
1

Fluid Interaction with High-resolution Wall-size Displays

François Guimbretière, Maureen Stone, Terry Winograd
Computer Science Department, Stanford University, Stanford, CA 94305-9035

Tel: 1-650-723-2780 Email: francois@cs.stanford.edu

ABSTRACT
This paper describes new interaction techniques for direct
pen-based interaction on the Interactive Mural, a large
(6’x3.5’) high resolution (64 dpi) display. They have been
tested in a digital brainstorming tool that has been used by
groups of professional product designers. Our “interactive
wall” metaphor for interaction has been guided by several
goals: to support both free-hand sketching and high-resolu-
tion materials, such as images, 3D models and GUI applica-
tion windows; to present a visual appearance that does not
clutter the content with control devices; and to support fluid
interaction, which minimizes the amount of attention
demanded and interruption due to the mechanics of the
interface. We have adapted and extended techniques that
were developed for electronic whiteboards and generalized
the use of the FlowMenu to execute a wide variety of
actions in a single pen stroke. While this techniques were
designed for a brainstorming tool, they are very general and
can be used in a wide variety of application domains using
interactive surfaces.

CR Categories: H.5.2 User Interfaces - Graphical user
interfaces, Input devices and strategies, Interaction styles,
Windowing systems; I.3.6 [Graphics] Methodology and
Techniques - Interaction techniques;

Keywords: Large displays, interactive wall, FlowMenu

1. MOTIVATION
When people work collaboratively with a large collection of
information, they often put it on a wall, where it is easy to
view, annotate, and organize. In professional design set-
tings, a project often has a dedicated room where related
materials are spread out on every available surface. Draw-
ings, photographs, diagrams, printed text, charts, spread-
sheets, even bits of real objects can all be stuck on the wall.
People can rearrange, annotate, and refine the collection to
analyze it, create a design, or solve a problem (figure 1).

Technology to stick stuff on physical walls is well devel-
oped. Papers can be annotated by writing directly on them,

or by applying Post-Ittm notes. As a project evolves, it is
easy to rearrange the contents of the walls, regrouping and
replacing items as needed. For these reasons, walls are the
primary medium used during brainstorming, where ease of
use and flexibility are at a premium.

But a physical wall has limitations. Digital information
needs to be printed out to be posted, and then it can't easily
be updated. While designers like to use simple technologies
such as scribbling and posting notes during the idea genera-
tion phase, they dread the post-brainstorm phase where
ideas have to be sorted out, transcribed and archived. Hand-
written materials are difficult to transfer after a meeting to
any kind of permanent storage, and even more so to search-
able digital archives.

Until recently, limitations of computer display screens have
put the “stick it on the wall” approach out of reach for digi-
tal information. The advent of large, high-resolution dis-
plays is now making it possible to leverage this simple yet
powerful metaphor. As computer displays move beyond the
desktop to become commonplace on the walls around us,
we have the opportunity to create new and better ways of

Figure 1: This design studio at IDEO illustrates the use of
physical walls for displaying and working with large quan-
tities of information. Note the diversity of information
posted on the wall, from sketches to photographs to Post-
It notes, and the abundance of printouts of digital media
(courtesy of IDEO)

2

interacting with a wide variety of information and applica-
tions. It is not enough to simply move existing GUI inter-
faces onto larger displays. Walls afford different kinds of
interactions than workstations for several key reasons: The
large visual display area can be used to work with large
quantities of simultaneously visible material; interaction is
directly on the screen with a pen-like device or touch, rather
than with a keyboard and an indirect pointing device; and
people often work in groups at a wall together, interleaving
social and computer interactions.

We have developed an “interactive wall” interaction meta-
phor, in which hand-drawn marks, running applications, 3D
visualizations, information structures, and images can be
“stuck on the wall” and manipulated with a pen. This meta-
phor bridges the gap between the casual use of a whiteboard
and the more rigid but more powerful data manipulation of a
desktop (figure 2).

We have tested our wall-interaction design with several pro-
fessional product design groups engaged in brainstorming
tasks. Their needs and critiques motivated many aspects of
our design. We chose brainstorming as our driving example
because it provides a strong test for the fluidity of interac-
tion. Successful design brainstorming depends on unham-
pered dynamic social interaction and the easy intermixing of
different media. We believe that our solutions are general
enough to be applied to many other application domains,
ranging from radiology to construction planning and man-
agement, and are working with groups in those and other
domains.

2. BASIC DESIGN GOALS
The design of the interactive wall was shaped by the nature
of its use: users engage in up-close (arms length) direct
interaction with complex visual materials in a setting of
real-time multi-person collaboration. This led to three pri-
mary design goals:

• High Resolution. An interactive wall needs to be able to
display large quantities of materials that include images
and application windows at an appropriate resolution for
a user standing at the board (a resolution comparable to
workstation monitors). To provide a smooth wall-like
environment, it needs to be a flat, continuous surface,
not interrupted by physical seams. In the future, large,
high-resolution flat panels will become available. For
our experiments we made use of a 6' by 3.5' tiled back-
projection display with 64 dpi resolution, which we call
the Interactive Mural (see section 5 for implementation
description).

• Clean Screen. There is a striking difference between the
visual look of a paper-based project wall and a standard
GUI screen. The GUI intersperses the user's content
with a profusion of visual “widgets” for control: window
boundaries, title bars, scroll bars, tool bars, icon trays,
view selection buttons, and many more. A whiteboard or
project wall, on the other hand, provides a uniform blank
surface whose content is the user's marks or posted
pieces of paper. To capture the feel of a wall we want to
reserve the visual space for content, with an absolute
minimum of visual distraction associated with interac-
tion mechanics. We organize our display as an arbitrary

Figure 2: On this interactive wall, users can work with high resolution images, application windows, hand drawn material and
information structures such as lists (upper right). The pen is used for all interactions including sketches and annotations
directly on graphical objects or on transparent overlapping sheets.

