
A finite probability space is a set S and a function p : S → R≥0 such that p(s) > 0
(∀s ∈ S) and

∑
s∈S p(s) = 1. We refer to S as the sample space, subsets of S as events, and

p as the probability distribution. The probability of an event A ⊆ S is p(A) =
∑

a∈A p(a).
(And p(∅) = 0.)

Two events are disjoint if their intersection is empty. In general we have p(A ∪ B) +
p(A ∩B) = p(A) + p(B), and thus for disjoint events p(A ∪B) = p(A) + p(B). (The first
statement follows from the principle of inclusion - exclusion: |A∪B| = |A|+ |B|−|A∩B|.)

The probability of the intersection of two events is also known as the joint probability :
p(A,B) ≡ p(A ∩ B). Note that it is symmetric: p(A,B) = p(B,A). Suppose we know
that one event has happened and wish to ask about another. For two events A and B, the
conditional probability of A given B is p(A|B) = p(A,B)/p(B).

Example: Suppose we flip a fair coin 3 times. Let B be the event that we have at
least one H and A be the event of getting exactly 2 Hs. What is the probability of A

given B? In this case, (A∩B) = A, p(A) = 3/8, p(B) = 7/8, and therefore p(A|B) = 3/7.
Note that the definition of conditional probability also gives the formula: p(A,B) =

p(A|B)p(B). (For three events, we have p(A∩B ∩C) = p(A|B ∩C)p(B|C)p(C), with the
obvious generalization to n events.)

We can also use conditional probabilities to find the probability of an event by breaking
the sample space into disjoint pieces. If S = S1∪S2 . . .∪Sn and all pairs Si, Sj are disjoint,
then for any event A, p(A) =

∑
i p(A|Si)p(Si).

Example: Suppose we flip a fair coin twice. Let S1 be the outcomes where the first
flip is H and S2 be the outcomes where the first flip is T . What is the probability of A =
getting 2 Hs? p(A) = (1/2)(1/2) + (0)(1/2) = 1/4.

Two events A and B are independent if p(A,B) = p(A)p(B). This immediately gives:
A and B are independent iff p(A|B) = p(A). In addition, if p(A,B) > p(A)p(B) then A

and B are said to be positively correlated , and if p(A,B) < p(A)p(B) then A and B are
said to be negatively correlated .

Example: In the example of flipping 3 coins, p(A|B) 6= p(A) and therefore these two
events are not independent. Let C be the event that we get at least one H and at least
one T . Let D be the event that we get at most one H. p(C) = 6/8, p(D) = 4/8, and
p(C,D) = 3/8, and therefore events C and D are independent.

A simple formula follows from the above definitions and symmetry of the joint prob-
ability: p(A|B)p(B) = p(A,B) = p(B,A) = p(B|A)p(A). The resulting relation

p(A|B)p(B) = p(B|A)p(A) (Bayes)

is frequently called “Bayes’ theorem” or “Bayes’ rule”. In the case of sets Ai that are
mutually disjoint, and with

∑n
i=1 Ai = S, then Bayes’ rule takes the form

p(Ai|B) =
p(B|Ai)p(Ai)

p(B|A1)p(A1) + . . . + p(B|An)p(An)
.
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Example 1: Consider a casino with loaded and unloaded dice. For a loaded die, the
probability of rolling a 6 is 50%: p(6|L) = 1/2, and p(i|L) = 1/10 (i = 1, . . . , 5). For a fair
die the probabilities are p(i|L) = 1/6 (i = 1, . . . , 6). Suppose there’s a 1% probability of
choosing a loaded die, p(L) = 1/100. If we select a die at random and roll three consecutive
6’s with it, what is the posterior probability, P (L|6, 6, 6), that it was loaded?

The probability of the die being loaded, given 3 consecutive 6’s, is

p(L|6, 6, 6) =
p(6, 6, 6|L)p(L)

p(6, 6, 6)
=

p(6|L)3p(L)
p(6|L)3p(L) + p(6|L)3p(L)

=
(1/2)3 · (1/100)

(1/2)3 · (1/100) + (1/6)3 · (99/100)
=

3
14

≈ .21

(so only a roughly 21% chance that it was loaded).

Example 2: Duchenne Muscular Dystrophy (DMD) can be regarded as a simple
recessive sex-linked disease caused by a mutated X chromosome (X). An XY male expresses
the disease, whereas an XX female is a carrier but does not express the disease. Suppose
neither of a woman’s parents expresses the disease, but her brother does. Then the woman’s
mother must be a carrier, and the woman herself therefore has an a priori 50/50 chance
of being a carrier, p(C) = 1/2. Suppose she gives birth to a healthy son (h.s.). What now
is her probability of being a carrier?

Her probability of being a carrier, given a healthy son, is

p(C|h.s.) =
p(h.s.|C)p(C)

p(h.s.)
=

p(h.s.|C)p(C)
p(h.s.|C)p(C) + p(h.s.|C)p(C)

=
(1/2) · (1/2)

(1/2) · (1/2) + 1 · (1/2)
=

1
3

(Intuitively what is happening is that if she’s not a carrier, then there are two ways she
could have a healthy son, i.e., from either of her good X’s, whereas if she’s a carrier there’s
only one way. So the probability that she’s a carrier is 1/3, given the knowledge that she’s
had exactly one healthy son.)

Example 3: Suppose there’s a rare genetic disease that affects 1 out of a million
people, p(D) = 10−6. Suppose a screening test for this disease is 100% sensitive (i.e., is
always correct if one has the disease), and 99.99% specific (i.e., has a .01% false positive
rate). Is it worthwhile to be screened for this disease?

The above sensitivity and specificity imply that p(+|D) = 1 and p(+|D) = 10−4, so
the probability of having the disease, given a positive test (+), is

p(D|+) =
p(+|D)p(D)

p(+)
=

p(+|D)p(D)
p(+|D)p(D) + p(+|D)p(D)

=
1 · 10−6

1 · 10−6 + 10−4(1− 10−6)
≈ 10−2

and there’s little point to being screened (only once).
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