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Recent advancements in rapid prototyping techniques such as 3D printing and laser cutting are
changing the perception of physical 3D models in architecture and industrial design. Physical
models are frequently created not only to finalize a project but also to demonstrate an idea in early
design stages. For such tasks, models can easily be annotated to capture comments, edits, and
other forms of feedback. Unfortunately, these annotations remain in the physical world and cannot
easily be transferred back to the digital world. Our system, ModelCraft, addresses this problem by
augmenting the surface of a model with a traceable pattern. Any sketch drawn on the surface of
the model using a digital pen is recovered as part of a digital representation. Sketches can also be
interpreted as edit marks that trigger the corresponding operations on the CAD model. ModelCraft
supports a wide range of operations on complex models, from editing a model to assembling multiple
models, and offers physical tools to capture free-space input. Several interviews and a formal
study with the potential users of our system proved the ModelCraft system useful. Our system is
inexpensive, requires no tracking infrastructure or per object calibration, and we show how it could
be extended seamlessly to use current 3D printing technology.
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1. INTRODUCTION

In the process of designing artifacts, today’s designers alternate between tan-
gible, nondigital media such as paper or physical 3D models, and intangible,
digital media such as CAD models. An architect may begin the design of a new
building with sketches on paper, then, when her ideas solidify, create a rough
model using cardboard, before creating the corresponding digital model. Once
this model is finalized, it might be fabricated as a 3D object (either through
rapid prototyping techniques or a modeling studio) so that her clients may
have a better grasp of her vision. Although a fully digital design process has
long been advocated, it still seems a distant goal because tangible, nondigital
media models present unique affordances that are difficult to reproduce in dig-
ital media. For example, architectural models offer a unique presence that is
difficult to reproduce on a screen. As a result, even projects that rely heavily
on computer-assisted design techniques still employ tangible models, both for
aesthetic and structural tasks (Figure 1, left).

Interacting with models is an intrinsic part of the design process for archi-
tects who see construction (and sometimes deconstruction) as a fundamental
part of the idea forming process. For example, during the early phase of the de-
sign process called “massing,” inexpensive, easy-to-build paper-based models
are used extensively to better understand the shape requirements of a build-
ing. As rapid-prototyping technology has become more commonplace, other de-
signers have employed physical models more extensively during their design
process as well. Mechanical designers use models to check the form and func-
tional compatibility of a given design with the context of its use. Frequently,
sketches that describe the modification and edits to be made are drawn on the
surface of the model (Figure 1, right). With current techniques, information
described in this way on such models is difficult to integrate back into the dig-
ital world. While such annotations can be captured by a conventional tracking
system (either magnetic or optical) as proposed by Agrawala et al. [1995], that
approach is limited to a relatively small working volume, requires significant
investment in infrastructure and a calibration process on a per-model basis,
and is somewhat expensive. It is also difficult to deploy in the field where mod-
els are frequently tested. This limits widespread adoption by architects and
designers.

Noting that most annotations take place on the surface of the model, we
present an extended version of ModelCraft [Song et al. 2006], a system which
uses the inexpensive, off-the-shelf Logitech i02™ digital pen [Logitech] to track
annotations and edits on the surface of models. This pen is equipped with
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Fig. 1. 3D models are used extensively in design. Left: a structural model used during the design
of the Hearst building (from Hart [2005]). Right: annotations on a 3D model from a ZCorp printer
(from ZCorp [2005]).

Fig. 2. Our system in action. Left: paper model of a castle with edits. Right: the same model in
our rendering application showing the edits performed.

a built-in camera which captures position information by observing a digital
pattern [Anoto 2002] printed on the surface of the model (Figure 2). The Mod-
elCraft system, which is currently a plug-in for the commercial CAD appli-
cation SolidWorks [2005], can capture both annotations and commands that
are applied to the original digital model upon pen synchronization. Using our
command system and auxiliary tools such as a ruler, protractor, and sketch-
pad, users can alter and adjust the shape of a model; available operations
include modifying dimensions, filleting corners, creating holes, or extruding
portions of a model based on requirements learned from the field. ModelCraft
also lets users create relationships among several models to create a complex
assembly from simpler models. Finally, ModelCraft can deal with nontrivial
objects, such as the castle shown in Figure 2, as the expressiveness in the vo-
cabulary of the models, the sizes of the models, and the basic geometry of the
models were important issues during testing with architects and for future
deployments.

Annotations, edits, and assemblies instructions are naturally captured in
the reference frame of the model, without the need to worry about scale or
orientation. Our approach does not have a predefined working volume, and
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can easily scale in terms of the number of objects traced, number of pens
used, and locations of usage. Furthermore, it does not require a per-model
calibration. ModelCraft integrates seamlessly with the current usage patterns
among architects and mechanical designers. By capturing annotations and ed-
its on physical 3D models, our system streamlines the design process, sim-
plifies documentation of the design history of a given project, and supports
design education [Song et al. 2007]. This vision of streamlining the design pro-
cess will be completed if the traceable pattern is printed as the physical mod-
els are constructed. We present in detail possible paths and challenges to be
solved for the implementation of such a system using current 3D prototyping
technology.

2. PREVIOUS WORK

Our work extends the idea of capturing and tracking sketches on the sur-
face of a 3D object (Section 2.1). As we allow the user to not only anno-
tate but also use sketches as commands (Section 2.2), our system selec-
tively borrows ideas from sketch-based systems. While most sketch-based sys-
tems have an indirect relationship between the 3D representation and the
sketch input, our system provides the user with an actual physical proxy
when executing an operation, similar to many Tangible User Interfaces (TUI)
(Section 2.3).

2.1 3D Painting Systems

Several systems have been proposed that allow users to draw (or paint) on
digital models. Hanrahan and Haeberli [1990] described a WYSIWYG system to
paint on 3D models using a standard workstation. This approach has also been
adapted to annotate CAD drawings [Jung et al. 2002; Solid Concepts, Inc. 2004].
While drawing on a virtual object has many advantages, such as the ability to
work at any scale, we believe that physical models will always play an important
role in the design process because of their appeal to designers (Figure 1). In that
respect, our system is closely related to Agrawala et al’s [1995] 3D painting
system. Our approach extends this work in several ways: By using a tracking
system based on an optical pattern printed on the surface of the object, we
offer a very short setup time requiring no calibration on a per-object basis. Our
tracking approach also provides greater flexibility for users as annotations can
be captured at any location. Finally, our approach is inherently scalable, both
in the number of models and annotating devices, a property difficult to achieve
by either optical or magnetic tracking techniques. Using a different approach,
several systems propose using augmented reality techniques to annotate objects
[Grasset et al. 2005]. On one hand, by relying on passive props, our system is
less powerful than such systems as it does not offer direct feedback. On the
other hand, the simplicity of our system keeps its cost of use low; there is no
need to wear or set up any equipment, a key aspect for acceptance by designers
and architects.
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We believe that future systems should allow users to interact directly with
the representation of a given object that is most convenient for the task at hand,
be it a digital model on a screen or a 3D printout of that model, or a combination
of the type of sketching proposed here with augmented reality feedback. In that
respect, our work is similar in spirit to the work by Guimbretiere [2003] on
digital annotation of document printouts.

