

Optimal Parameters for
Efficient Crossing-Based Dialog Boxes

Morgan Dixon, François Guimbretière, Nicholas Chen
Department of Computer Science

Human-Computer Interaction Lab
University of Maryland

{mdixon3, francois, nchen}@cs.umd.edu

ABSTRACT

We present an empirical analysis of crossing-based dialog
boxes. First, we study the spatial constraints required for
efficient crossing-based interactions in the case of a simple
multi-parameter dialog box. Through a series of 3 tasks, we
establish the minimal value of the landing margin, the
takeoff margin, and the column width. We also offer an
estimation of the role of stroke shape on user performance.
After studying the reasons for errors during our experiment,
we propose a relaxed crossing semantic that combines
aspects of pointing and crossing-based interfaces.

To test our design, we compare a naïve dialog box
implementation with our new implementation, as well as a
standard point-and-click dialog box. Our results reveal that
there is not a significant difference between the naïve
crossing implementation and the standard point-and-click
interface and that the new crossing semantic is faster than
both the naïve crossing implementation and the point-and-
click interface, despite a higher error rate.

Together these two experiments establish that crossing-
based dialog boxes can be as spatially efficient and faster
than their point-and-click counterpart. Our new semantic
provides the first step towards a smooth transition from
point-and-click interfaces to crossing-based interfaces.

Author Keywords

Crossing-Based Interfaces, Graphical User Interfaces,
Dialog Box, Interaction Design.

ACM Classification Keywords

H5.2. User Interfaces: Input devices and strategies (e.g.,

mouse, touchscreen); Graphical user interfaces (GUI).

INTRODUCTION

As the number of Tablet PCs in use steadily increases, it is
important to better understand the performance
characteristics of interfaces specifically designed for pen
interactions. One class of interfaces comprises goal
crossing-based interfaces in which all interactions are
performed by crossing targets on the screen. Such
interaction styles appear to have a great potential: Accot

and Zhai [2] demonstrated that crossing tasks can be
described by Fitts’ law, with performance comparable to
standard point-and-click tasks, and suggested that in certain
scenarios, such as when targets can be cascaded, crossing
interfaces might be faster than point-and-click interfaces.
Taking note of this advantage, Apitz and Guimbretière [6]
showed that one can design a complete application (a
simple drawing program called CrossY) which relies only
on goal crossing for all interactions. CrossY not only
demonstrated that goal crossing-based interfaces could be
as expressive as standard point-and-click interfaces, but it
also illustrated several of the potential advantages of
crossing-based designs. These include the ability to use a
rich gesture set on top of interface elements such as the
scrollbar (an approach reminiscent of the Gedrics system
[12]), and the ability to compose several commands in one
gesture.

The latter feature is unique to the crossing style of
interactions and could offer a significant speed advantage
for pen-based interactions. However, Apitz and
Guimbretière warned that designers might face a trade-off
between speed of execution of composite commands [6],
and the screen real estate required for these interactions.
This problem arises from the fact that when users quickly
select several options with a single gesture, they tend to be
sloppier and require more space to move without triggering
unwanted commands. Apitz and Guimbretière do not report

Figure 1: An example crossing dialog box with several spatial
parameters labeled. The user selects targets from left to right,

in this case crossing options Arial, Underline and 10 pt.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00.

any empirical evidence of the amplitude of this problem but
suggest that this problem could be alleviated by using
gesture based recognition mechanisms such the one used by
the SHARK keyboard system [17].

In this paper we offer the first empirical evaluation of the
space versus speed trade-off that might occur while
designing a typical crossing-based dialog box. A simple
example of such a dialog box used to select several text
attributes is shown in Figure 1. Like in CrossY, users
trigger an action by crossing the bar that is behind each
label (as shown in Figure 1). To evaluate this setting, we
first conducted an experiment designed to explore the
minimum spatial requirements for efficient option selection
in the dialog box, such as the ones shown in Figure 1. In
particular we studied the impact of key parameters,
including the required margins around the goals, the
spacing of columns of targets as well as the overall cost of
making complex selections in a three column box. Our
results show that the spatial requirements for crossing-
based interfaces are very similar to those of point-and-click
interfaces. Based on our findings, we present guidelines for
the design of space efficient crossing-based dialog boxes.

