Physics 446-546, Problem Set 6
(issued Apr 26, 05, due 5 May ’05)

#1

5.4 Coasting at low Hejmolds

The chapter asserted that tiny objects stop essentially at onee when we stop pushing them. Let’s
e,
a. Consider a bacterium, idealized as a sphere of radins 1 pm, propelling itself at 1pms='. At

time zero the bacterinm suddenly stops swimming and coasts to a stop, following Newton's Law of

motion with the Stokes drag force. How far does it travel before it stops? Comiment.
b O discussion of Brownian motion assumed that each random step was independent of the
previons one; thus for example we neglected the possibility of & residual dreift speed left over from

the previous step. In the lght of (a), would vou say that this assumption is justified for a bacterinm?

1)

5.9 | o |Friction as diffusion

Section 5.2.1" on page 166 claimed that viscous friction can be interpreted as the diffusive transport

of momentum. The argument was that in the planar geometry, when the flux of momentum given
by Equation 520 leaves the top plate it exerts a resisting drag foree; when it arcives at the bottom
plate it exerts an entraining force. So far the argument is guite correct.

Actually, however, viscous friction is more complicated than ordinary diffusion, becanse mo-
mentum is a vector quantity whereas concentration is a sealar. For example, Section 5.2.2 noted

that the viscous foree law (Equation 5.9 on page 149) needs to be modified for situations other than
planar geometry. The required modification really matters if we want to get the correct answer for
the spinning-rod problem (Figure 5.11b on page 160).

We consider a long eylinder of radins 1 with its axis along the & direction and centered at
o=y =1 Some substance surrounds the eylinder. First suppose that this substance is solid dice.
When we crank the cylinder, evervthing rotates as a rigid object with some angular frequency w.
The velocity field is then vir) = (—wy, +we, ). Certainly nothing is rubbing against anything, and
there should be no dissipative friction—the frictional transport of momentum had better be zero.

. . B . 1o .
And vet if we examine the polnt rp = (rp 0, 2} we ind a nonzero gradient H—} = w. Evidently

| 1]
our formula for the flux of momentum in planar geometey {Equation 5,20 on page 1667 necds some

modification for the non-planar case.

We want g modified form of Equation 5.20 that applies to eylindrically syvmumetrie fows and
vanishes when the fow is rigid rotation. Letting » = [[r| = \m we can write a eylindrically
syinmetric How as

vir) = (—ygir),zg(r),0).
The case of rigid rotation corresponds to the cholce glr) = w. You are about to find g(r) for a
different case, the flow set up by a rotating eyvlinder. We can think of this How field as a set of

nested cylinders, each with a different anpular velocity gir).



Near any point, say ro. let u(r) = (—yglral, 2g{ra))) be the rigidly rotating vector field that

agrees with v(r} at ro. We then replace Equation 5.20 by

. o i, dlae, o
(p belra) = —n | =2 — —’| . evlindrical geometry (5.21)
da | da |,

Iin this formla 5 = ey, the ordinary viscosity, Equation 521 is the proposed modification of
the momentum-transport role. It savs that we compute —l||— 1 and subtrect off the corresponding
quantity with u, in order to ensure that rigid rotation incurs no frictional resistance.

a. Each eylindrical shell of Huid exerts a torgque on the next one, and feels a torgue from the
previons one. These torgues must balance. Show that therefore the tangential foree per area across
the surface at fixed v is ﬁ where T is the external torque on the central evlinder and L is the
eylinder’s length,

b. Set your result from (a) equal to Equation 5.21 and solve for the function g{r}.

c. Find 7/L a5 a constant times w. Henee find the constant O in Equation 518 on page 1635

#3

(a) In class, we discussed the “occasionally dishonest casino” that used two kinds of
dice: 99% were fair, but 1% were loaded so that a 6 came up 50% of the time. Thus
p(L) = 1/100, and the conditional probabilities are p(6|L) = 1/2 and p(6|L) = 1/6.

If we then pick a die at random, what are the joint probabilities p(6, L) and
and p(6,L)? What is the probability of rolling a 6 from the die we picked up?

If we rolled three 6’s in a row, we saw that the posterior probability p(L|63)
that it was loaded was only 3/14. How many sixes in a row would we have to roll
before concluding it was more likely to have been a loaded die? For what n does
the probability P(L|6™), that the die is loaded given n consecutive sixes, begin to
exceed 90%?7

(b) We also discussed the case of Duchenne Muscular Dystrophy (DMD), regarded
as a simple recessive sex-linked disease caused by a mutated X chromosome (X).
An XY male expresses the disease, whereas an XX female is a carrier but does not
express the disease. If neither of a woman’s parents expresses the disease, but her
brother does, then the woman’s mother must be a carrier, and the woman herself
has an a priori 50/50 chance of being a carrier, p(C') = 1/2. Suppose she proceeds
to give birth to n healthy sons (n h.s.). What now is her probability p(C|n h.s.) of
being a carrier?