2.2 Sketch Interfaces

Our work is also related to the large body of work on 3D sketching in systems
like Sketch [Zeleznik et al. 1996], Teddy [Igarashi et al. 1999], SketchUp [Google
2006], and the 3D Journal project [Masry et al. 2005]. These systems interpret
2D sketches and transform them into 3D volumes by using curvature informa-
tion [Igarashi et al. 1999], by using the angular distribution of the strokes to
predict the three axes [Masry et al. 2005] or by providing an interactive toolkit
[Google 2006]. ModelCraft complements these systems by addressing the need
to capture modifications sketched directly on the models at later stages of the
design process. In particular, our approach makes it easy for users to capture
real-world geometric information such as the length or angle of the surrounding
physical context. Our command system is also quite extensive and accommo-
dates a variety of different operations. While the systems mentioned before
focus on a gesture-based interface, we adopt a syntax-based approach inspired
by recent work on Tablet-PC-based interfaces such as Scriboli [Hinckley et al.
2005], Fluid Inking [Zeleznik et al. 2004], and paper-based interfaces such as
PapierCraft [Liao et al. 2005]. We believe that this approach allows for a more
flexible and extensive command set while retaining a sketching-like style.

2.3 Tangible User Interfaces

Our work is also closely related to tangible interfaces [Hinckley et al. 1994; Ishii
and Ullmer 1997; Ullmer and Ishii 1997; Underkoffler and Ishii 1999, 1998],
which let users interact with digital information through the use of tangible
artifacts. All these systems leverage users’ familiarity with spatial interactions
to allow them to perform complex interactions with ease. Our system extends
and complements these systems by offering a tight correspondence between
the tangible proxy and its digital representation. In doing so, we offer users
the opportunity to modify the digital representation in the real world. In that
respect, our system is also closely related to the Illuminating Clay system [Piper
et al. 2002] and Liu’s work on editing digital models using physical material [Liu
2004], as they allow users to see modifications made in the real world applied
to the equivalent 3D model. Approaches that model shapes using fingers and
physical props [Sheng et al. 2006] or using hand gestures [Schkolne et al. 2001]
are also related to our approach, but focus on constructing free-form shapes
such as clay models. All of these systems require the use of somewhat complex
tracking equipment that is only available in a lab setting, while our approach
is very lightweight.

Block-based tangible interfaces [Anderson et al. 2000; Sharlin et al. 2002]
propose to extend standard building blocks with a set of sensors so that it is
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Fig. 3. A typical paper-based massing model used by an architectural firm to refine the shape of
a building.

possible for the system to sense the relationship between the different blocks
connected to each other. The relationship is then used to render the connected
blocks on a nearby computer. Digital block interfaces trade ease of assembly for
a somewhat limited vocabulary of possible shapes and connections (which have
to follow the orientation predefined by the connection mechanism). Here we
explore the opposite end of the expressiveness versus ease of assembly trade-
off. In ModelCraft, a wide variety of building blocks can be assembled in complex
configurations, but ModelCraft requires users to actively mark the connectivity
information in addition to physically connecting them together. We believe that
our work will provide the opportunity to identify which approach fits best for
different design tasks.

3. THE SYSTEM IN ACTION

ModelCraft is implemented as a plug-in to the CAD program SolidWorks [2005]
that helps users create a traceable 3D model from a virtual model and integrates
the captured strokes from the physical model back to the original virtual 3D
model. The plug-in produces traceable 3D models by printing (using a standard
desktop printer) the 2D layout of a 3D model on top of one or more sheets of
Anoto pattern [Anoto 2002] paper. This pattern provides a very large space of
uniquely identifiable pages (in excess of 2%® letter-sized pages). This makes it
possible to interact with a large number of printed objects at once, including
different printouts of the same object. The pages are then folded along guide-
lines into a physical representation of the model. While building a paper model
seems arduous, interviews with architects confirmed that they often build mod-
els out of paper (Figure 3). For example, architects sometimes opt to create a
2D printout of an unfolded 3D CAD model and then cut it out using a laser
cutter. Hence our pattern mapping process on 2D unfolded layout augments
the current practice of creating 3D models by folding 2D printout. Practical
paper models are usually quite simple since early designs often rely on a vo-
cabulary of basic shapes (cube, cylinder, pyramid, cone, sphere) as proposed by
Ching [1996]. For more complex shapes, the traceable pattern can be applied
directly on top of a model printed with a 3D printer by using a water trans-
fer decal printed with the pattern. This approach is supported by our current
system, which provides a way to generate pattern patches for each face and a
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map to simplify assembly. Our vision is to create models using a 3D printer
and have a traceable pattern generated automatically during printing. Auto-
matic pattern mapping is currently a work in progress that will be described in
Section 5.3.1.

All interactions are carried out with the Logitech i02™ pen [Logitech 2005],
a commercial implementation of the Anoto system [Anoto 2002]. As each Anoto
digital pen has a unique ID, it is possible to distinguish between several differ-
ent pens interacting with one object. Our system also lets us designate special
objects as tools. For example, we instrumented conventional design tools such
as rulers, protractors, and a sketchpad by taping a strip of Anoto pattern onto
them (Section 3.3). Marks made on these tools are used by the system as mea-
surements and guidelines when entering commands.

3.1 Annotations

Annotating a model is straightforward: The user simply picks up the model
and writes directly on any surface. Annotations can be characters, marks, or
guidelines for a shape. Upon pen synchronization, the marks will be merged
onto the corresponding surface of the SolidWorks model. Users can use several
pens for different colors of annotations. Marks created by annotation pens are
not interpreted by the system as commands.

3.2 Form Editing Command Syntax

The pen can also be used to capture edit commands to be executed directly on
the digital CAD models. Our objective is not to replace the standard (and far
more accurate) CAD construction process, but instead to address two disparate
needs. First, in the early stages of design, a rough prototype is often sufficient to
present or verify a designer’s idea. For instance, if after 3D printing it is found
that a piece conflicts with another element in the design, simply marking the
conflicting area and cutting it away may be all that is needed. Second, we found
that when a large number of marks are made on the prototype, it is somewhat
difficult upon review to understand how the marks relate to each other. In that
context, providing tentative feedback to the executed operations helps the users
to understand the structure of the marks. Furthermore, as all annotations and
command parameters are created as first-class objects inside the SolidWorks
features tree, they can easily be modified inside SolidWorks [2005]. A simple
update of the model will automatically reflect any such changes.

All commands are performed with a command pen which lays ink in a dif-
ferent color (red or pencil lead in the figures). We choose a “command” pen
approach as it fits well with the current practice of using color-coded annota-
tions. Other solutions such as having a command mode, triggered by a button
on the pen, are also possible.

All commands follow a uniform syntax (Figure 4) inspired by Scriboli
[Hinckley et al. 2005] and PapierCraft [Liao et al. 2005]. To issue a command,
users first draw the necessary parameters directly on the surface of the model
(Figure 4(a)). Next, they draw a pigtail gesture, which is used as a separator be-
tween the parameter strokes and the command identifier (Figure 4(b)). Next,
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— (&)

C

(d)

Fig. 4. Command syntax for editing a single object. Left: (a) main parameter; (a’) additional pa-
rameter (in this case, the depth of the cut); (b) pigtail delimiter; (¢) command name; (d) reference
line for character recognition. Right: the result of command execution.

they indicate which command they wish to execute by drawing a letter or a
simple word on top of the pigtail (Figure 4(c)). During pen synchronization,
the command is then executed using the area on which the pigtail started as
the primary shape parameter. For example, to create a hole though an object,
the user would draw the shape of the hole on the object’s surface, then draw
a pigtail starting inside the shape, and then write a C (for cut) on top of the
pigtail. Starting the pigtail outside of the shape complements the selected area
and would have created a cylinder instead.