3

collection of opaque and translucent “sheets,” which can
be created, drawn on, and moved independently. Sheets
have only content on them, without visual affordances
for actions.

• Fluid Interaction. Along with the visual clutter of GUI
interfaces, there are continual interruptions to the flow
of activity. Dialog boxes pop up, windows and tools are
selected, object handles of various kinds appear and are
grabbed, and so on. To some degree this is inevitable to
provide complex functionality. The traditional worksta-
tion GUI is oriented toward facilitating the speed of
highly differentiated actions done by experienced users
whose attention focus is entirely on the current computer
activity. But users of a wall display are often engaged in
simultaneous conversation with people in the room, so
their focus on the board is episodic. They do not have
the additional cognitive capacity to cope with complex
state differences, or have a high tolerance for having
their attention distracted to the interaction with the board
instead of with the people.

An interactive wall interface needs to provide more func-
tionality than a whiteboard, but this need not call for wid-
gets, modes, dialogs, and the other apparatus of complex
interaction.

3. DESIGN PROBLEMS AND SOLUTIONS
The design goals of Section 2 have implications for all
aspects of the interface. This section describes some new
interaction techniques that were developed to achieve the
goals in our three primary areas.

3.1 Flow and Go
Our system use FlowMenu [8] as the main command mech-
anism. The FlowMenu provides a clean partitioning
between command and content creation: Press the meta-but-
ton on the top of the pen to invoke the pop-up FlowMenu,
and in a single stroke select a command, specify a character
-string parameter and perform a direct manipulation task.

Tests with users have shown that the basic FlowMenu action
(select and continue moving) provides an easily learnable
and fluid affordance for commands in which the parameters
are determined by the sheet where the menu is initiated and
by a physical path after menu choice (e.g., for moving a
sheet). It also works well for built in parameter sets (e.g., a
menu-based set of zoom factors) and simple numeric
parameters. However, entering long text strings using the
QuikWriting [29] capabilities in FlowMenu proved cumber-

some, and few people have been able to use it effectively.
Therefore, we have augmented it with a technique we call
“Flow and Go,” which combines handwritten character input
with FlowMenu selection and object motion.

Since we are dealing with an information wall, not a white-
board, it is necessary to provide for text parameters to com-
mands. In the simplest case, we need a name to call up
images, models, or connections to remote computers. More
complex cases insert parameters into existing content. Our
current application for brainstorming supports several oper-
ations that require such parameters. We expect this list to be
expanded as new applications are developed:

• Posting new computational objects. To bring up a new
application desktop, a JPEG image, or a 3D model, the
user names the object and indicates the type of sheet to
create.

• Entering text into running applications. When an
application desktop is displayed as a sheet on the wall,
the user can interact with it using the pen (which is inter-
preted as left-button mouse positioning) and with hand-
written text replacing keyboard entry.

• Attribute specification. Any sheet can be assigned arbi-
trary attributes with their associated values using hand-
written text present on the board. These are used for
ordering in containers (such as scatterplots) and for
recording information for later use (e.g., votes on alter-
natives).

• Container parameters. Some information structures,
such as graphs, have alphanumeric parameters, such as
labels and ranges on axes need to be modified during the
meeting.

We do not want wall-interaction to require a physical key-
board, and virtual on-screen keyboards are disruptive and
hard to use. We wanted to combine the immediacy of hand-
written text entry with the FlowMenu in a way that avoided
the interposition of dialog boxes and prompts, which hinder
fluid interaction. Flow and Go combine FlowMenu and Drag
and Drop to create a convenient way to provide text and
other complex parameters.

The user starts by writing a parameter in an open area,
which creates a new sheet containing the text. By default the
system, applies handwriting recognition to all strokes
(details in section 4.1). The recognized text forms the
parameter. Then, the user activates a FlowMenu over that
text sheet and selects a command. In the simple case, such

Figure 3: The sequence of actions that apply a population attribute to the sheet “San Francisco”: The parameter/value pair
is written on the board (a); FlowMenu is invoked and “item... Attribute” chosen. Handwriting recognition is performed
in the background (b); Continuing the pen motion, the sheet is dragged and dropped onto the target (c); the attribute for the
target sheet is updated (d). (insets added for clarity)

→

a b c d

4

as calling up an image, the text sheet is replaced with the
new content and attached to the cursor for easy positioning.

If the text is a set of parameters to be inserted, such as an
attribute definition, issuing the FlowMenu command
attaches the text sheet to the cursor, where it can be
smoothly dragged and dropped onto the target. The text
sheet vanishes, and the parameters are applied to the under-
lying item.

Although this sequence is a bit awkward to describe, it has a
very natural feel. You write the entry, choose what to do
with it and, as needed, drag and drop it where it belongs.
There are two separated operations (writing the text and
then applying it), but they do not involve a modal state like
a dialog box. The entered text is just another sheet on the
screen and can be used at any time as part of a command.

A simple syntax is used for multi-parameter commands. For
example, to set the attribute “population” of “746” (indicat-
ing thousands) to the sheet containing the name “San Fran-
cisco,” the user writes “population 746” as shown in
figure 3a). He then uses the FlowMenu on it to select the
command “Attribute” (figure 3b) and drags it onto target
sheet (figure 3c). The attribute tag updates accordingly
(figure 3d).

3.2 ZoomScapes
It is hard for any electronic display to compete with a real
wall in the quantity of information that can be posted. Until
we have large, high-resolution “wallpaper” displays, we can
expect computer-based displays of feasible cost to be
smaller than a wall, and visibly lower resolution than what
can be printed on paper. The trade-off, of course, is that a
computer can dynamically reallocate visual space, scale,
summarize, and do other operations that make a smaller
space more effective.

In keeping with a wall metaphor, the overall display consists
of a collection of opaque or translucent rectangular
“sheets,” which can be individually created, deleted, moved,
and scaled, and which can overlap on the screen. They can
contain ink marks, images, active applications, and 3D
models. Each sheet can be individually scaled to an arbi-
trary size using numeric parameters applied via the Flow-
Menu.