(c) In clase, we touched upon the question of administering lie detector tests at
a hypothetical national laboratory. We generously assumed that these tests have
a 90% sensitivity, i.e., the probability of a spy failing the test is p(f|S) = .9, and
equally generously assumed that the tests have a false positive rate of only 20%,
i.e., the probability of a non-spy failing the test is p(f|S) = .2. We assume that
roughly one in a thousand laboratory employees is a spy, p(S) = 1073,

What is the probability p(S|f) that someone who has failed the test is a spy?

Suppose someone takes the test 10 times and fails it 9 out of those ten times.
What is the probability p(S|9f + 1f) of being a spy?



#4 (from Bialek notes, physics/0205030, p. 32) [OPTIONAL, but easy]

Maximally informative experiments. Imagine that we are trying to gain
information about the correct theory T describing some set of phenomena. At
some point, our relative confidence in one particular theory is very high; that is,
P(T=1T,) > F-P(T # T,) for some large F'. On the other hand, there are many
possible theories, so our absolute confidence in the theory T, might nonetheless be
quite low, P(T = T,) << 1. Suppose we follow the ‘scientific method’ and design an
experiment that has a yes or no answer, and this answer is perfectly correlated with
the correctness of theory T, but uncorrelated with the correctness of any other pos-
sible theory—our experiment is designed specifically to test or falsify the currently
most likely theory. What can you say about how much information you expect to
gain from such a measurement? Suppose instead that you are completely irrational
and design an experiment that is irrelevant to testing 7T, but has the potential to
eliminate many (perhaps half) of the alternatives. Which experiment is expected
to be more informative? Although this is a gross cartoon of the scientific process,
it is not such a terrible model of a game like “twenty questions.”

(It is interesting to ask whether people play such question games following
strategies that might seem irrational but nonetheless serve to maximize informa-
tion gain [Ginzburg 1., & Sejnowski, T. J. (1996). Dynamics of Rule Induction
by Making Queries: Transition Between Strategies, in 18th Annual Conference of
the Cognitive Science Society, pp. 121-125 (Lawrence Erlbaum, Mahwah NJ). See
also http://www.cnl.salk.edu/CNL/annual-reps/annual-rep95.html|. Related but
distinct criteria for optimal experimental design have been developed in the sta-
tistical literature [Fedorov, V. V. (1972). Theory of Optimal Experimental Design,
translated and edited by Studden, W. J., & Klimko, E. M. (Academic Press, New
York)].)

#5 (from Bialek notes, physics/0205030, p. 33)
Positivity of information.

1(D; W) Zp S(W|d) (43)

= w,d)lo plw,d)
—ééyﬂﬁ”&bmmal .

where S(W) = — 3, p(w)log, p(w) and S(W|d) = — ¥, p(uld) log, p(wld).
a) Prove the above formula and show that the mutual information I(D; W) is
positive.
(Hint: prove and use the inequality: Inz < z — 1.)

b) The usual information theoretic notation for these formulae is as follows. For two
random variables x,y with probability distributions, p(z), € X and p(y), y € Y, and
joint probability distribution p(x,y), we write the entropies H(X) = — ) p(x)log, p(z),
H(Y) = -%_,p(y)log,p(y), and the joint entropy H(X,Y) = —>"_  p(z,y)log, p(x,y).
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The conditional entropy is then defined as H(X|Y) = H(X,Y) — H(Y), and the average
mutual information as I(X;Y) = H(X) — H(X|Y).

Show that this formula for I agrees with the above for X = D, Y = W. Show
that I(X;Y) = H(Y) — H(Y|X) and also show the fully symmetric form I(X;Y) =
HX)+H(Y)-H(X,Y).

Write down the straightforward generalization of the last formula for the case of n
variables I(X7; Xo;...; X,,), giving a natural measure of their dependence (or equivalently
the reduction in potential code length considered as a vector X rather than n independent
variables).

#6 (from Bialek notes, physics/0205030, p. 35)

The problem of finding the maximum entropy given some constraint again is
familiar from statistical mechanics: the Boltzmann distribution is the distribution
that has the largest possible entropy given the mean energy. More generally, let us
imagine that we have knowledge not of the whole probability distribution P(d) but
only of some expectation values,

(fi) = ZP(d)fi(d),
d

where we allow that there may be several expectation values known (i = 1,2, ..., K).
Actually there is one more expectation value that we always know, and this is that
the average value of one is one; the distribution is normalized:

(fo) =3 P(d)=1.
d

Given the set of numbers {(fo), (f1), -+, (fK)} as constraints on the probability
distribution P(d), we would like to know the largest possible value for the entropy,
and we would like to find explicitly the distribution that provides this maximum.

The problem of maximizing a quantity subject to constraints is formulated
using Lagrange multipliers. The result is that

1
P(d) = - ©XP

K

where Z = exp(1 + A\¢) is a normalization constant.

Details. Derive Eq. (53). In particular, show that Eq. (53) provides a probabil-
ity distribution which genuinely mazimizes the entropy, rather than being just an
extremum.

(Recall “Your Turn 6G” on p.224 of the course text, and 6.1 on p.232, for a similar
derivation of the Boltzmann distribution.)