The observations gathered during our first experiment
offered some insight on how to improve the performance of
complex selections involving a middle goal either far below
of far above the horizontal line formed by the first and last
options selected. In such a situation, it is often difficult for
users perform the change in direction when selecting the
middle option. To address this problem, we propose to
blend the point-and-click and the crossing semantics to
offer a style of interaction which is more forgiving of
common errors, such as crossing just above a target. To
evaluate our solution, we conducted a second experiment
designed to compare the speed performance of crossing-
based and point-and-click interfaces. In this experiment we
compared our new semantic to a naïve crossing-based
interface and a standard point-and-click interface. Our
results showed that in our setting, there was no significant
speed difference between the naïve crossing-based interface
and the point-and-click interface, whereas the new
implementation offered a significant speed advantage
despite a higher error rate. Our solution, which could be
implemented as an extension of current point-and-click
interfaces for pen-based computing, could significantly
increase the efficiency of command selection in pen-based
computing.

ANATOMY OF CROSSING-BASED DIALOG BOXES

The typical layout of a goal crossing-based dialog box is
presented in Figure 1. In this example, users can select 3
different values for 3 text attributes (from left to right, Font,
Style, and Size). Since possible values for each attribute are
exclusive, the dialog box presents the possible values of a
given attribute in a column layout. Although users could
select the value for each attribute one at a time, the crossing
paradigm [4] makes it possible to select several attributes
using a single stroke as shown in Figure 1. This is the case

we are considering in detail in this paper because results
from Accot and Zhai [4] show that when the Fitt’s law ID
between targets in a dialog box are below 5 this is the
fastest mode of operation. It is also unique to crossing-
based interactions [6].

Now, consider the case where one would like to set the
following font attributes in one stroke: Arial, Underline,
and 10pt. First, we note that the work by Accot and Zhai on
the performance of goal crossing [4] does not directly
apply, since several effects, such as the presence of a
limited landing margin and the need to travel at an angle,
were not considered in their study. Therefore, we proceed,
similarly to Pastel et al. [16], by decomposing the different
steps required to perform this selection; highlighting how
previous results might help predict the performance of each
action. The first step is for the user to land near the start
position to the left of the ‘Arial’ target. This part of the
interaction can be modeled as a bivariate Fitts’ law task [5]
(or alternatively [13] if the landing region is not
rectangular) in which both the landing margin (see Figure
1) and the height of the first target (including the distance
between target and maybe the top margin size) will
influence user performance. Then as users cross the target,
the speed will be limited by the target width as studied by
Accot [3] .

During the next step of the selection process, users have to
travel toward the next target, ‘Underline’. During this
segment of the selection, one can expect two distinctive
types of behavior: if the column width is small, the
different options will appear as a tunnel users must travel
through without crossing the boundary. In that case, user
performance will be modeled by the Steering law for
tunnels [3]. As the space between columns increases, Accot
suggests in his thesis [3] that the Tunnel law will not apply
anymore. Instead the tunnel becomes so wide that a normal
“ballistic” movement has little chance to cross the borders,
and users’ interactions are modeled by Fitts’ law with a
possible influence of the direction of movement [9, 15].
The exact transition between the two will depend on the
experimental setting.

Reaching the vicinity of the ‘Underline’ target, the user
must now cross the target while performing a sharp turn.
To our knowledge there have been no direct investigations
of such interactions, but several related studies might help
predict users’ behavior. Pastel et al. [16] studied the
influence of angle while navigating through corners,
reporting that “users will round off corners while gesturing
or negotiating menu hierarchies.” Also, Cao and Zhai [7, 8]
presented a new quantitative model for single stroke pen
gestures, the Curves, Line Segments, and Corners (CLC)
model, which demonstrated that in a free setting, it
typically takes users within 40 milliseconds to draw a
corner.