In addition, we have created a general, location-based scal-
ing mechanism we call ZoomScapes, which allows us to
scale items by simply moving them into the appropriate
region. This is similar to the automatic scaling at the edges
of the display provided by Flatland [22, 23], but has been
implemented as a general transformation that can be flexi-
bly mapped to the surface of a display. We have also
explored the implications of moving large objects and col-
lections of objects across such a landscape, and have devel-
oped algorithms for creating a smooth and natural behavior.

A ZoomScape is a surface on which each point has an asso-
ciated scaling value. As sheets are moved around on this
surface, their size changes according to their location.
Sheets are always active so unlike [15] we opted for a dis-

tortion free metaphor. To implement a ZoomScape appro-
priately, we must address the following problems:

• A sheet is not a point, but covers a rectangular area.
From what point should the scale factor be taken? What
happens when large items are positioned such that they
overlap several scaling regions?

• In moving collections of sheets as a group, how and
when do individual members of the group scale to main-
tain a smooth and invertible transition?

• The motion of a sheet across a scaling boundary can cre-
ate an abrupt jump in scale, which is disconcerting to the
user.

Through an iterative series of prototypes, we developed
solutions and guidelines to these problems. The resulting
implementation has a smooth, natural feel and is one of the
most popular parts of our design.

The most natural scale point for moving single objects is the
cursor point rather than some standard point on the image
(e.g., its center). This point is directly associated with the
user's hand, and therefore with the cognitive sense of where
the object is being moved. Therefore, the scale of an object
is not determined by its position alone, but is also a function
of the action that moved it. This means that the way objects
that straddle a boundary scale depends on how they were
positioned. Somewhat to our surprise, users find this a fea-
ture. Large objects can be positioned in the thumbnail
region at the top of the screen such that they hang into the
main part of the display, effectively increasing the size of
the scaling region. Conversely, a large object positioned in
the main part of the display can fill the entire board, over-
lapping the scaling region without being reduced.

Moving a selected group of sheets into a scaling region is
more complex than positioning a single sheet. For single
sheets, it is sufficient to scale the entire sheet as the cursor
passes into a scaling region. For groups of sheets, however,
this can cause problems. Consider a group of sheets that
cover a large area. If the entire group is treated as a single
large object, members of the group may disappear off the

Figure 4: In addition to scalling individual sheets, Zoom-
Scape gradually deforms the geometry of a group of
sheets as they are moved from a 100% (bellow thick
line) to a 25% area (above thin line) through a transition
area. The light boxes show where the sheets would be in
the “reference geometry” that is used to calculate the
deformation (see text). The dot represent the cursor

100%

25%

5

edge of the board before scaling is applied, then abruptly
jump back in again as the cursor passes into the scaling
region. If the user stops without crossing into the scaling
region, sheets can be left in the region (or off the edge of the
screen) without scaling, an unexpected result.

To solve this, we separately manage the scale of individual
elements and the group geometry, defined as the set of vec-
tors between the dragging point and the center of each sheet
in the group. Each sheet in the group scales about its center
as it passes into the scaling region. The distance between the
sheet and the cursor is also scaled, smoothly distorting the
group geometry as it passes through the scaling region
(figure 4).

The implementation for the group distortion is as follows:
For each vector from the initial drag anchor point A to
a sheet center O, we compute its direction and Lref its “ref-
erence length”, which is the integral over of the shrink-
ing factor shrink(x,y) (the inverse of the scale factor at that
point:

Lref can be thought of as the length that would result if the
entire vector were in a unit-scale region. As the anchor point
is moved, the location of the center of each sheet is adjusted
to keep the direction of the vector and the reference length
Lref constant. At each move, we calculate the distance that
will preserve the value of the integral, using Newton’s
approximation method. The scale factor for the sheet itself
is determined by the resulting location of its center point.
This approach is very general and can accommodate various
ZoomScape geometries, including those with non-rectangu-
lar regions and non-linear ramp functions.

ZoomScape configurations that use continuous scaling
changes (e.g., small at the edges, large in the center) or pro-
vide ramps between areas of different scaling create smooth
scaling motion. We found that in general it is better to have
several uniform regions rather than a continuous change, so
that small motions within a region do not cause unintended
scale change. For our experiments on brainstorming, the
screen is divided into two uniform areas with a small ramp
area between them. Sheets moved into the top 1/5 are auto-
matically scaled to 1/4 of their size while objects on the
lower part of the screen are full size. Users seem to find it
natural to push less-used data to the top of the board, where
it remains visible throughout the room.

Although the interaction of ZoomScapes with containers
and groups required experimentation and is complex to
describe, the experience in using it is that things simply
move “where they should”. We have learned that as long as
automatic scaling activities are controlled in a smooth
monotonic way by the user's motions and are continually
visible, the underlying algorithms are not directly perceived
by the user, and the changes feel natural. In general, the
experience of using the ZoomScape involves no explicit
planning or action formulation is to manage items on the

screen. They are simply moved and the scaling follows nat-
urally.

4. OVERALL DESIGN
In order to provide users with the experience of interacting
with a wall of information, we needed a coherent overall
design that encompassed the creation, incorporation and
manipulation of visual materials. In addition to the new
techniques described in Section 3, we have addressed many
other aspects of interaction, each with the goals of keeping
the screen clean and the interaction fluid.