The use of the pigtail proved to be very reliable for pen-based interaction
[Hinckley et al. 2005] and is well adapted to our case, as it does not require any
feedback besides the ink laid on the surface [Liao et al. 2005]. For our system,
the pigtail has two advantages. First, it serves as a natural callout mark when
one needs to execute a command on a small area such as cutting a hole for
a screw. Under such conditions, it would be difficult to write the name of the
command directly on the area of interest because the area is too small or too
close to the surface border. Second, the pigtail provides a natural orientation for
the surface. While up and down are well understood in a Tablet-PC context, this
is not the case on 3D objects, which people may place in arbitrary orientations
to facilitate the annotation process. Accordingly, when interpreting a command,
we consider the pigtail as the baseline for the command name (Figure 4(d)).

As shown in Figure 4, some operations may require several sketches to be
drawn on more than one surface. For example, to create a cut of a given depth,
the user first creates the shape of the cut, then marks the depth of the cut on
another face, and then uses a pigtail to issue the cut command. As shown in
Figure 6, this syntax makes it very easy to use real-world objects as references,
without the need for further measurements. Another example is the creation
of a groove on an object (Figure 5). In that case, the user first draws the profile
of the groove on one surface and then the extent of the groove on an adjacent
surface, then uses a pigtail to indicate the inner region, and finally writes a G
(for “groove”) on top of the pigtail.

Our system can accept closed paths drawn with several strokes on multiple
surfaces as the main parameter of the syntax. During path construction, we
consider each stroke as a separate spline without attempting to smooth sharp
edges between strokes. This offers a flexible way to draw a wide variety of
shapes. For example, a hexagon can be created by a set of six strokes while a
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Fig. 5. The parameters are specified on two adjacent surfaces for a groove operation.

>4 &

Fig. 6. Using external references to perform command: a cube is cut and extruded to fit a door
frame. First we mark the thickness of the frame and then the width before executing.

smooth circle can be created using one stroke. This feature can be used to create
complex, multifaceted grooves, as shown in Figure 7.

In some operations, a component of the model such as a face or an edge can
serve as a main parameter. The desired component is indicated by the beginning
of a pigtail. For example, to perform a shell operation (Figure 8), which creates a
shell given a volume, the user selects a face using the pigtail and then writes the
command on top of the pigtail. A similar sequence applies to the fillet operation,
which smoothes a selected edge, in that the starting point of the pigtail is used
to pick the edge of interest.

3.3 Augmented Tools

One of the main limitations of using the Anoto pattern as a tracking system is
that it cannot track in free space, as the patterns are only mapped on the surface
of a physical object. In other words, operations that use auxiliary parameters
defined in free space around the model are not directly available. To address
this problem, ModelCraft relies on the use of tools that have been augmented
with a digital pattern.

The simplest tool is an augmented ruler used in conjunction with the extrude
command. To extrude a shape from a surface, one draws the shape on the
surface, then draws a mark on the ruler to indicate the extrusion length in
the direction orthogonal to the surface, and finally, using the pigtail, issues
the extrude command on the area to be extruded. As in the case of cutouts,
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Initial Digital Model i sital Model Result

Fig. 7. The main parameter can be defined on multiple surfaces to cut, groove, or extend a portion
of the model. The hexagon shape was drawn from several strokes to preserve its angles.

Initial Digital Model Physical Model Digital Model Result

Fillet and Shell

Fig. 8. Parameters are needed on only one surface for shell and fillet operations.

this command facilitates the process of using real-world objects as references
(Figure 9).

Another useful tool in ModelCraft is an augmented protractor. While the
ruler only allows for extrusion perpendicular to the surface, the protractor lets
users specify the extrusion direction. Like the ruler, the protractor was created
by printing out a protractor shape on a piece of Anoto paper mapped in our
system as a special “protractor” area. The command syntax for the protractor
is very similar to that of the ruler. First, users draw the shape they want to ex-
trude on a surface. Then they indicate the direction and length of the extrusion
using the protractor they want to consider by simply drawing the corresponding
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Fig. 9. Using external references to perform a command: one side of a cube is extruded to cover
a door frame. First we mark the thickness of the frame and then use a ruler to mark the width of
the frame before execution.

(a) Straight Line on the Protractor (b) L-shape line on the Protractor

Fig. 10. An augmented protractor is used to specify the direction and extent of extrusion.

line on the protractor. Finally, users issue the extrude command on the target
area using the pigtail as the baseline. In this case, the direction of the pigtail
is important, as it indicates the orientation of the protractor on the surface.
By convention, it is assumed that the base of the protractor is aligned to the
direction of the pigtail (Figure 10). Using this syntax, it is possible to extrude a
shape in any direction by indicating the azimuth in combination with the pig-
tail. The digital representation will be a simple extrusion like in Figure 10(a)
with the top of the chimney parallel to the roof. It is also possible to create an
extrusion with a face orthogonal to the extrusion direction by simply using an
“L” shape instead of a straight line for the direction and length of the extrusion,
as shown in Figure 10(b).

A similar syntax can be used for creating a sweep of a given shape along a
planar curve using the sweep sketchpad. Using this tool, a user can transform
the cone shown in Figure 11 into a teapot with the following operations: First,
the user draws a cross-section of the handle on a cone (Figure 11(a)), then draws
the path of the handle on the sketchpad (Figure 11(b)), and finally, using the
pigtail (Figure 11(c)), issues the extrude command (Figure 11(d)) on the area
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Physical Model Digital Model Result

Fig. 11. The sweep sketchpad is used to define the path of a sweep-like extrusion.

to extrude. Like the protractor, the normal vector on the model surface and
the pigtail is used to define the sweep sketchpad plane in which the sweep
trajectory lies (Figure 11).

3.4 Multiple Model Assembly Syntax

Our interviews with architects suggested that operations across multiple ob-
jects will be very useful in early design phases, as architects often create new
designs by stacking or joining available building blocks. Previous systems fea-
turing tangible building blocks [Anderson et al. 2000; Suzuki and Kato 1995;
Watanabe et al. 2004] exhibit a Lego™ -like connection system, which makes
it easy to connect the blocks. Yet, these systems limit the shape of the build-
ing blocks and the directions of connections. Instead, we decided to emphasize
connection flexibility, which is more important in the early phases of design.
Our approach is based on the idea that people will first assemble the shape
they wish to create, and then register the resulting arrangements by creating
“stitching” marks between the different blocks. This idea was inspired by the
PapierCraft system [Liao et al. 2005] and Stitching [Hinckley et al. 2004], both
of which use a similar approach to allow people to create larger documents from
smaller display surfaces using pen marks.

We first consider the simple case in which the two objects to be glued to-
gether share a common face and a common edge. In this particular case, the
assembly can be registered using a simple stitching stroke across the common
edge (Figure 12(a)). In this configuration, ModelCraft uses the coincident point
(the point at which the stroke jumps from one object to the next) to register and
set the relative position of the two objects (point constraint, fixes 3 degrees of
translational freedom). The relative orientation of the two objects (3 additional
degrees of rotational freedom) is then determined using the following conven-
tions: First we assume that both edges at the intersection with the stitching
mark will be collinear (edge constraint, fixes 2 degrees of freedom), finally we
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Fig. 12. Command syntax for stitch operations in multiple objects.

assume that the normals of the shared faces are collinear (plane normal con-
straint, fixes the last degree of freedom). This interaction is very convenient for
simple assembly operations in which speed is valued over flexibility (Figure 13).
It is also possible to use a similar syntax if one wishes to glue one object on an-
other without a common edge (Figure 12(b)). In such a scenario, we create the
equivalent of the edge constraint as follows: For the segment of the stitching
mark not crossing an edge (grey ink in Figure 12(b)), we compute the cross
product of the stitching mark segment and the surface normal, referred to here
as the tangent line. This tangent line is then aligned with the edge of the other
model (edge crossed by dark grey ink in Figure 12(b)).