In the final stage of the selection, the user must aim at and
cross the third target “10 pt” before lifting the pen. As
before, user performance will be influenced by the distance

between the columns and the size of the target. It will also
be influenced by the size of the takeoff area, probably
following the bivariate Fitts’ law task [5] in which both the
takeoff margin (see Figure 1) and the height of the target
(including the distance between target and maybe the top
margin size) will influence user performance.

In summary, to better understand how the layout of a
crossing-based dialog box influences user performance, one
has to consider:

• How the dialog box margins might influence landing
and takeoff performance;

• How the distance between columns might influence
user performance;

• How the need to perform sharp turns while selecting
several commands in a row might influence user
performance;

We proceed with the description of our first experiment
designed to evaluate the impact of these parameters.

EXPERIMENT I

To keep the complexity of our experiment in check, we
decided to divide our experiment into three tasks, each
investigating one of the parameters described above. While
this might hide potential interactions between these
variables we felt that a full factorial design was unpractical
and might not be necessary at this stage of our
investigation.

In our first task, we presented users with a simple dialog
box with one column of options to study the influence of
the takeoff and landing margins. For our second task, we
used a two column dialog box to study the influence of the
distance between columns on user performance. Finally, for
our third task, we focused on the effect of command
composition by asking users to select 3 parameters.

To further simplify our design, we did not include the
target height and the size of the top and bottom margins as
variables in our experiment. With respect to the target size,
we turned instead to existing systems, fixing all target
heights to 18 pixels, with 9 pixels of vertical space between
targets. This corresponds to the standard checkbox sizes
used in Mac OS X [1]. With respect to the top and bottom
margins, we investigated their influence during pilot studies
and found that there were no notable effects on user
behavior as long as they were wider than 3 pixels. For an
added margin of safety, we fixed the top and bottom
margins to 9 pixels, such that every target was surrounded
equally by 9 pixels of space.

Although each the of three tasks were presented in
successive blocks in one experimental session, in the
following we will present each task and the corresponding
results as separate sections for the sake of clarity.

Protocol and Participants

The three tasks were presented in blocks. Before
completing each task, users completed a training session
until they were comfortable with the task (typically around

45 trials). Subjects were asked to cross targets as fast as
possible, but with precision. They were asked to keep an
error rate below 6% and were given a visual warning when
their error rate exceeded 4% (the error counter changed
from yellow to red). Participants were allowed to rest as
soon as they finished a trial.

We recruited 12 participants (8 male, 4 female; age range
18-51 years). All subjects were right-handed. Subjects
received $10 for their participation.

Apparatus

All subjects completed the tasks on a Toshiba Protégé
Tablet PC, with 2 GB RAM and a 1.7 GHz CPU frequency.
The diagonal of the screen was 307mm and the resolution
was set to the tablet’s native 1024 x 768 pixels (or a 0.24
mm pixel pitch). The tablet screen was folded so that the
computer appeared as a slate and placed in portrait
orientation. The test application was written in C# and all
actions performed by users were logged.

Takeoff and Landing Margins

Our goal for this task was to understand the influence of
takeoff and landing margins on user performance. To
measure these effects experimentally, we created a simple
task in which users must first cross a fixed starting target,
then cross another target to the right of the starting point as
shown in Figure 2. We fixed the distance between the
starting point and the goal at 200 pixels, but to introduce
variety, the target goal could be one of three targets in the
dialog box, and the angle between the two targets and the
horizontal varied from 0 to 80 degrees. During the
experiment, we systematically varied the width of both the
takeoff and landing margins and observed their effect on
the task time, defined by the time from when users crossed
the fixed target to when they lifted the pen after crossing
the second target. To investigate possible interactions
between the takeoff and landing areas, we decided to run a
factorial design, crossing the two parameters. We picked
the following values for each margin: 5, 10, 15, 20, 25, 30,
40, 50, 60, and 70 pixels, with 5 pixels being the smallest
practical target (corresponding to an ID of 5 in our setting)
and 70 being well into the performance plateau according

Figure 2: An example trial of the landing and takeoff test. The
landing margin is 30 pixels and the takeoff margin is 50 pixels.

to our pilot studies. The composition of the goal target
varied randomly between trials to offer a more realistic
setting. Each possible combination of margins was tested 3
times for a total of 300 trials.