4.1 Stroke interpretation
A user can draw a stroke with a pen for several different
purposes (We define “stroke” as putting the tip of the pen on
the board, moving it through any path, and then lifting it).
Using our system, the user can invoke the FlowMenu any-
where on the surface, by pressing the meta-button located
on the top of the pen. The effect of the resulting command
stroke will depend of the menu selected. The effect of but-
ton-up strokes depends on the front most sheet at the point
where the stroke begins. In an active application window, a
stroke is like a left-button mouse click or drag. On a 3D
object, it rotates the object. On any 2D graphical object (bit-
map graphics as well as hand-drawn) the stroke creates a
mark of digital ink. As in FlatLand, our system automati-
cally merges 2D graphical objects linked by a stroke. This
feature make it easy to create the equivalent of a mixed
media collage. If a stroke begins on the wall background,
the result depends on its overall path. If its bounding box
intersects an existing 2D graphical object sheet, it is inter-
preted as a mark on that sheet, and the sheet is extended to
cover it. Otherwise a new drawing sheet is created and the
stroke creates a mark on it. As in Flatland, the bounding box
for a collection of marks extends slightly to the right and
downward from the geometrical bounding rectangle, so that
subsequent strokes intended as handwriting will be merged
with the previous ones.

The net effect of context-dependent stroke interpretation is
that the most common operations on all the types of materi-
als can be done by using the pen directly without issuing
commands or using special affordance areas.

Mark strokes are sent to the Calligrapher character recog-
nizer [27] each time the user pauses. The ink is not modified
or removed and recognition does not interfere with further
interaction. The recognized text appears as it is computed in
the lower left corner of the sheet. A dictionary is used, and
in practice the recognition has been surprisingly robust. In
order to avoid meaningless attempts to interpret drawings as
character data, simple heuristics are applied to turn off rec-
ognition when the stroke geometry is not text-like. If
desired, the user can use the FlowMenu to specifically ini-
tiate a drawing sheet that it is not to be recognized as text,
but since the character recognition is non-intrusive, users
generally do not bother to do this.

4.2 Image origination
Whiteboard-like content (hand-drawn sketches and hand-
writing) is generated with strokes as described in the previ-

AO
u
AO

Lref shrink t() td

AO

∫=

u

6

ous section. Non-stroke content can be added to the wall
through a number of channels:

• The wall display is one element in a room that incorpo-
rates multiple devices, including other large screens and
a wireless network of laptops and PDAs. Any of these
devices can run a small applet onto which the URL for
an image file can be drag-and-dropped, causing a sheet
with the image to appear on the wall.

• A digital camera (Ricoh RDC-7) mounted on the ceiling
above a table can be used to create an image of any
paper document or small objects laid on the table. The
field of view is 21”x15” with a resolution of approxi-
mately 100 dpi. Two physical crop marks are positioned
on the corners of the area of interest within the view
field. The scanner is triggered through a FlowMenu
command at the wall, or through other devices in the
room. When a scan is triggered, a place-holder sheet for
the image appears immediately on the wall, and can be
annotated, moved, and otherwise manipulated during the
time it takes for the image to be captured and transmitted
(which can be ten seconds or more with the current
equipment). Although in many ways this is equivalent to
a flatbed scanner, the direct imaging from the tabletop
has proved to be particularly appealing to designers.

• Using a FlowMenu item and naming any computer on
the network that is running a VNC server [32], the wall
can display a live image of its desktop. The pen operates
as a pointing device (with left-button down) when it is
touched within the sheet, and text input is entered into
the remote desktop using Flow and Go.

• FlowMenu commands for new 2D and 3D objects
accept a text parameter and render the corresponding
object in a new sheet. The parameter can be a short
name, which is interpreted as an entry in a local data-
base.

• Finally, the FlowMenu provides a snapshot command
that enables the user to select (by corner dragging) a
rectangular region of 2D images, stroke sheets, and
VNC sheets, and create a snapshot of it. This makes it
easy to use VNC to browse or generate information of
interest, and then stick results on the wall.

4.3 Containers
In a stroke-oriented system for whiteboard-like use, struc-
tures can be inferred from stroke geometry [18, 19, 12, 22,
23]. For a wall-interaction metaphor with mixed materials,
we use automatically interpreted structure at the lower level
(e.g., inferring that a collection of strokes is a character
string), but use explicit structuring with “containers” for
higher level structures such as lists and graphs. A container
can be created via a FlowMenu command over a sheet or a
collection of selected sheets. The sheets are automatically
moved and aligned in accordance with the container type.
The simplest container is a list (see upper right of Figure 2),
in which items are left-aligned in a vertical column. Items
can be added to the list by dragging them into its area,
where they will be inserted at the point closest to the pen
location when they are dropped. Items can be moved out of
the list or to a different position in the list with the standard
move command since menu invocation over any element

acts on that element as it would irrespective of the container.
Each container type has a distinct visual look that includes a
“background” area in which menu commands can be
applied to the container as a whole.

When a container such as a list is moved to a different scale
area in the ZoomScape, all of the items are correspondingly
scaled together, even though they may individually be in
different ZoomScape regions. For example placing the top
of the vertical list in the scaled down area at the top of the
screen will scale the list one fourth and let the list flow
downward in effect extending the scaled down area. Since
the list is still active, the user can drop or remove items from
it. At first this seemed like an unintended effect, but in prac-
tice it has turned out to be both comprehensible and useful,
extending the benefit of the ZoomScape to produce com-
pacted material that can cover more of the board area.

In addition to lists, we have implemented a “scatterplot”
container: a 2-dimensional graph onto which sheets are
positioned according to the value of numerical attributes.
The plot is created with a FlowMenu command, and its axis
labels and ranges are added using Flow and Go onto the cor-
responding areas of the graph geometry. Attribute values
can be assigned to any sheet with Flow and Go by writing
an attribute-value pair and then using the Set Attribute menu
command to drag this value onto the sheet. The resulting
attribute-value pair is displayed in the upper left corner of
the sheet contents (figure 3). When a sheet with attribute
names corresponding to the axes is moved onto a scatter-
plot, it is incorporated and positioned according to the val-
ues. If the sheet is missing an axis attribute, a random value
within the range is assigned. As with lists, once a sheet has
been added to a scatterplot, it moves and scales with that
container, but can still be accessed (including marking on it
or moving it out) with the full set of operations available for
any sheet of its type.