Users can also assemble two objects that do not share a face (Figure 12 (c)).
This can be accomplished via the use of either two or three stitching marks.
When a user draws two stitching marks across two models, the first stroke is
used to infer the two points and two edges to be used for aligning the objects.
Once again, the points on the models where the stroke jumps from one object
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Fig. 13. Assembly syntax and form edit syntax to simulate the massing practice. Left: paper cube
models with form edit and stitch operation to create a model in Figure 3. Right: result of execution.

Initial Digital Models  Physical Model Digital Model Result

Fig. 14. Example of the assembly feature with models that intersect: cylinder and a cube are
intersected using two stitching marks.

to the next are used as the two points. Furthermore, the tangent line of each
model (a cross-product of the marking segment and the normal of the surface)
is calculated for both models to be used for alignment. Since the first stitching
mark doesn’t end in a pigtail, ModelCraft doesn’t align any predefined faces to
finish the assembly. Instead, a second pair of stitching marks is used to finish
the assembly. The coincident point from the second stroke is used to define the
angle between the two models (i.e., angle between (a) and (a’) in Figure 12(c)).
Using this two-stitch assembly syntax, users can even overlap part of a model
inside another model, thus allowing for the intersection of two physical models
(Figure 14).

Finally, users can also use three-stitching syntax to assemble two objects in
an arbitrary orientation (Figure 12(d)). In this case, users are required to create
three stitching marks and the system uses the three points at which the stroke
jumps from one object to the next to define the position and orientation of the
two objects. This is the most precise and flexible alignment technique, since the
system solely relies on the user’s stroke to assemble the two objects. Hence, it
can be used instead of the other syntax when alignment precision is important.
Alignment precision will be discussed further in Section 4.6.

To show the potential of this assembly method, we demonstrate in Figure 13
how one could build the massing model provided to us by one of our participants
(Figure 3). Starting with a set of simple blocks, users can draw several cut
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Table I. List of Edit Commands and the Syntax Requirements

Location of
Parameter the Auxiliary Entity selected
Commands Recognized Shape Parameter | Parameter by a pigtail
Ink on a Ink on mul-
single face tiple faces
Cut Closed shape, Closed shape | Any surface Shape
Open shape except where
shape ink is laid
Extrude Closed shape, Closed shape | Augmented Shape
Open shape Tools (ruler,
protractor,
sweep
sketchpad)
Groove Closed shape Shape
Shell Face
Fillet Edge
Assembly Across pairs of Coincident point
models

The cut, extrude, and groove commands require a shape parameter on one or more faces. Cut and extrude
require an auxiliary parameter. The shell and fillet commands are preceded only by a pigtail that indicates
which part of the object is to be smoothed. The assembly syntax requires one to three pairs of auxiliary
parameters for alignment.

operations to create the entrance area of the building on the center block. Then,
users extend both sides of the model by using our stitch operation. Finally, a
smaller semicircular block is used to create the detail on the roof and is glued
onto the building.

Lastly, the entire set of edit commands is summarized in Table I.

3.5 Feedback and Error Management

In its original form, ModelCraft was a batch processing system, in which an-
notations and commands were captured by the pen to be processed upon pen
synchronization [Song et al. 2006]. There were several reasons for this choice.
First, as explained previously, it was important that interactions could take
place away from a computer (Figure 6 and Figure 9). Second, by delaying ex-
ecution, a batch approach might help keep users in the “flow” of their task by
avoiding unnecessary interruptions.

The batch style of execution raises the question of how to correct for errors.
In batch mode, our interface offers two main mechanisms to deal with errors.
For marking errors in annotations and commands, we provide a simple scratch-
out gesture to indicate that the underlying gestures should be removed, or that
the underlying command should not be performed. For execution errors, it is
important to remember that while our system might misrecognize gestures and
command names, it accurately captures the parameters of the commands on
the correct faces. Since this information is directly transferred to SolidWorks,
it becomes a trivial matter to make corrections because all the relevant com-
mand parameters are already in place, and a correction involves changing the
parameters.
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Navigation Panel

Delete Select
UP
Select
Reset DOWN View]

Fig.15. Real-time interactions in ModelCraft. Left: paper tool palette for navigation, undo, feature
select. Right: the CubeExplorer system consists of a paper cube, a computer display, and the paper
tool palette.

This last feature also makes it possible to issue several “alternative” com-
mands by simply drawing a new command over the last command, a common
pattern in practice. Each command will be recognized as a different operator
(or “feature” in SolidWorks terminology) and appear in the “feature tree” man-
aged by SolidWorks. Once the strokes have been transferred to SolidWorks,
the user can compare the results of different commands, pick the best of them,
and delete alternative executions. Alternatively, commands can be applied in
different model configurations to help document the design process.

3.6 Real-Time Pen Interactions

While gathering feedback about the batch version of the system, the possible
appeal of providing immediate feedback became apparent. In particular, a pro-
fessor in the architecture department at University of Maryland explained that
he would like to use such a real-time system for one of his introductory classes.
In a real-time version, strokes captured by the pen are transmitted via Blue-
tooth to a nearby computer, which processes them right away and renders the
result for immediate inspection.

We explored this real-time digital pen interaction with the CubeExplorer
[Song et al. 2007] system to teach different architectural space concepts to
freshmen studying architecture. CubeExplorer was a simplified version of the
ModelCraft system (limited to grid-snapping cut operations on a cube), but
demonstrated the potential benefits of a digital “streaming” pen that can stream
strokes in real time using a Bluetooth link. In CubeExplorer (Figure 15), user
operations on the surfaces are instantly displayed on the screen of a nearby
computer so that students could rapidly explore the 3D implications of their
2D marks.

Our work on CubeExplorer offered us several insights on how to implement
real-time operations for ModelCraft. We discovered that it was important to
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Table II. Feedback and Error Management in Batch and Real-Time Synchronization

Feedback
Mode Audio Visual Tactile Error Management
Batch Vibrates when | e Scratch out gesture
Synchronization the pen is near | e Pencil lead and eraser
Real-time Audio Near-by screen | the edge e Replace pattern patch if
Synchronization | beep TTS previous trace is
troublesome

provide a pen-based interface for both model navigation and quick access to
frequently used commands. This reduces the mental load introduced by the
interface, as users do not have to switch between a pen and a mouse to per-
form these actions. CubeExplorer includes a paper tool palette inspired by Pa-
perPoint [Signer and Norrie 2007] and FlyPen. The CubeExplorer paper tool
palette consists of six different regions. If a user draws the wrong shape for
the cut operation, the user can restart the cut sequence by tapping on the reset
region. Similarly, users can tap inside the delete region to undo the previous
cut operation. After issuing more than five cut operations, the user may want
to virtually undo a cut feature created in the beginning. To select a particular
cut feature, users can tap inside the select up or select down regions to traverse
the feature tree. To get a better view of the virtual model, users can also tap
inside the view region to toggle the view between wireframe and solid views.
Users can also use the navigation panel region with a pen to rotate the 3D vir-
tual model on the screen. The direction of pen stroke on the navigation panel
is used to move the virtual camera on the screen (Figure 15, left).

