
Discrete subgroups G of the three dimensional rotation group SO(3)

.

A rotation in three dimensions is characterized by a unit vector n̂ (polar angle and

azimuth, equivalently lattitude and longitude), and an angle of rotation ϕ about that axis.

It is thus a three parameter continuous group, where the nomenclature SO(3) designates

3x3 orthogonal matrices of unit determinant. We wish to consider the discrete subgroups

G ⊂ SO(3).

Recall a group is a set of elements gi ∈ G together with a (multiplication) rule that

associates to any two elements g1, g2 ∈ G a third element g3 ∈ G, usually written g3 =

g1 · g2. The multiplication rule must be associative (g1 · g2) · g3 = g1 · (g2 · g3), but is not

necessarily commutative (g1 · g2 6= g2 · g1 in general). A group also has an identity element

e ∈ G (the “trivial” element) that satisfies e · g = g · e = g for all g ∈ G, and each element

g ∈ G has an inverse g−1 ∈ G, satisfying g · g−1 = g−1 · g = e. We take N = |G| to be the

number of elements in the group G.

When G ⊂ SO(3), any non-trivial element g ∈ G is a rotation and hence acting on

the surface of a sphere (S2) leaves fixed exactly two points, called poles (just as the north

and south poles of the earth are fixed under the earth’s rotation). The set of all poles

left fixed by elements g ∈ G partitions into equivalence classes Ci under the action of G:

we say two poles p, p′ are G-equivalent if there exists some element g ∈ G that rotates p

into p′, i.e., g ◦ p = p′ (where g ◦ p denotes the action of group elements on points of S2).

Suppose there are M of these equivalence classes, C1, C2, . . . , CM .

Note that the element g ∈ G that rotates a given p into a given p′ is not necessarily

unique — it is instead arbitrary up to right multiplication (g → gh) by any element

h ∈ Hp, where Hp ⊂ G is the subgroup of elements that leave the pole p fixed, h ◦ p = p

for h ∈ Hp.
∗ (Hp in general will consist of rotations by integer multiples of some 2π/n

about an axis through p.) Note that any two poles p, p′ in the same equivalence class will

have isomorphic invariance groups Hp ≈ Hp′ , since if p′ = g ◦ p then group elements of the

form ghg−1, h ∈ Hp, will leave p′ fixed: ghg−1 ◦ p′ = gh ◦ p = g ◦ p = p′.∗∗ The number of

elements |Ci| in a given equivalence class of poles containing p therefore satisfies

|Ci| = N/ni ,

where N = |G| and ni = |Hp| is the number of elements in the subgroup that leaves the

pole p fixed, and depends only on the equivalence class Ci of p.

The sum over equivalence classes
∑M

i=1
|Ci|(ni−1) counts each pole multiplied by the

number of non-trivial group elements that leave it fixed, and hence satisfies

M
∑

i=1

|Ci|(ni − 1) = 2(N − 1) ,

∗ Hp is also known as the invariance group of the pole p, and the elements of G identified under right

multiplication by elements of H are known as the left cosets of H in G, denoted G/H. The poles in the

equivalence class containing p thus correspond to the left cosets G/Hp.
∗∗ The group gHg−1 is known as the conjugate of H in G.
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since each non-trivial group element leaves fixed exactly two poles. Dividing both sides by

N , and using |Ci| = N/ni for each equivalence class, gives the group theoretic constraint:

M
∑

i=1

(

1 −
1

ni

)

= 2
(

1 −
1

N

)

.

The right hand side above is always less than 2, and since each of the ni is an integer in

the range 2 ≤ ni ≤ N , each term on the left hand side is at least 1/2, so M can be at most

3. This makes it simple to enumerate all possibilities.

There is one solution with M = 2, i.e., two equivalence classes of poles: n1 = n2 = N .

This is an N element group known as CN , the cyclic group of rotations by 2πm/N ,

m = 0, . . .N − 1. The first solution for M = 3 is also an infinite class of groups, with

n1 = n2 = 2, and n3 = N/2, where N ≥ 4 is even. These are known as the dihedral

groups DN/2 and consist of a CN/2 together with an additional N/2 C2’s acting on axes

symmetrically placed in a plane orthogonal to the CN/2 symmetry axis.

The three remaining M = 3 solutions are the polyhedral groups:

• n1 = 2, n2 = n3 = 3 specifies the tetrahedral group T, with N = 12. (Acting on a

tetrahedron, it has four 4 C3 axes, one through each vertex to center of the opposite

face, and 3 C2 axes through the centers of pairs of opposite sides.)

• n1 = 2, n2 = 3, n3 = 4 specifies the octahedral group O, with N = 24, the symmetry

group of the cube and its dual, the octahedron. (Acting on a cube, it has 3 C4 axes

through the centers of opposite faces, 4 C3 axes through opposite vertices, and 6 C2

axes through the centers of pairs of opposite edges.)

• n1 = 2, n2 = 3, n3 = 5 specifies the icosahedral group I, with N = 60, the symmetry

group of the icosahedron and its dual, the dodecahedron. (Acting on the icosahedron,

it has 6 C5 axes through opposite vertices, 10 C3 axes through the centers of opposite

faces, and 15 C2 axes through the centers of opposite edges.)
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An icosahedron has 20 equilateral faces, 30 edges,

and 12 vertices. The figure shows three of the
axes of symmetry. The total number N of group

elements of I , adding all the non-trivial C5, C3,

and C2 group elements plus the identity, is
6(5 − 1) + 10(3 − 1) + 15(2 − 1) + 1 = 60.
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