4.4 Storage and logging
One of the key advantages of an electronic wall over a con-
ventional physical wall is that material can be saved,
restored, viewed elsewhere, and searched electronically. We
provide two different forms of information capture:

• Logging. Each action on the wall is entered in a time-
stamped sequential log, along with contextual informa-
tion that makes it possible to replay the sequence in for-
ward or reverse. This log is the basis for an infinite undo
facility. Using the FlowMenu as a knob, the user can
undo actions one by one, and redo them back in the
same order, to previous state of the wall. The log can be
used later to restore the session to its state, except for
dynamic states of remote desktop connections. The
restored state includes the full history, so it is possible to
undo actions from the restored session and return to
intermediate state.

• Visual snapshots. A snapshot of the entire screen can be
saved as a Microsoft Word file, using the MSOffice
drawing format, with text art fields for the interpreted
character strings. This file can be printed or viewed on a
workstation, and standard tools (e.g., cut and paste) can

7

be used to repurpose, rearrange, add, and modify items.
Currently this snapshot does not contain images from
3D models or VNC screens.

5. IMPLEMENTATION
To achieve arms-length viewing resolution (64 dpi) while
providing a large seamless space (6' by 3.5'), we constructed
a tiled back-projection display using twelve 1028x768 digi-
tal projectors with precision-aligned non-overlapping tiles.
Although some visual artifacts result from the tiling (see
Figure 2), the experience is that of a unified graphic space.
We anticipate that within a few years, displays of at least
this size and resolution will be available commercially.
Input is provided by a wireless Ebeam digital pen [4], modi-
fied to include a push button switch. This input device is rel-
atively inexpensive, and could be replaced by any pen-
tracking system with sufficient precision and area coverage.

The 9 megapixels graphics canvas is rendered as a single
OpenGL surface, using the WireGL protocol [9] and a dis-
tributed rendering API [10] that can take advantage of a
cluster of 32 Linux PCs connected with a 1GB/sec local net-
work to render complex 3D models. This configuration was
available as part of research on high-resolution high-
throughput graphics in our laboratory. We do not expect
configurations of this complexity to be generally available,
and our basic interaction principles were not designed to
require them. In fact our system was demonstrated running
on a single PC driving a SmartBoard [35].

The software is written in C++ on top of a toolkit we devel-
oped called MilleFeuille, which handles the basic graphics
operations, pen tracking, stroke marking, and the composi-
tion of behaviors on overlaid layers. We use the EventHeap
[5] to provide a uniform blackboard-like communication
structure for other devices, such as those used for scanning
or transferring images to the wall. An off-the-shelf hand-
writing recognizer [27] is used for text recognition, VNC
[32] is used to display GUI desktops from servers, and
QSplat [34], a resource-dependent renderer is used to dis-
play 3D models.

6. RELATED WORK
This research builds on a number of areas of previous work
on wall and whiteboard display systems.

6.1 Wall-interaction metaphor
Large wall-based information spaces are common in non-
computer settings. Mixed mode approaches integrate paper-
based materials with an information system, as in the
Insight Lab [14], which uses barcodes to associate paper
items with on-line information, Collaborage [20], which
uses camera capture of paper-based materials posted on a
wall and the The Designers’ Outpost [11] which track Post-
It notes and their relationships on the screen. Although there
is great potential for bits-plus-atoms mixtures in future envi-
ronments, our experiments have concentrated on new kinds
of interaction with fully electronic representations of infor-
mation. There have been a number of large digital walls
developed for display without close-up interaction [6] and
interactive digital walls have been used for tasks such as
tape drawing [2], with specialized interaction techniques

In interaction style, our work is most similar to whiteboard
interfaces, which have emphasized informal interaction,
clean screens, and fluid interactions with stroke-based mate-
rials. Tivoli [28] was the first well-developed electronic
whiteboard system, and we have adopted its basic stroke
capture metaphor and concepts for containers (lists, etc.) as
loosely structured geometrical composites. Tivoli used
GUI-like controls outside the whiteboard area, multiple
screens for visibility management, and command gestures
recognized by shape. We have chosen not to duplicate those
aspects, and have added others related to materials on the
wall that are not based on hand-drawn marks.

Flatland [22, 23] extended the whiteboard to provide auto-
matic grouping of strokes into “segments,” with affordances
for moving, merging and performing other manipulations
on segments as a unit and for giving them domain-specific
and application-specific behaviors. We have adopted Flat-
land's approach to segmentation for stroke data, extending it
to an environment that includes other kinds of materials
along with handwritten input.

The key difference from previous whiteboard systems is our
integration of multiple kinds of media onto the wall, which
is structured as a collection of independent overlapping rect-
angular translucent or opaque sheets rather than a single sur-
face with marks. This integrates the common GUI
windowing metaphor, with its overlapping rectangles, and a
whiteboard metaphor, which provides a surface for strokes.
It captures the feel of a wall, on which overlapping informa-
tion can be posted and moved around and hand-based draw-
ing can easily be added. Unlike GUI windows, the sheets do
not carry elaborate action-affordance borders, since the
FlowMenu is used to manage them. We have not tried to
provide non-rectangular sheets or complex sheet manage-
ment operations, as Kramer did for his translucent patches
[12], but have designed for simplicity of drawing and anno-
tating.

6.2 Visibility management
The predominant GUI metaphor achieves high visual capac-
ity through the illusion of overlaid rectangular areas, which
can be easily moved and can be opened and closed, but in
which the material has a fixed size. Most digital whiteboard
interfaces stay close to the physical whiteboard metaphor by
having a fixed-size screen with no visibility management,
along with a mechanism for multiple screens, selected using
a thumbnail display. Flatland has independent segments, but
does not let them overlap or open and close. It manages
space with a scaling technique based on filling up the board.
As a segment is moved, other segments move out of the
way. Segments are automatically squashed as they bump
into the border of the board. Since we allow overlapping
sheets, we have not used Flatland's space management tech-
niques for moving segments, and have generalized the auto-
matic scaling mechanism to ZoomScapes.

