Automatic Scaling Iterative Computations

Guozhang Wang Cornell University

Aug. 7th, 2012
What are Non-Iterative Computations?

• Non-iterative computation flow
 – Directed Acyclic

• Examples
 – Batch style analytics
 • Aggregation
 • Sorting
 – Text parsing
 • Inverted index
 – etc..
What are Iterative Computations?

• Iterative computation flow
 – Directed *Cyclic*

• Examples
 – Scientific computation
 • Linear/differential systems
 • Least squares, eigenvalues
 – Machine learning
 • SVM, EM algorithms
 • Boosting, K-means
 – Computer Vision, Web Search, etc..
Massive Datasets are Ubiquitous

- Traffic behavioral simulations
 - Micro-simulator cannot scale to NYC with millions of vehicles

- Social network analysis
 - Even computing graph radius on single machine takes a long time

- Similar scenarios in predicative analysis, anomaly detection, etc
Why Hadoop Not Good Enough?

• Re-shuffle/materialize data between operators
 – Increased overhead at each iteration
 – Result in bad performance

• Batch processing records within operators
 – Not every records need to be updated
 – Result in slow convergence
Talk Outline

• Motivation

• Fast Iterations: BRACE for Behavioral Simulations

• Fewer Iterations: GRACE for Graph Processing

• Future Work
Challenges of Behavioral Simulations

• *Easy to program ➔ not scalable*
 – Examples: Swarm, Mason
 – Typically one thread per agent, lots of contention

• *Scalable ➔ hard to program*
 – Examples: TRANSIMS, DynaMIT (traffic), GPU implementation of fish simulation (ecology)
 – Hard-coded models, compromise level of detail
What Do People Really Want?

• A new simulation platform that combines:
 – Ease of programming
 • Scripting language for domain scientists
 – Scalability
 • Efficient parallel execution runtime
A Running Example: Fish Schools

• Adapted from Couzin et al., Nature 2005

• Fish Behavior
 – Avoidance: if too close, repel other fish
 – Attraction: if seen within range, attract other fish
 – Spatial locality for both logics
State-Effect Pattern

• Programming pattern to deal with concurrency

• Follows time-stepped model

• **Core Idea:** Make all actions inside of a tick order-independent
States and Effects

• States:
 – Snapshot of agents at the beginning of the tick
 • position, velocity vector

• Effects:
 – Intermediate results from interaction, used to calculate new states
 • sets of forces from other fish
Two Phases of a Tick

• Query: capture agent interaction
 – Read states \(\rightarrow\) write effects
 – Each effect set is associated with \textit{combinator} function
 – Effect writes are \textit{order-independent}

• Update: refresh world for next tick
 – Read effects \(\rightarrow\) write states
 – Reads and writes are totally local
 – State writes are \textit{order-independent}
A Tick in State-Effect

• Query
 – For fish f in visibility α:
 • Write repulsion to f’s effects
 – For fish f in visibility ρ:
 • Write attraction to f’s effects

• Update
 – new velocity = combined repulsion + combined attraction + old velocity
 – new position = old position + old velocity
A Tick in State-Effect

Query
- For fish f in visibility α:
 - Write repulsion to f’s effects
- For fish f in visibility ρ:
 - Write attraction to f’s effects

Update
- new velocity = combined repulsion + combined attraction + old velocity
- new position = old position + old velocity
A Tick in State-Effect

• Query
 – For fish f in visibility α:
 • Write repulsion to f’s effects
 – For fish f in visibility ρ:
 • Write attraction to f’s effects

• Update
 – new velocity = combined repulsion + combined attraction + old velocity
 – new position = old position + old velocity
A Tick in State-Effect

• Query
 – For fish f in visibility α:
 • Write repulsion to f’s effects
 – For fish f in visibility ρ:
 • Write attraction to f’s effects

• Update
 – new velocity = combined repulsion + combined attraction + old velocity
 – new position = old position + old velocity
A Tick in State-Effect