Our work on CubeExplorer also revealed that it was important to limit the
need to check the screen. Users would verify whether an operation had been
successful. However, over-reliance on visual feedback could be tedious while
issuing a series of modeling operations on a model. To alleviate this problem,
CubeExplorer provides a simple audio cue indicating the success of the cur-
rent state transition of the operation. We translated this simple interface to
the diverse operations offered by ModelCraft by using Text-To-Speech (TTS) to
confirm the recognized syntax of both shape and functional parameters.

One of the major changes brought by real-time operation is the availability
of the “delete” button on the tool palette used to cancel the last operation. In
this setting, it is better to use pencil lead instead of regular pen ink so that it
is easy to erase the unwanted marks on the physical model. This configuration
allows users to maintain their work area clean.

Feedback and error management implemented in both batch synchronization
and real-time synchronization is summarized in Table II. More recent feedback
and error management techniques for digital paper interfaces [Liao et al.] and
recent a commercial product with visual feedback [LiveScribe] could be adapted
in the context of ModelCraft. Currently, this is left as future work.

4. IMPLEMENTATION

As shown in Figure 16, the life cycle of a model in our system can be broken
down into four phases: (1) unfolding the 3D model into a 2D layout; (2) printing
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Pattern
— mapping  Anoto paper ——
CAD . . 0/ Physical
Software world

Folding I

@.o 2 1o <A

Command execution Peq .
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Fig. 16. Life cycle of a model using our system. Here we present the cycle for paper-based model
construction, but a similar cycle will be used for applying water slide transfers onto 3D models.

the 2D layout as a paper prototype with a unique pattern on each side; (3)
capturing the strokes made on the paper prototype in batch mode or real time
and mapping the strokes onto the virtual 3D model; (4) executing the commands
themselves. We now describe the implementation details of each phase.

4.1 Unfolding the Model

The original version of our unfolding algorithm [Song et al. 2006] was simple
but limited. It relied on a triangulation of the model which did not include
face information. As a result, even simple shapes could result in a complicated
unfolding. We show an example of such behavior in Figure 17. As one can
see on the top of the figure, the original algorithm creates many unwanted
cuts in the middle of planar faces. These cuts are problematic as they create
discontinuities in the tracking pattern, which cause unreliable tracking along
the cut. The extended ModelCraft system can prevent faces from splitting as it
does not merely use triangles as the basic geometric unit for unfolding. Rather,
unfolding is performed on groups of triangles representative of the model faces
(Figure 17 bottom).

4.1.1 Unfolding into an Infinite Area. There are many unfolding ap-
proaches for objects such as Mitani and Suzuki [2004] and Polthier [2003].
Our unfolding algorithm relies on a heuristic to create an efficient construction
using the basic geometric unit (faces or triangles) of a model. We first consider
the case in which we can unfold onto an infinite area of digital patterns while
minimizing the number of patches.

The unfolding process follows a greedy algorithm (Figure 17), which tries to
build as large a set of connected neighboring faces (a patch) as possible before
starting a new patch.

When a user wants the 2D layout to preserve the connectivity at the expense
of dividing a face, users do not have to choose a face as the basic unit (Figure 17,
top). When a user wants the 2D layout to preserve the face information rather
than preserving the connectivity, faces can be chosen as the basic geometry for
unfolding (Figure 17, bottom).

4.1.2 Packing Patches among Several Pages. In practice, the pattern space
is of finite size depending on the paper size of the printer. As one of our goals
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UNFOLD(faces)
patches.CLEAR()
while (!faces.IS EMPTY())
p < UNFOLD-INTO-A-PATCH(faces)
patches INSERT(p)
return patches

UNFOLD-INTO-A-PATCH(faces)
NEW patch, copy-of-faces

seedface <« faces.GET LARGEST AREA FACE()
faces.REMOVE(seedface)
patch.INSERT(seedface.2D())
while (Ifaces. 1S EMPTY())) && copy-of-faces.EQUAL(faces) do
copy-of-faces <— faces
neighbors <— patch.GET NEIGHBOR FACES(faces)
neighbors.SORT_LONGEST _COMMON_EDGE()
foreach neighbor in neighbors do
if (Ipatch.OVERLAP 2D(patch, neighbor.2D() )) then
faces.REMOVE(neighbor)
patch.ADD(neighbor.2D())
return patch

patch pile 1 patch pile 2
O ;
fi S
T 4f’2
12

Fig. 17. Triangle- and face-based unfolding algorithm. Top: when the topology of the object is
greater or equal to two, one face is split into several pieces. Bottom: additional face information
during unfolding (bottom) preserves the continuous faces.
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Fig. 18. Packing each page (R) with patches (pi).

was to develop a system where users can print out pattern using their typical
printers to map onto large models, it was important to be able to deal with
finite page size. Restricting the printed pattern to a finite size has two direct
implications. First, patches can only grow up to the maximum pattern size and
then the system must start a new patch. This problem is easily addressed by
modifying the Unfold-Into-a-Patch() algorithm by terminating the iterative loop
when the patch exceeds the finite pattern area. Second, the new version of the
algorithm has to pack different patches onto a single pattern space when more
than one patch can fit onto a page. In this case it is important to maximize the
area covered with the patches, and to minimize the number of pattern pages
required for a given model (Figure 18).

If the shape of each patch is approximated by a bounding box as shown in
Figure 18, the packing problem reduces to finding the optimal packing of a
set of rectangles (p;: patches) on a larger rectangular region (R,qg), which is
known to be NP-complete. Many polynomial approximation methods exist for
this rectangle packing problem [Jansen and Zhang 2004]. In our current im-
plementation, we borrowed the strip packing algorithm described by Steinberg
[1997] that proposes packing rectangles using an L-shape packed area. In doing
S0, this algorithm preserves the maximum available area in the target rectan-
gular region. Following Steinberg’s approach, our packing algorithm works as
follows. Once all patches are created using the algorithm described in Section
4.1.1, we determine the minimum enclosing rectangular bounding box for each
patch. Note that, as shown in Figure 18, this optimal bounding box might not be
axis aligned, as the rectangular boxes are rotated to minimize the size of each
bounding box. Next, the system traverses through the patch bounding boxes
and finds an unoccupied section of a page in the queue of available pages. If one
is found, the patch is placed so that the resulting L-shaped area occupies the
minimum area. If the patch does not fit into any available area of the candidate
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Fig. 19. The paper model building process using a laser cutter: (a) an electronic representation of
the model; (b) a connectivity map, the 2D layout with the face ID and edge ID information; (c) the
result after laser cutting the 2D layout; (d) the model after manual construction.

pages, it is placed on a new page which is added to the queue of documents.
Since the algorithm checks only along the edges of the L-shape area to insert
a new patch, the search time for the optimal location of the new patch on each
page is constant. This heuristic approach relies on the assumption that the
original patch area fits reasonably compactly inside the surrounding bounding
box to save Anoto pattern space.

4.2 Printing the Model

If the unfolding algorithm generates several discontinuous patches for the 2D
layout of a 3D model, manually constructing a physical model becomes diffi-
cult. Our plug-in offers an additional printout to simplify the construction of
the resulting model. The connectivity map (Figure 19(b)) layout consists of the
face ID, edge ID, and a set of alignment marks to properly align the patches
together. This information is very useful even for building the simplest ob-
jects. For example, if a user opts to manually apply the traceable pattern and
build the 3D model, the basic 2D layout will be printed on top of traceable
pattern paper and then cut using a knife or scissors. Using the connectiv-
ity map, users can disambiguate and orient faces properly (e.g., identifying
faces of a cube), align components precisely (e.g., the circular cap and rect-
angle of a cylinder should be aligned to preserve 3D geometry when folded),
or make sense of the connectivity for complex models unfolded onto several
patches.