We retain the whiteboard's overall spatial metaphor of a
fixed-size single surface (in our case a wall rather than a
whiteboard) with objects that can be individually scaled,
rather than presenting an unbounded virtual surface with

8

zoom-based navigation, as in Pad++ [1]. Global zooming
can hinder the usability of the interface with a group, since
actions can disrupt viewing in areas away from the object of
interest, especially if semantic zoom techniques cause
objects change to their visible representation when a zoom-
scale change is made.

Like the Perspective Wall [15], ZoomScapes leverage the
fact that users maintain contextual information at the
periphery of their work area or focus area. While most
Focus+Context techniques put an emphasis on controlling
the distortion, ZoomScape imposed a fixed distortion and
put an emphasis on an easy and safe manipulation of under-
lying pieces of information.

6.3 Command interaction
Interaction designs for small pen-based devices have
explored a number of ways to replace conventional key-
boards and pointing devices. In addition to conventional
GUIs, they have incorporated radial menus [17], marking
menus [13], handwriting and gesture recognition [3] and
character entry pads [7, 26, 29, 16]. Pen interaction for large
displays has primarily been developed for whiteboard sys-
tems, and has focused on the use of gestures as part of
stroke interpretation.

Three aspects of command interaction need to be provided:
command activation, item manipulation, and the entry of
text and parameters. These are in addition to direct content
interactions such as drawing, rotating a model, interacting
with an application, etc.

Command activation: Whiteboard systems such as Tivoli
[28] use gestural marks for commands, along with GUI wid-
gets on some areas of the board. Flatland provides radial
menus for command activation, augmented by the use of
gestural marks. Others allow the choice of commands to be
determined by the physical way in which the stroke is made,
such as choice of devices [35] and the posture of the gestur-
ing hand [33]. We have chosen to provide a single uniform
mechanism. All commands are activated with the Flow-
Menu [8]. The absence of mnemonic gestures (e.g., X or
zigzag for erasing, caret for inserting) is made up for by the
uniformity of a simple and straightforward conceptual
model, which helps initial learning. As more practice is
gained, more and more complex menu-selections are
remembered as gesture.

Item manipulation: In general, pens work well for selection
operations (individual and group), and for item motion.
Standard GUI techniques need to be adapted due to the lack
of modifier buttons and keys, and each system has solutions
to this problem, combining in some way the use of gestures,
widgets (such as handles) menus, and temporal modes. Our
solution is uniform, in that every operation is initiated with
a FlowMenu selection and applied only to the ongoing
stroke. A single selection, for example, is done by choosing
a “select” menu item and lifting the pen. A group selection
begins with a “select group” menu choice followed (in a
continuous motion) by a lasso path surrounding the items.
Items are moved by choosing a “move” item, at which point
the object under the menu becomes attached to the pen and

follows until the pen is lifted. This uniformity allows us to
avoid visual affordance handles (such as title bars or
Kramer's “pearls” [12]), to avoid the use of temporal modes,
and to have a simple conceptual model for what strokes do
(all non-meta-strokes interact directly with the contents, and
all meta-strokes initiate a FlowMenu).

Text and Parameter entry: Small-screen pen-based systems
have devoted a good deal of effort to text entry. Techniques
include virtual keyboards, handwriting recognition, special
character recognition [7, 26], and continuous radial selec-
tion [29, 16]. Commercial whiteboard systems provide vir-
tual keyboards and some form of handwriting recognition.
In order to introduce the mix of media for wall-interaction,
we needed to provide for pen-based character input. We ini-
tially provided only the character selection mechanism of
FlowMenu, based on QuikWriting [29]. User testing
showed that for short sequences (e.g, a few digits to specify
a scaling value) this was acceptable, but for anything longer,
the mechanism was cumbersome even for experienced
users. In addition, we wanted to provide character recogni-
tion on stroke-created content, in order to process the wall
contents for subsequent use, such as search. We incorpo-
rated a commercial handwriting recognition engine [27],
and developed the Flow and Go technique, as described in
section 3.1.

6.4 Integration with other devices
The Interactive Mural is one part of a larger environment
that combines multiple devices into an integrated work-
space, which includes several other large displays, special
devices such as the overhead scanner, and integrated soft-
ware connecting laptops and PDAs [5]. Our goals in this
research focused on interaction with a single large display,
but it was done with an eye towards how that display partic-
ipates in the larger environment of an interactive work-
space. For example, a person using a laptop with a wireless
LAN connection can use a browser-based applet to drag-
and-drop an image onto the wall. This is one step towards
the kind of multi-device integration that has been explored
in a number of projects with techniques such as tangible-
based Pick and Drop [30, 37], PDA-based tool palettes [31,
21], and multi-modal pen and voice interaction [25].

7. DISCUSSION

7.1 User response
We have conducted a pilot user study with five groups of
designers from IDEO and Speck Design. Each team was
invited to perform a brainstorming session on a topic of
their choice (actual working sessions) and then were asked
to fill out questionnaires on specific features and general
user satisfaction. The system was also used during the early
design of the Chrysler Design Awards 2001.Designers have
reacted very positively to the wall-interaction metaphor.
The capability to easily scan paper documents and the use of
ZoomScape for visibility management were rated as the
most valuable features. Facilitators were eager to make use
of the digital access after sessions, avoiding the tedious pro-
cess of recording what was on a wall before taking it down.
We do not yet have any longitudinal data on how the materi-
als are used after capture. The ZoomScape feature was well

9

received and initial user testing showed that it was used
without hesitation by almost all of our pilot groups. We
have yet to explore “landscapes” other than our simple top/
bottom division and to see how they can be used for differ-
ent purposes.