• Query
 – For fish f in visibility α:
 • Write repulsion to f’s effects
 – For fish f in visibility ρ:
 • Write attraction to f’s effects

• Update
 – new velocity = combined repulsion + combined attraction + old velocity
 – new position = old position + old velocity
A Tick in State-Effect

• Query
 – For fish f in visibility α:
 • Write repulsion to f’s effects
 – For fish f in visibility ρ:
 • Write attraction to f’s effects

• Update
 – new velocity = combined repulsion + combined attraction + old velocity
 – new position = old position + old velocity
A Tick in State-Effect

• Query
 – For fish f in visibility α:
 • Write repulsion to f’s effects
 – For fish f in visibility ρ:
 • Write attraction to f’s effects

• Update
 – new velocity = combined repulsion + combined attraction + old velocity
 – new position = old position + old velocity
A Tick in State-Effect

• Query
 – For fish f in visibility α:
 • Write repulsion to f’s effects
 – For fish f in visibility ρ:
 • Write attraction to f’s effects

• Update
 – new velocity = combined repulsion + combined attraction + old velocity
 – new position = old position + old velocity
From State-Effect to Map-Reduce

Tick

Query
state \rightarrow effects

Communicate Effects

Update
effects \rightarrow new state

Communicate New State

Map$_1$ t

Reduce$_1$ t

Map$_2$ t

Reduce$_2$ t

Map$_1$ $t+1$

... Distribute data

... Assign effects (partial)

... Forward data

... Aggregate effects

... Update Redistribute data

Tick

Query
state \rightarrow effects

Communicate Effects

Update
effects \rightarrow new state

Communicate New State

Map$_1$ t

Reduce$_1$ t

Map$_2$ t

Reduce$_2$ t

Map$_1$ $t+1$

... Distribute data

... Assign effects (partial)

... Forward data

... Aggregate effects

... Update Redistribute data
BRACE (Big Red Agent Computation Engine)

• BRASIL: High-level scripting language for domain scientists
 – Compiles to iterative MapReduce work flow

• Special-purpose MapReduce runtime for behavioral simulations
 – Basic Optimizations
 – Optimizations based on Spatial Locality
Spatial Partitioning

- Partition simulation space into regions, each handled by a separate node
• *Owned Region*: agents in it are owned by the node
Communication Between Partitions

- **Visible Region**: agents in it are not owned, but need to be seen by the node
• **Visible Region**: agents in it are not owned, but need to be seen by the node

• Only need to communicate with neighbors to
 – refresh states
 – forward assigned effects
Experimental Setup

- BRACE prototype
 - Grid partitioning
 - KD-Tree spatial indexing
 - Basic load balancing

- Hardware: Cornell WebLab Cluster (60 nodes, 2xQuadCore Xeon 2.66GHz, 4MB cache, 16GB RAM)
Scalability: Traffic

- Scale up the size of the highway with the number of the nodes
- Notch consequence of multi-switch architecture
Talk Outline

• Motivation

• Fast Iterations: BRACE for Behavioral Simulations

• Fewer Iterations: GRACE for Graph Processing

• Conclusion
Large-scale Graph Processing

• Graph representations are everywhere
 – Web search, text analysis, image analysis, etc.

• Today’s graphs have scaled to millions of edges/vertices

• Data parallelism of graph applications
 – Graph data updated *independently* (i.e. on a per-vertex basis)
 – Individual vertex updates only depend on connected neighbors
Synchronous v.s. Asynchronous

• Synchronous graph processing
 – Proceeds in batch-style “ticks”
 – Easy to program and scale, slow convergence
 – Pregel, PEGASUS, PrIter, etc

• Asynchronous processing
 – Updates with most recent data
 – Fast convergence but hard to program and scale
 – GraphLab, Galois, etc
What Do People Really Want?