Because the landing region can be described as a
rectangular target [5], we expected that the users’ total
movement time (MT) would follow a the bivariate version
of Fitts’ law described by the following formula:














+








+








+= 1log

22

2
T

D

W

D
baMT η

 (1)

in which D is the distance between the fixed target and the
goal target, W is the margin width, T is the target height

(shown in Figure 2) and η is an experimentally determined
constant. One would expect user performance to plateau
after the margin size grows larger than the target height as
the target height will become the limiting factor. We were
expecting a similar effect to take place for the takeoff
margin.

Results

Out of the 1197 trials, there were a total of 36 errors,
yielding an error rate of approximately 3%. 27 (75%) of the
errors were caused by users crossing the boundary of the
box during a selection. The majority (21 occurrences) of
these occurred within the 5-pixel takeoff margin setting.
This makes sense as it becomes difficult to cross the target
without exiting the box for such small takeoff margins. 9
(25%) of the errors were occurrences of users selecting
targets in the wrong direction. This seems to be primarily
because users would cross the goal target and then slightly
backtrack because of the difficulty to aim in such a small
region. We now proceed to look at the task durations with
respect to the margin widths.

We examined the average duration for each combination of
landing and takeoff margins, where the duration was
defined from when the user presses down with the pen in
the dialog box to when the user lifts the pen after

successfully crossing the goal target. We looked at the
duration of each user’s median trial for every setting
(excluding trials with errors) and averaged all participants
to obtain an estimate for each task time. We removed the 5
pixel landing margin, 70 pixel takeoff margin setting from
one user because his or her trial times were 10 times slower
than any other user. This did not change the nature of our
findings.

Our results are shown in Figure 3, left, in which we plot,
for each takeoff margin, the total task time as a function of
the landing margin size. As predicted, Figure 3, left, shows
little change in performance beyond 30 pixels for both
landing and takeoff margins, but the data is quite noisy. As
a result, we decided to study the influence of landing and
takeoff margin separately. To do so, for the landing margin
(respectively takeoff margin), we ignored data points with a
takeoff margin (respectively landing margin) smaller than
30 pixels and aggregated all data captured with a takeoff
margin (respectively landing margin) greater than 30
pixels. The results are shown in Figure 3, right, super-
imposed over the best fit of the bivariate pointing model (1)
with D = 200 and H = 18 for clarity. For the landing
margin, we again observed a clear plateau starting around
30 pixels (the duration does not change more than 50ms)
which corresponds to the total target height if one includes
the space between targets. For the takeoff margin, the
plateau seems to come sooner just short of 20 pixels, which
corresponds to the height of the target. Both results are in
accordance with our predictions. We conclude that the
minimum margin should be at least 50% larger than the
target height (30 pixels in our case).

Target Column Width

In the second task, our goal was to determine the effect of
the column width. Starting from the start target, participants
were asked to cross the start target, lift the pen, move to the
dialog box, and then in a single stroke select two
highlighted (red) targets from left to right (Figure 4). While
the start button is not strictly necessary for our

0

200

400

600

800

1000

1200

1400

0 20 40 60 80

Landing Margin (px)

D
u

ra
ti
o

n
 (

m
s
)

5

10

15

20

25

30

40

50

60

70

Margin Width (px)

0 20 40 60 80

D
u

ra
ti
o

n
 (

m
s
)

0

200

400

600

800

1000

1200

1400

Landing Margin (Takeoff Margins > 30 px)

Takeoff Margin (Landing Margins > 30 px)

Figure 3: Left: The margin sizes (pixels) versus average task duration (ms). Each colored sequence represents the corresponding
takeoff margin width. Right: The landing and takeoff widths excluding the opposing margin widths greater than 30 pixels.