To partially automate the model construction process, our system can output
the unfolded layout (the edge layout and/or connectivity map) directly to a laser
cutter to skip the manual cutting process (Figure 19(c)). We considered engrav-
ing the assembly information with the laser cutter to print the connectivity
map as part of the laser cutting, but it proved somewhat difficult in practice to
read the connecting edges and faces. When cutting water slide transfer paper to
apply on top of a model printed with a 3D printer, the laser cutter was especially
useful to cut 2D layouts from the water slide transfers. For creating a paper
model, we decrease the laser power to engrave the cuts so that the tabs required
for building the model can be manually created. The printing and construction
process is depicted in Figure 19.

During printing, we use the PADD infrastructure [Guimbretiere 2003] to
maintain the relationship between a given model’s face and the unique page
ID on which it has been printed. It is also used to record the calibration data
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and geometric transformation used during the printing and unfolding process.
This information is used during the synchronization process, to identify which
digital model or face a stroke has been made upon.

4.3 Importing Captured Strokes

In the case of batch synchronization, the PADD infrastructure receives all the
strokes captured by a pen when the pen is placed in its cradle. Strokes are
recorded with a timestamp and the page ID on which they were made. We use
the page ID information to recover the corresponding metadata from the PADD
database, including the model ID, augmented tool ID (paper ruler, protractor,
or sketchpad), and the calibration and geometric transformation of the model
stored during the printing process. When the “Download” button is pressed
(batch mode), our application fetches the metadata from the PADD database
and transfers strokes from the PADD database onto the unfolded model. Then,
each stroke point is mapped from page coordinates back into 3D coordinates by
applying the inverse transformation that was originally used to map the face
from 3D to the plane of the paper sheet.

If the user is using the Bluetooth-enabled pen for real-time interaction, each
stroke is sent to our plug-in in real time. When the strokes are downloaded,
page mapping and the transformation information are downloaded from the
PADD database.

4.4 Executing Commands

All command strokes are made by the special “command” pen, so it is easy
for our system to distinguish them from annotations. The sequence of strokes
is parsed into individual commands using a set of heuristics to identify each
command boundary, and to identify the parameters for each command. To do so,
we first detect strokes that might look like a valid pigtail by looking for gestures
with a relatively small loop and large outside tails. Once these are detected, we
observe if there is a stroke recognizable as a character or word that has been
drawn above the candidate pigtail within a predefined bounding box. If this
is the case, the stroke is recognized as a valid pigtail, and the strokes drawn
after the last command are used as parameters for the command execution.
To further disambiguate input, we also check for natural command separators
(such as creating an annotation or writing on one of the measurement tools)
and check that the parameter set matches the command syntax. For example,
the face ID or model ID associated with a pigtail delimiter and a command
character should all be the same. In practice, this approach works well for
batch mode synchronization.

In real-time mode, the recognized syntactic information is reported to the
user as soon as it is available. While the batch-mode parsing engine considers
subsequent strokes and timing information to parse strokes, our real-time pars-
ing engine instead relies on the user’s ability to redraw the shape parameter
until it is recognized correctly. The system provides ample audio-visual feedback
to indicate the current command state to the user in this configuration. Once
the command syntax has been validated (e.g. command character detected),
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a) Cuts that overlap

b) Cuts on deleted face

Fig.20. Example of sketches on the reference plane of an object. Creating reference planes enables
new operations to be independent from previous ones.

each parameter is processed according to the semantics of the command, and
the command is executed inside SolidWorks.

4.5 Processing Shape Parameters

Various collections of strokes are parsed as shape parameters. Examples range
from a single stroke on single face (Figure 20) to multiple strokes on multiple
faces (Figure 7). When SolidWorks requires the shape parameter to form a
closed sketch, ModelCraft automatically closes the sketch, either by moving
the two end points closer or creating extra segments using the edges of the
surface on which it is drawn (Figure 6).

Another important aspect to consider is how to map the captured shapes onto
the 3D model. One simple way of mapping the shape parameters to the virtual
model is to apply them directly onto the current state of the model. This greatly
simplifies the implementation, but is problematic when parts of the surface
on which the stroke is drawn have been removed in a previous operation. In
Figure 20(a), successive cuts are overlaid on each other, resulting in parts of
the parameter being drawn in free space from the perspective of the digital
model. Figure 20(b) shows an even more extreme case in which the surface on
which the star is drawn does not exist anymore in the digital version of the
model. To address this problem, our system creates shape parameters on an
independent reference plane tangent to the original surface. This guarantees
that it is always possible to create a valid SolidWorks sketch using stroke data
created on the surface of the original digital model, which may be different from
the current state of the digital model.

Our system also needs to deal with complex curved surfaces, as shown in
Figure 21. In such a case, we process input points after projecting them onto
an imaginary plane. Although we would like to process the input points on
top of original surface, the SolidWorks API limits our current implementation
to creating 3D features from reference planes. In Figure 21, the surface of the
original model is curved so a reference plane has to be approximated. In order to
maximize the accuracy of the operation, the reference plane has to be defined so
as to minimize the geometric deviation of the projected sketch from the original
sketch.

With this criterion in mind, the received input points are used to approximate
a reference plane. A 3D point is picked among these input points and a normal
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Fig. 21. Reference plane is created to simulate the nonflat surface to execute extrusion. Note that
the original 3D sketch points are projected onto the reference plane defined by our system.

vector is calculated using these input points. We calculate a normal vector on
the original surface for every point of the sketch (Figure 21) and average them to
determine the reference plane normal. Next, we select the point that is farthest
away from the model. Had we chosen any other point to create a reference
plane, the reference plane will intersect the model, making some operations
(cut, extrude, groove) difficult to execute. We then project the sketch data onto
the reference plane to create a shape used for the command to be executed.
For a “cut” operation, we simply extrude the cut in the opposite direction of the
reference normal. For an “extrude” operation, using either the paper ruler or
paper protractor, we extrude the shape first toward the direction of the reference
normal up to the specified distance and then toward the solid in the opposite
direction. Although this extrusion is defined above the highest ridge of the
surface in our current implementation, other alternatives such as using the
starting point of the pigtail for extrusion are also possible.

4.6 Interpreting Assembly Parameters

Our assembly syntax was designed with two goals in mind. First, the syntax
should provide sufficient and appropriate reference geometry for SolidWorks
to create the alignment that requires six degrees of freedom with as minimal
amount of user input as possible. To achieve the first goal, our plug-in calculates
possible referential geometry such as normal vector, cross-vector, coincident
edge, and coincident plane for each syntax stroke. Figure 22 shows reference
planes created for two models using the first stroke vector and the second stroke
point.

Our second goal was to be sure that we could accommodate the limited preci-
sion of the data captured by the pen, so that alignment success rate is high. Due
to the accuracy of the tracking, the two triangles (one on each object) created
by the three alignment points for the three-stitch syntax are not identical and
direct point alignment will fail in most cases. Snapping, which is a common fea-
ture in 3D applications, can be used to offset the misalignment error. However,
increasing the tolerance level in SolidWorks is not a permanent solution, as the
size of the triangles to define alignment varies. To alleviate this problem we
proceed as follows: (1) align the first two points (the points on models at which
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Fig. 22. Coincident plane for assembly: reference planes are created on both assembly models to
create coincident plane relation.

the first stitching mark jumps from one object to the next); (2) align the two
axes created by point 1 and point 2 on each object. This relaxes the distance con-
straint between the two pairs of points; (3) align the planes generated by each
triad of points on each object. This relaxes the need to have perfectly identical
triangles. Other stitch syntaxes relax the problem in similar ways (Figure 22).
Note that our system only considers the case in which two objects are stitched
together, but could be easily extended to three or more objects (for example, to
create a bridge), by introducing a global connectivity graph data structure as
was done by Anderson et al. [2000]. We are considering implementing such a
system in the future version of the system.

