A finite probability space is a set S and a function $p: S \rightarrow R_{\geq 0}$ such that $p(s)>0$ $(\forall s \in S)$ and $\sum_{s \in S} p(s)=1$. We refer to S as the sample space, subsets of S as events, and p as the probability distribution. The probability of an event $A \subseteq S$ is $p(A)=\sum_{a \in A} p(a)$. (And $p(\emptyset)=0$.)

Two events are disjoint if their intersection is empty. In general we have $p(A \cup B)+$ $p(A \cap B)=p(A)+p(B)$, and thus for disjoint events $p(A \cup B)=p(A)+p(B)$. (The first statement follows from the principle of inclusion - exclusion: $|A \cup B|=|A|+|B|-|A \cap B|$.)

The probability of the intersection of two events is also known as the joint probability: $p(A, B) \equiv p(A \cap B)$. Note that it is symmetric: $p(A, B)=p(B, A)$. Suppose we know that one event has happened and wish to ask about another. For two events A and B, the conditional probability of A given B is $p(A \mid B)=p(A, B) / p(B)$.

Example: Suppose we flip a fair coin 3 times. Let B be the event that we have at least one H and A be the event of getting exactly $2 H \mathrm{~s}$. What is the probability of A given B ? In this case, $(A \cap B)=A, p(A)=3 / 8, p(B)=7 / 8$, and therefore $p(A \mid B)=3 / 7$.

Note that the definition of conditional probability also gives the formula: $p(A, B)=$ $p(A \mid B) p(B)$. (For three events, we have $p(A \cap B \cap C)=p(A \mid B \cap C) p(B \mid C) p(C)$, with the obvious generalization to n events.)

We can also use conditional probabilities to find the probability of an event by breaking the sample space into disjoint pieces. If $S=S_{1} \cup S_{2} \ldots \cup S_{n}$ and all pairs S_{i}, S_{j} are disjoint, then for any event $A, p(A)=\sum_{i} p\left(A \mid S_{i}\right) p\left(S_{i}\right)$.

Example: Suppose we flip a fair coin twice. Let S_{1} be the outcomes where the first flip is H and S_{2} be the outcomes where the first flip is T. What is the probability of $A=$ getting $2 H \mathrm{~s}$? $p(A)=(1 / 2)(1 / 2)+(0)(1 / 2)=1 / 4$.

Two events A and B are independent if $p(A, B)=p(A) p(B)$. This immediately gives: A and B are independent iff $p(A \mid B)=p(A)$. In addition, if $p(A, B)>p(A) p(B)$ then A and B are said to be positively correlated, and if $p(A, B)<p(A) p(B)$ then A and B are said to be negatively correlated.

Example: In the example of flipping 3 coins, $p(A \mid B) \neq p(A)$ and therefore these two events are not independent. Let C be the event that we get at least one H and at least one T. Let D be the event that we get at most one $H . p(C)=6 / 8, p(D)=4 / 8$, and $p(C, D)=3 / 8$, and therefore events C and D are independent.

A simple formula follows from the above definitions and symmetry of the joint probability: $p(A \mid B) p(B)=p(A, B)=p(B, A)=p(B \mid A) p(A)$. The resulting relation

$$
\begin{equation*}
p(A \mid B) p(B)=p(B \mid A) p(A) \tag{Bayes}
\end{equation*}
$$

is frequently called "Bayes' theorem" or "Bayes' rule". In the case of sets A_{i} that are mutually disjoint, and with $\sum_{i=1}^{n} A_{i}=S$, then Bayes' rule takes the form

$$
p\left(A_{i} \mid B\right)=\frac{p\left(B \mid A_{i}\right) p\left(A_{i}\right)}{p\left(B \mid A_{1}\right) p\left(A_{1}\right)+\ldots+p\left(B \mid A_{n}\right) p\left(A_{n}\right)} .
$$

Example 1: Consider a casino with loaded and unloaded dice. For a loaded die, the probability of rolling a 6 is $50 \%: p(6 \mid L)=1 / 2$, and $p(i \mid L)=1 / 10(i=1, \ldots, 5)$. For a fair die the probabilities are $p(i \mid \bar{L})=1 / 6(i=1, \ldots, 6)$. Suppose there's a 1% probability of choosing a loaded die, $p(L)=1 / 100$. If we select a die at random and roll three consecutive 6 's with it, what is the posterior probability, $P(L \mid 6,6,6)$, that it was loaded?

The probability of the die being loaded, given 3 consecutive 6 's, is

$$
\begin{aligned}
p(L \mid 6,6,6) & =\frac{p(6,6,6 \mid L) p(L)}{p(6,6,6)}=\frac{p(6 \mid L)^{3} p(L)}{p(6 \mid L)^{3} p(L)+p(6 \mid \bar{L})^{3} p(\bar{L})} \\
& =\frac{(1 / 2)^{3} \cdot(1 / 100)}{(1 / 2)^{3} \cdot(1 / 100)+(1 / 6)^{3} \cdot(99 / 100)}=\frac{3}{14} \approx .21
\end{aligned}
$$

(so only a roughly 21% chance that it was loaded).
Example 2: Duchenne Muscular Dystrophy (DMD) can be regarded as a simple recessive sex-linked disease caused by a mutated X chromosome ($\overline{\mathrm{X}}$). An $\overline{\mathrm{X}} \mathrm{Y}$ male expresses the disease, whereas an $\overline{\mathrm{X}} \mathrm{X}$ female is a carrier but does not express the disease. Suppose neither of a woman's parents expresses the disease, but her brother does. Then the woman's mother must be a carrier, and the woman herself therefore has an a priori 50/50 chance of being a carrier, $p(C)=1 / 2$. Suppose she gives birth to a healthy son (h.s.). What now is her probability of being a carrier?

Her probability of being a carrier, given a healthy son, is
$p(C \mid$ h.s. $)=\frac{p(\text { h.s. } \mid C) p(C)}{p(\text { h.s. })}=\frac{p(\text { h.s. } \mid C) p(C)}{p(\text { h.s. } \mid C) p(C)+p(\text { h.s. } \mid \bar{C}) p(\bar{C})}=\frac{(1 / 2) \cdot(1 / 2)}{(1 / 2) \cdot(1 / 2)+1 \cdot(1 / 2)}=\frac{1}{3}$
(Intuitively what is happening is that if she's not a carrier, then there are two ways she could have a healthy son, i.e., from either of her good X's, whereas if she's a carrier there's only one way. So the probability that she's a carrier is $1 / 3$, given the knowledge that she's had exactly one healthy son.)

Example 3: Suppose there's a rare genetic disease that affects 1 out of a million people, $p(D)=10^{-6}$. Suppose a screening test for this disease is 100% sensitive (i.e., is always correct if one has the disease), and 99.99% specific (i.e., has a $.01 \%$ false positive rate). Is it worthwhile to be screened for this disease?

The above sensitivity and specificity imply that $p(+\mid D)=1$ and $p(+\mid \bar{D})=10^{-4}$, so the probability of having the disease, given a positive test $(+)$, is
$p(D \mid+)=\frac{p(+\mid D) p(D)}{p(+)}=\frac{p(+\mid D) p(D)}{p(+\mid D) p(D)+p(+\mid \bar{D}) p(\bar{D})}=\frac{1 \cdot 10^{-6}}{1 \cdot 10^{-6}+10^{-4}\left(1-10^{-6}\right)} \approx 10^{-2}$
and there's little point to being screened (only once).