• Sync. Implementation at first
 – Easy to think, program and debug

• Async. execution for better performance
 – Without re-implementing everything
GRACE (GRAph Computation Engine)

• Iterative synchronous programming model
 – Update logic for individual vertex
 – Data dependency encoded in message passing

• Customizable bulk synchronous runtime
 – Enabling various async. features through relaxing data dependencies
Running Example: Belief Propagation

• Core procedure for many inference tasks in graphical models

• Upon update, each vertex first computes its new belief distribution according to its incoming messages:
 \[b_u(x_u) \propto \phi_u(x_u) \prod_{e_{w,u} \in E} m_{w\rightarrow u}(x_u) \]

• Then it will propagate its new belief to outgoing messages:
 \[m_{u\rightarrow v}(x_v) \propto \sum_{x_u \in \Omega} \phi_{u,v}(x_u, x_v) \cdot \frac{b_u(x_u)}{m_{v\rightarrow u}(x_u)} \]
Sync. vs. Async. Algorithms

- Update logic are actually the same: Eq 1 and 2
- Only differs in when/how to apply the update logic
Vertex Update Logic

```c
List<Message> Proceed(List<Message> msgs)
```

- Read in one message from each of the incoming edge
- Update the vertex value
- Generate one message on each of the outgoing edge
Belief Propagation in Proceed

```java
List<Msg> Proceed(List<Msg> msgs) {
    // Compute new belief from received messages
    Distribution newBelief = potent;
    for (Msg m in msgs) {
        newBelief = times(newBelief, m.belief);
    }
    // Compute and send out messages
    List<Msg> outMsgs(outDegree);
    for (Edge e in outgoingEdges) {
        Distribution msgBelief = divide(newBelief, Msg[e]);
        msgBelief = convolve(msgBelief, e.potent);
        msgBelief = normalize(msgBelief);
        outMsg[e] = new Msg(msgBelief);
    }
    // Vote to terminate upon convergence
    if (L1(newBelief, belief) < eps) voteHalt();
    return outMsgs;
}
```

• Consider fix point achieved when the new belief distribution does not change much
Customizable Execution Interface

- Each vertex is associated with a scheduling priority value

- Users can specify logic for:
 - Updating vertex priority upon receiving a message
 - Deciding vertex to be processed for each tick
 - Selecting messages to be used for Proceed

- We have implemented 4 different execution policies for users to directly choose from
Original Belief Propagation

```c
void OnRecvMsg(Edge e, Message msg) {
    // Do nothing to update priority
    // since every vertex will be scheduled
}

Msg OnSelectMsg(Edge e) {
    return PrevRcvdMsg(e);
}

void OnPrepare(List<Vertex> vertices) {
    ScheduleAll(Everyone);
}
```

- Use last received message upon calling Proceed, and schedule all vertices to be processed for each tick
Residual Belief Propagation

```java
void OnRecvMsg(Edge e, Message msg) {
    Distn lastBelief = LastUsedMsg(e).belief;
    float residual = L1(newBelief, msg.belief);
    UpdatePriority(residual, max);
}

Msg OnSelectMsg(Edge e) {
    return LastRcvdMsg(e);
}

void OnPrepare(List<Vertex> vertices) {
    Vertex selected = vertices[0];
    for (Vertex vtx in vertices) {
        if (vtx.priority > selected.priority)
            selected = vtx;
    }
    Schedule(selected);
}
```

- Use message residual as its “contribution” to vertex’s priority, and only update vertex with highest priority
Experimental Setup

• GRACE prototype
 – Shared-memory
 – Policies
 • Jacobi
 • GaussSeidel
 • Eager
 • Prior

• Hardware: 32-core Computer with 8 quad-core processors and quad channel 128GB RAM.
GRACE’s prioritized policy achieve comparable convergence with GraphLab’s async scheduling, while achieve near linear speedup.
Conclusions

Thank you!

• Iterative computations are common patterns in many applications
 – Requires programming simplicity and automatic scalability
 – Needs special care for performance

• Main-memory approach with various optimization techniques
 – Leverage data locality to minimize communication
 – Relax data dependency for fast convergence
Acknowledgements