5. DISCUSSION

To verify the proof of concept, we gathered feedback about ModelCraft from po-
tential users during several phases of our implementation (Section 5.1). During
and after these evaluations, we identified several technical limitations of our
system that interfere with fluid interaction. We discuss the difficulties associ-
ated in editing models (Section 5.2), printing, constructing models (Section 5.3),
and tracking performance and limitations (Section 5.4).

5.1 Evaluation

Our system was built over several iterations of user evaluations and feedbacks.
Early on, we conducted six semistructured interviews, including a demonstra-
tion and a hands-on test. Our participant population covered a wide range of ar-
chitectural and mechanical engineering backgrounds. In particular, it included
a student in an architecture school working as a drafter, two young architects, a
senior architect, a senior partner in an architecture firm, and a faculty member
at the University of Maryland, School of Architecture. Despite the shortcom-
ings of our early prototype (such as the use of handwriting recognition without
training), seasoned architects reacted very positively to our system. Several
architects pointed out that our system would be perfect for bridging the gap
between the physical practice and virtual modeling practice, and in particular,
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massing a building. During massing, new models are built based on marks or
shapes that were suggested in the previous iterative cycle. This type of practice
is well suited for the ModelCraft interactions. Architects further pointed out
that annotations on paper models could be useful for capturing feedback from
some of their clients who might be intimidated by digital models. They also
commented that the support for “free space” sketching by using information
sketched on extra papers will be useful. This feedback motivated the idea of
paper protractor and paper sketchpad in the extended version of ModelCraft.
They also mentioned that operations involving multiple objects are very useful
in early design because architects often create new designs by stacking or join-
ing available building blocks. This participant also pointed out that she often
“deconstructed” her models in order to reconfigure them. This feedback inspired
the assembly feature in the extended version of ModelCraft.

The response to the system from the younger participants (one a student
drafter and one a CAD modeler) was more muted, since their work did not re-
quire extensive use of tangible 3D models. Yet the architecture student pointed
out that the system would be very useful for teaching and could support current
practices taught at school. The CAD modeler, while skilled in building models,
did not use them at work.

The professor remarked that our system would allow students to explore
prototyping and develop 3D thinking skills, because visualizing the 3D results
of subtractive operations drawn on a face of a cube is a common task in ar-
chitecture training. ModelCraft may also create a natural bridge between the
traditional approach to architecture (based mostly on paper-based sketching)
and the use of modern applications such as SketchUp [Google 2006]. As pointed
out previously, we explored this idea by developing the CubeExplorer project
and conducting an in-depth study comparing CubeExplorer [Song et al. 2007]
to other conventional architectural education tools. Our results showed that
CubeExplorer not only simplifies the training process but also provides simul-
taneous context for physical and virtual interactions. Yet it was difficult to mea-
sure whether our tool is better than conventional tools for improving creativity
or performance. While we implemented CubeExplorer within the current ver-
sion of ModelCraft, it was difficult to generalize our findings to the ModelCraft
system. Hence, we are planning to conduct a new user study in the near future.

5.2 Editing Models

The design of our command language followed a different path than that of
Teddy and Sketch. While those systems adopted a gesture-based approach well
suited for sketching, we used a structured syntax based on a simple extendable
command structure and a pigtail as a separator between parameter strokes and
command selection [Hinckley et al. 2005; Liao et al. 2005]. One of the strengths
of our approach is that it can be easily extended to a wider set of complex com-
mands by using longer command names, while keeping an informal feel. Using
techniques described in the PapierCraft system [Liao et al. 2005], we could also
transfer a shape captured on transfer paper onto a given surface and extrude it.
It would also be easy to extend the system to accept postcommand parameters
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like numerical arguments. The current command set implementation attempts
to keep syntax structure simple while permitting diverse combinations of edit-
ing operations, summarized in Table I.

Another important difference between ModelCraft and other 3D tracking
systems is the scope of tracking. ModelCraft only allows users to draw on the
surfaces of models as opposed to the free space. However, even if more complex
tracking systems were used, people find it difficult to draw precisely in free
space [Schkolne et al. 2001]. In ModelCraft, we present a partial solution to
this problem by providing augmented tools. Users can specify parameters in
the free space through the use of simple tools such as a ruler, a protractor, and
a sweep sketchpad.

In regard to providing two modes (annotation and editing), we delegate spe-
cialized functions to different pens. This separation can be implemented dif-
ferently by introducing multiple modes per pen using a mechanism such as a
physical switch. However, as it is common practice to assign different tasks
on different sketching devices, our implementation was well received by the
designers.

5.2.1 Command Recognition. Character recognition and pigtail recogni-
tion together determined the total number of successfully recognized editing
commands. Several problems might affect the recognition rate: First, the pen
provides samples at a temporal resolution of (50Hz ~ 75Hz), which is too low
for character recognition but too high for shape recognition. We address this
problem by oversampling strokes to provide closer samples before perform-
ing character recognition, and downsampling strokes before performing shape
recognition. Second, the orientations of the command letter or word also have an
effect on the command recognition rate if the axis of writing is unidentified. Our
informal tests showed that using the pigtail as a baseline of character recog-
nition was quite successful. Overall our tests show that our pigtail recognition
rate is about 99%, and with our small dictionary of commands, we achieved a
command recognition rate of about 92%. Further empirical evaluation will be
needed to confirm these numbers and the effect of command letters or other
syntax component deformation by writing on a nonplanar surface.

In terms of parameter recognition, we introduced the reference plane for
shape parameters to make operations such as cut, extrusion, and sweep-
extrusion independent of one another. Even if the surface that the sketch lies
on is removed, sketch-based operations can easily be created on the inferred
reference planes, which allow unlimited iterations of operations. However, oper-
ations such as shell or fillet that rely on edge selection or face selection succeed
only if it is unambiguous for the system to identify which edge the pigtail is
highlighting after several previous edit operations For example, if an edge was
created after two disparate cuts, it is difficult to specify the edge on the physi-
cal model with a pigtail because there is no corresponding edge on the physical
model. In summary, our edit operations suffer from discrepancies between the
physical and digital models if the editing sequence alters the original object to
an extent such that the user can no longer infer changed parts of the digital
model from the original physical model.
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Our assembly command allows the user to align models at a variety of an-
gles and configurations. However, there are certain extreme cases that are our
current implementation cannot handle. If a cone contacts a surface with only
one contact point, none of current stitching commands allow users to specify
the relationship between the cone spike and the surface normal. Such cases
can be resolved by allowing the user to specify additional constraint using one
of our augmented tools such as a ruler or protractor. Such extension is left for
future work.

5.3 Printing Models

Our current prototype was designed with paper-based models. For simple mod-
els, this approach works extremely well. Cutting and scoring the models by
hand is easy and accurate. Using a laser cutter greatly simplifies and increases
the accuracy of this process. For more complex models, it is often easier to affix
the pattern to existing models once they have been built using a 3D printer.
Using the connectivity map and the alignment cues provided by our system,
the 2D layout of complex shapes can be applied rapidly and only adds a small
overhead to the production process.

