1 6-Coloring Theorem

Lemma 1. For any simple planar graph G, the average degree of G is strictly less than 6.

Proof. The average degree of a graph is $2e/v$. Using $e \leq 3v - 6$ (for $v \geq 3$) we get $D \leq 2(3v - 6)/v$ or $D \leq 6 - 12/v$. So for $v \geq 3$, $D < 6$. For $v < 3$ we can check directly.

\[\square\]

Theorem. Any simple planar graph can be properly colored with six colors.

Proof. We prove the result by induction on the number of vertices.

(Base case) Suppose we have a graph such that $v \leq 6$. For $v \leq 6$, we can give each vertex a different color and use ≤ 6 colors.

(Induction hypothesis) Now assume that any simple planar graph on $v = n$ vertices can be properly colored with six colors.

Let G be any simple planar graph on $v = n + 1$ vertices. From our lemma above, we know that G must have some vertex w of degree ≤ 5. Remove w from G to form G'. G' has $v = n$ vertices and we may apply our induction hypothesis to know it can be properly colored in 6 colors. Properly color G' with ≤ 6 colors. Now, we can think of this as coloring all of G except w. But, since w has degree at most 5, one of the 6 colors will not be used for any of the neighbors of w and we can finish coloring G.

\[\square\]