The greatest perceived problems resulted from difficulties
with the pen input device and performance issues such as
the long delay in getting an image from the camera. There is
also a general performance decay when the board begins to
have more than a hundred items. We were careful to design
all operations to give immediate feedback and to allow
multi-tasking, so delays do not block the user from going
on. Overall performance issues are different for our
OpenGL model (which actively redisplays the contents of
every sheet at screen-refresh rate) than they are for tradi-
tional pixel buffers and backing stores. The implementation
needs to take this into account as it is developed for larger
walls and longer sessions.

We found that we had not provided users with sufficient
training time. Our goal was to build an interface that was
easily learnable but did not need to be self-revealing. We
planned an hour of instruction and practice for first-time
users (the facilitators of the brainstorming sessions). The
goal was to have all aspects of the board be memorable (or
self-revealing) after a short exposure. To a large degree this
succeeded, but some aspects, such as the use of containers,
were not remembered well enough to be used effectively in
a single session. In our next round of studies we will look at
mastery of the system over multiple sessions.

7.2 Interaction goals
We set out to meet three basic goals in our interaction: Inte-
gration of high resolution materials, clean screen, and fluid
interaction. All of these received high marks from our users,
and we feel that we have gone a long way towards meeting
them.

High resolution was used in two key ways. First, it enabled
the incorporation of materials such as Web browsers (and
snapshots taken from them) with a visual quality closer to
that of physical pictures than to the typical large-pixel pro-
jection screen. Second, the sessions all made heavy use of
the ability to scale hand-drawn text and sketches to 1/4 size.
They retained full readability, allowing people to write and
draw at a large, physically comfortable size and then easily
reduce materials to an effective viewing size that gave a
large virtual screen space.

The “clean” look we achieved was clearly appreciated by
our visually sophisticated user group. We were able to
almost completely avoid the use of “decorations” associated
with control. The one small exception was the background
areas of list containers: a vertical bar along the left side that
is in the list but not in any item. This enabled the user to
apply the full range of operations to the list as a whole, or to
any item within it. In a way, this is like having a background
(as the overall screen does), which has its own set of poten-
tial operations distinct from those of the items within it. As
we develop more kinds of containers we will explore this
question further. We may also need to modify the look to

accommodate operations such as the “scrolling” of materi-
als within a sheet that provides a virtual portal onto a larger
visual field (as conventional windows do). We want to do
this in a way that does not violate the overall wall metaphor
or add visual clutter.

Fluid interaction is an elusive quality to measure, but our
observations and discussions show that we have made sig-
nificant progress in that direction. There are no temporal
modes that require users to keep in mind what they are
doing beyond a single stroke. No dialog boxes are needed to
accomplish standard operations such as specifying an
attribute and its value. From our user studies, we have iden-
tified a number of details that can be improved, but overall
the facilitators were able to use the system while maintain-
ing focus on the group and process. We can attribute this
both to the basic interaction techniques, such as FlowMenu
and ZoomScapes, and to a variety of design details that
were guided by the quest for fluidity.

The use of handwritten character recognition for Flow and
Go commands has been effective even with the limitations
of character recognition accuracy. Although all text strokes
are given to the recognizer, accuracy is not critical except
for command parameters, which tend to be relatively short.
We currently use a standard English dictionary to guide the
recognizer, and are exploring ways to use specific context
(such as the list of available models, a file directory, or a
personal dictionary) to enhance its recognition for command
strings. In our current implementation, recognized text can-
not be edited. Although the rewriting of short strings is gen-
erally as easy as modifying them with edit commands, there
is clearly a need to add an editing facility.

8. CONCLUSIONS

The wall-interaction metaphor brings together the advan-
tages of the graphical user interface with those of white-
boards. It allows users to work with computer based
materials, including arbitrary applications and 3D models,
with the ease of informal writing, sketching, and space man-
agement. In implementing this metaphor we have:

• demonstrated the feasibility and appeal of interacting
directly with digital materials on large surfaces.

• developed and demonstrated the use of design criteria
that are suited to the use of these surfaces in group activ-
ities such as brainstorming

• introduced new interaction techniques that follow these
criteria and provide in a widely applicable way for a
number of interaction aspects including visibility man-
agement (ZoomScape), and command invocation with
parameters (Flow and Go). These techniques allow users
to achieve the effects of complex commands with simple
fluid interactions.

While this techniques were demonstrated here in the context
of the brainstorming tool on a large, high performance dis-
play wall, we believe that they address generic needs. With
little or no modification they can be applied to a wide vari-
ety of application domains and interactive surfaces like tab-
let computers and PDA.

10

9. ACKNOWLEDGEMENTS
The authors wish to thanks Ian Buck and Matthew Eldridge
from the WireGL group at Stanford for their ongoing techni-
cal support, Phil Weaver and Yao Ding from EFI for their
gracious support in adding a button to our pen. David
Kelley and many designers from IDEO as well as David
Law from Speck Product Design provided invaluable sup-
port and feedback. Thanks to Brian Lee for porting the sys-
tem to a single PC configuration. This work was sponsored
by the DOE VIEWS program (contract B504665).

10. REFERENCES
1. Bederson, B.B., and Hollan, J.D. Pad++: A Zooming

Graphical Interface for Exploring Alternate Interface
Physics. In Proc. UIST '94, pp. 17-36.

2. Buxton, W., Fitzmaurice, G., Balakrishnan, R., and
Kurtenbach, G. Large Displays in Automotive Design.
IEEE Computer Graphics and Applications, 20(4), pp.
68-75.

3. Carr, R., and Shafer, D. The Power of Penpoint (1991).
4. Electronics for Imaging, http://www.e-beam.com/
5. Fox, A., Johanson, B., Hanrahan, P., and Winograd, T.

Integrating Information Appliances into an Interactive
Workspace. IEEE Computer Graphics & Applications,
20(3) (May/June 2000).

