallel
 ◦ Common Parallelism and MapReduce
 ◦ Global Synchronization Barriers

• GraphLab
 ◦ Data Dependency as a Graph
 ◦ Synchronization as Fold/Reduce

• Implementation and Experiments

• From Multicore to Distributed Environment
Key Idea of GraphLab

- Sparse Data Dependencies
- Local Computations
GraphLab for ML

- High-level Abstract
 - Express data dependencies
 - Iterative

- Automatic Multicore Parallelism
 - Data Synchronization
 - Consistency
 - Scheduling
Main Components of GraphLab

- Data Graph
- Shared Data Table
- GraphLab Model
- Scheduling
- Update Functions and Scopes
Data Graph

- A Graph with data associated with every vertex and edge.

x_3: Sample value
$C(X_3)$: sample counts

$\Phi(X_6, X_9)$: Binary potential
Update Functions

- Operations applied on a **vertex** that transform data in the **scope** of the vertex

Gibbs Update:
- Read samples on adjacent vertices
- Read edge potentials
- Compute a new sample for the current vertex
Scope Rules

- Consistency v.s. Parallelism
 - Belief Propagation: Only uses edge data
 - Gibbs Sampling: Needs to read adjacent vertices
Scheduling

- Scheduler determines the order of Update Function evaluations
- Static Scheduling
 - Round Robin, etc
- Dynamic Scheduling
 - FIFO, Priority Queue, etc
Dynamic Scheduling

CPU 1

CPU 2

Network of tasks: a → b → c → d, e → f → g, h → i → j → k
Global Information

- Shared Data Table in Shared Memory
 - Model parameters (updatable)
 - Sufficient statistics (updatable)
 - Constants, etc (fixed)

- Sync Functions for Updatable Shared Data
 - Accumulate performs an aggregation over vertices
 - Apply makes a final modification to the accumulated data
Sync Functions

- Much like Fold/Reduce
 - Execute Aggregate over every vertices in turn
 - Execute Apply once at the end

- Can be called
 - Periodically when update functions are active (asynchronous) or
 - By the update function or user code (synchronous)
Overview

- Programming ML Algorithms in Parallel
 - Common Parallelism and MapReduce
 - Global Synchronization Barriers

- GraphLab
 - Data Dependency as a Graph
 - Synchronization as Fold/Reduce

- Implementation and Experiments
- From Multicore to Distributed Environment
Implementation and Experiments

- Shared Memory Implementation in C++ using Pthreads

Applications:
- Belief Propagation
- Gibbs Sampling
- CoEM
- Lasso
- etc (more on the project page)
Parallel Performance

![Graph showing speedup vs. number of CPUs]

- **Optimal**
- **Colored Schedule**
- **Round robin schedule**

Better

Speedup

Number of CPUs
From Multicore to Distributed Environment

- MapReduce and GraphLab work well for Multicores
 - Simple High-level Abstract
 - Local computation + global synchronization

- When Migrate to Clusters
 - Rethink **Scope** \rightarrow synchronization
 - Rethink **Shared Data** \rightarrow single “reducer”
 - Think **Load Balancing**
 - Maybe think **abstract model**?
Thanks