As we created larger 3D models using our face-based unfolding algorithm,
we discovered that mapping the pattern to an existing model using patterned
paper introduces gaps. If one is to wrap a piece of paper of thickness ¢ around a
cylinder of diameter d, the length of paper needed will not be 27 d but 27 (d+t).
Enlarging or shrinking the volume of the model and printing out the 2D layout
can alleviate the problem but is not a general solution when the model is both
concave and convex. Another solution is to use materials such as water slide
transfers to print out patterns, which are very thin and significantly alleviate
this problem.

5.3.1 Automatic Printing of the Tracking Pattern. The preferred solution
for pattern mapping is to have the 3D printer print the pattern at the same
time that the 3D object itself is printed. Some 3D printers (ZCorp Z510) can
print at a resolution of up to 600 dpi in the plane of the printing bed and 540
dpi vertically [ZCorp 2005]. While this is in the same range as laser printers
that are able to reproduce the Anoto pattern, our tests showed that a pattern
printed with the ZCorp Z510 printer was not recognized by the digital pen.
To understand why, we show segments of patterns printed on a laser printer
and on a Z510 (Figure 23). As seen in Figure 23, left, the dots produced by our
laser printer are of somewhat irregular shape but the use of pure black ink
provides a highly contrasted image. The dots printed on the Z510 (Figure 23,
right) are diffused and do not use true black ink but a combination of C, M, and
Y inks to simulate black. As a result, they are likely invisible to the infrared pen
sensor. We believe that this problem can be readily addressed by introducing a
true CMYK printing process and using finer-grained printing material. Another
solution would be to use a different tracking system such as Data Glyph, which
is designed for 300 dpi printing (on par with the minimum layer thickness of
.089mm (286 layers per inch) of the ZCorp process).
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Fig. 23. Printing the Anoto pattern (all prints from a 600pdi rendering). Left: Anoto pattern
printed using a 2400 dpi laser printer in black and white mode. Right: a pattern printed using a
ZCorp Z510 printer (600 dpi). All pictures were taken at about x200 magnification.

5.4 Tracking Performance and Limitations

One of our goals during this project was to better understand the limitations
of a tracking method based on a pattern printed on the model surface. We now
discuss our observations derived from working with our prototype.

5.4.1 Accuracy. The Anoto tracking system reports points with 678 dpi
accuracy, but taking into account the errors introduced by pen orientation and
the printing process, the system’s maximum error is around 1mm (27 dpi). Of
course, the overall accuracy of the system also depends on the accuracy at which
the paper is cut and folded (around 1 mm in our current manual process). Using
the laser cutter improves accuracy.

5.4.2 Optical Tracking of Passive Patterns. When the pen camera over-
hangs the edges of a face because users are trying to draw inside a groove
or on an indented face, the system might lose tracking. When the tip of the
pen is about 3mm from the border, it vibrates because the camera does not
see enough pattern space. The tracking also fails at the edges of a face be-
cause of our pattern mapping scheme combined with how the Anoto track-
ing is done. The location of the pen tip is offset from the deciphered pattern
space location. However, our unfolding algorithm doesn’t guarantee that ad-
jacent faces are mapped with continuous pattern. When the tip of the pen
and the captured pattern are not on continuous pattern space, current An-
oto tracking fails. If the Anoto firmware releases the location of the deci-
phered pattern instead of the calculated pen tip location, the tracking will
improve.

In our tests, the pen was able to track a pattern at the bottom of a 4.8mm x
4.8mm groove or mark a 6.4mm-diameter circle using a 1.6mm-thick template.
Because the pen was developed for tracking on flat surfaces, the system cannot
track strokes on cylinders (or cones) whose radius of curvature is smaller than
12mm. It is not clear how significant these limitations will be in practice and
future work will be necessary to evaluate their impact.

Another limitation of using the Anoto pattern as our tracking system is
that it cannot track in free space. As demonstrated earlier, an instrumentation
of the traditional tools used by wood workers (such as rulers, tracing paper,
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>

Fig. 24. An example of a nondevelopable surface creating many discontinuities in the pattern
space.

protractors, and sketch pads) may help to address this problem. For example,
we used our instrumented ruler to indicate the height of an extrusion.

Finally, the current version of our digital pen does not provide orientation
information for the object that is being tracked. So far, this limitation proved
to be mainly relevant for handwriting recognition and our use of the pigtail as
a reference mark addressed the problem successfully.

6. FUTURE WORK

The system presented in this article was designed as an exploration tool al-
lowing us to investigate the feasibility of our approach and provide us with
a hands-on demonstration for potential users. Our next step will be to start
deploying the system presented here to gather users’ feedback in a realistic
working environment either in architecture, industrial design, or in a teaching
environment.

This will be made easier if our system could deal smoothly with nondevel-
opable surfaces. Nondevelopable surfaces are problematic for our system be-
cause unfolding of such surfaces leads to many discontinuities in the pattern
space (Figure 24) and creates gaps in tracking. Our tests suggest that the pen’s
field of view is about 5mm wide and that the current pen firmware decodes
the pattern correctly only if there is only one continuous pattern in its field of
view. A closer look at the design of the Anoto pattern [Lynggard and Pettersson
2005] reveals that this is merely a limitation of the current implementation. In
principle, one could uniquely resolve a position if any 2.4mm x 2.4mm patch is
visible. We believe that if the firmware were modified to detect the edge of each
continuous pattern region (maybe by recognizing printed edges) and each face
of the model was wider than 2.4mm, the pen would be able to uniquely identify
its position even around discontinuities in the pattern. Another solution to this
problem would be to adopt a different approach to tracking altogether. Instead of
mapping a 2D pattern onto our models, we could tile them with small (2—-3mm)
optical tags which can be tracked by the pen. For example, one could use the
system proposed by Sekendur [1998], or the Data Glyph system [Petrie and
Hecht 1999], or even the Anoto position pattern itself. All of these provide the
large number of unique identifiers that are necessary. In all cases, the require-
ment of the minimum patch size can be accomplished using subdivision-based
techniques such as the one used in the Skin system [Markosian et al. 1999] and
extended by Igarashi and Hughes [2003].
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We would also like to examine in more detail how our system could be adapted
to 3D printing systems. In particular, we would like to explore the feasibility
of a 3D version of the Anoto pattern. This would not only simplify the printing
process and alleviate the pattern discontinuity problem but also allow for an-
notations on newly exposed, cut, or fractured surfaces of objects, and also may
enable lightweight interactive morphing and sculpting techniques.

Finally, we would like to explore how our real-time system could be combined
with a tangible user workbench such as the Urp system [Underkoffler and Ishii
1999] to explore how the ability to change the models on-the-fly might influence
the use of such systems.

7. CONCLUSION

We presented a system that lets users capture annotations and editing com-
mands on physical 3D models and design tools. Then, captured annotations are
transferred onto the corresponding digital models. Our system is inexpensive
and easily scalable in terms of objects, pens, and interaction volume. Users can
perform subtractive (cut, groove, fillet, shell operations) or additive (extrude,
assembly) edits on the model using our system. They can also create complex
shapes by stitching simpler shapes together, which reflects the current prac-
tices of model builders. Depending on designer needs, the system can be used in
two modes. Batch processing mode can be used to work in the field away from
a computing infrastructure. Real-time processing can be used when immediate
feedback is needed such as in teaching.

During a formal user study [Song et al. 2007] and many interviews, we gath-
ered views on how our system allows users to deploy resources of both physical
and digital media for the task at hand. We believe that once a fully automated
pattern mapping process is realized, our approach will provide an efficient tool
for the early phases of designing 3D models in both architecture and product
design.
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