6. Funkhouser, T., and Li K., (eds.). Special issue of IEEE
Computer Graphics and Applications. Onto the Wall:
Large Displays, 20(4) (Jul/Aug 2000).

7. Goldberg, D., and Richardson, C. Touch-Typing with a
Stylus. In Proc. CHI’93, pp. 80-87

8. Guimbretière, F., and Winograd, T. FlowMenu: Combin-
ing Command, Text, and Parameter Entry. In Proc.
UIST ’00, pp. 213-216

9. Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett,
M., and Hanrahan, P. WireGL: A Scalable Graphics Sys-
tem for Clusters. In Proc. SIGGRAPH ’01.

10. Igehy, H., Stoll, G., and Hanrahan P. The Design of a
Parallel Graphics Interface. In Proc. SIGGRAPH ’98,
pp. 141-150.

11. Klemmer, S.R., Newman, M.W., Farrell, R., Bilezikjian,
M., and Landay J. The Designers’ Outpost: A Tangible
Interface for Collaborative Web Site Design. In Proc.
UIST ’01.

12. Kramer, A. Translucent Patches: Dissolving Windows.
In Proc. UIST ’94, pp. 121-130.

13. Kurtenbach, G., and Buxton, W. Integrating Mark-Up
and Direct Manipulation Techniques. In Proc. UIST ’
91, pp. 137-144.

14. Lange, B.M., Jones, M.A. and Meyers, J.L. Insight Lab:
An Immersive Team Environment Linking Paper, Dis-
plays, and Data. In Proc. CHI ’98, pp. 550-557.

15. Mackinlay, J.D., Robertson, G.G., and Card, S.K.The
Perspective Wall: Detail and Context Smoothly Inte-
grated. In Proceedings of CHI '91, pp. 173-179

16. Mankoff, J., and Abowd, G.D. Cirrin: A Word-Level
Unistroke Keyboard for Pen Input. In Proc. UIST ’98,
pp. 197-206

17. Momenta User's Reference Manual. Momenta.
18. Moran, T., Van Melle, B., and Chiu, P. Spatial Interpre-

tation of Domain Objects Integrated into a Freefrom
Electronic Whiteboard. In Proc. UIST ’98, pp.175-184.

19. Moran, T., Van Melle, B., and Chiu, P. Tailorable
Domain Objects as Meeting Tools for an Electronic
Whiteboard. In Proc. CSCW ’98, pp. 295-304.

20. Moran, T., Saund, E., Van Melle, W., Gujar, A.U., Fish-
kin K.P., and Harrison, B.L. Design and Technology for
Collaborage: Collaborative Collages of information on
Physical Walls. In Proc. UIST ’99, pp. 197-206

21. Myers, B.A. . Using Multiple Devices Simultaneously
for Display and Control. Special issue of IEEE Personal
Communications, Smart Spaces and Environments, 7(5),
(Oct. 2000), pp. 62-65.

22. Mynatt, E., Igarashi, T., Edwards, W.K. and LaMarca,
A. Flatland: New Dimensions in Office Whiteboards. In
Proc. CHI ’99, pp. 346-353

23. Mynatt, E., Igarashi, T., Edwards, W.K. and LaMarca.
Designing an Augmented Writing Surface. Computer
Graphics and Applications, 20(4) (Jul/Aug 2000) 55-61.

24. Nunamaker, J.F., Dennis, A.R., Valacich, J.S., Vogel,
D.R., George, J.F. Electronic Meeting Systems To Sup-
port Group Work. CACM, 34(7), (Jul 1991), pp. 40-61

25. Oviatt, S.L., Cohen, P.R., Wu, L.,Vergo, J., Duncan, L.,
Suhm, B., Bers, J., Holzman, T., Winograd, T., Landay,
J., Larson, J., and Ferro, D. Designing the User Interface
for Multimodal Speech and Gesture Applications: State-
of-the-Art Systems and Research Directions. Human
Computer Interaction, 15(4), pp. 263-322

26. Palm OS. http://www.palmos.com/
27. Paragraph Corp. Calligrapher. http://www.para-

graph.com/
28. Pedersen, E.R., McCall, K., Moran, T., and Halasz, F. G.

Tivoli: An Electronic Whiteboard for Informal Work-
group Meetings. In Proc. InterCHI ’93, pp. 391-398.

29. Perlin, K. QuikWriting: Continuous Stylus-Based Text
Entry. In Proc. UIST ’98, pp.215-216.

30. Rekimoto, J. Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments. In
Proc. UIST ’97, pp. 31-39.

31. Rekimoto, J. A Multiple-Device Approach for Support-
ing Whiteboard-Based Interactions. In Proc. CHI ’98,
pp. 344-351

32. Richardson, T., Stafford-Fraser, Q., Wood K.R., and
Hopper, A. Virtual Network Computing. IEEE Internet
Computing, 2(1), Jan/Feb 1998, pp. 33-38.

33. Ringel, M., Berg, H., Jin, Y., and Winograd, T. Bare-
hands: Implement-Free Interaction with a Wall-Mounted
Display. In Proc. CHI ’01 extended abstracts, pp. 367-
368

34. Rusinkiewicz, S., and Levoy, M. QSplat: A Multiresolu-
tion Point Rendering System for Large Meshes. In Proc.
SIGGRAPH ’00, pp. 343-352

35. Smart Technologies. http://www.smarttech.com.
36. Stefik, M.J., Foster, G., Bobrow, D.G., Kahn, K., Lan-

ning, S., and Suchman, L. Beyond the Chalkboard:
Computer Support for Collaboration and Problem Solv-
ing in Meetings. CACM, 30(1), (Jan 1987), pp. 32-47.

37. Streitz, N.A., Geißler, J., Holmer, T., Konomi, S.,
Müller-Tomfelde, C., Reischl, W., Rexroth, P., Seitz P.,
and Steinmetz R. i-LAND: an Interactive Landscape for
Creativity and Innovation. In Proceedings of CHI ’99,
pp. 120-127.