)(pxTakeoff

measurement, our pilot studies showed that it has two
beneficial effects: first, it limits potential hand occlusions
by forcing users to always move back to a position where
their hand is out of the way. Second, it prevents people
from entering a “stride” mode in which they mechanically
repeat the same movement, often missing the fact that a
new combination of targets was presented. To observe the
effect of column width over a range of IDs we varied the
vertical distance between targets from 0, 54, 81, 108, 189,
and 270 pixels (or 0, 2, 3, 4, 7, 10 vertical steps
respectively) either upward or downward, a selection
representative of common dialog boxes (and also seems to
be the limit of users’ patience for very narrow columns).

In this task, we methodically varied the column width and
observed its effect on participant movement time from the
time the user crossed the first target to the time the user
crossed the second target. For the width variable, we tested
10, 15, 20, 25, 30, 40, 50, 60, and 80 pixels, with 10 pixels
being the smallest practical width and 80 pixels entering
the range where the task becomes a Fitts’ law pointing task,
according to our pilot studies. These choices meant that the
ID of the task varied from 1 to about 27 in the case of a
large vertical movement through a narrow column. Each
setting was tested 6 times (3 in the upward direction and 3
in the downward direction) for a total of 270 trials.

As mentioned, users’ performance can be described by
either of two laws in this task. When the column width is
very small, the surrounding options create a tunnel that the
users must navigate through without touching the
boundary, as it would trigger an unwanted option. In that
setting, the movement time can be described by the
Steering law [2], where H is the vertical distance between
targets and W is the column width:

W

H
baMT sAc +=cot'

 (2)

But as the tunnel becomes larger (H increases), this law
will no longer apply [3] since the tunnel will become so
wide that it will not impede direct ballistic movement. In
this case, Fitts’ law [11] can be used to model the
movement:














+

+
+= 1

18
log

22

2'

WH
baMTFitts

 (3)

Results

Out of the 1179 trials there were 70 errors (5.9%). 32 errors
occurred from users lifting the pen before crossing both
targets, 26 errors occurred from users crossing a wrong
target, 10 errors occurred from users crossing targets from
the wrong direction (right to left) and 2 errors occurred
from users crossing outside of the dialog box.

For this task we used each participant’s median
performance, excluded error trials and averaged across all
participants to obtain an estimation of the time it takes to
complete the task for each cell. Figure 5 plots, for each
vertical distance, the average movement time depending on
the column width. As expected, the trace for 0 pixels of
vertical distance follows a very different pattern from the
other conditions because Accot’s law does not play a role.
For all others settings, one can see that for small inter-
column widths, user performance follows the Steering Law,
with performance improving as the inverse of the column
width, as would be expected from (2). Yet, as the column
width exceeds 40 pixels, user performance begins to follow
Fitts’ law. For small vertical distances (e.g. 54px, 81px),
increasing W has a large effect on the total distance
traveled, and one observes a point of inflection (user
performance begins to decrease) as user performance
transitions to Fitts’ law (3). For clarity, we also plotted
Accot’s law and Fitts’ law against the red 54 pixel series in
Figure 5, making the curve dotted when the corresponding
law does not apply. For larger vertical distances (e.g.
189px, 270px), W has a smaller effect on the total distance
traveled so the transition to Fitts’ law behavior appears
more as a slowly rising plateau.

Figure 4: A sample trial of the column distance task. In this
example, the distance between columns is 30 pixels.

Column Width (px)
0 20 40 60 80 100

D
u

ra
ti
o

n
 (

m
s
)

0

1000

2000

3000

4000

Vertical Distance: 0 px

Vertical Distance: 54 px

Vertical Distance: 81 px

Vertical Distance: 108 px

Vertical Distance: 189 px

Vertical Distance: 270 px

Figure 5: Column width vs. average duration. Each sequence
represents a different vertical distance between targets.

Fitts’
Tunnel

To explicitly find the transition points between the Tunnel
law and Fitts’ law, we determined the experimental weights
in the formulas (2) and (3) by performing linear regressions
on the extreme scenarios (margin widths of 10 and 80
pixels). We then used these formulas to solve for each
travel distance the point where:

sAcFitts MTMT cot'' =

We found that the transition points ranged from 35 to 40
pixels. We plotted Accot’s law IDs for settings less than or
equal to 40 pixels and Fitts’ law IDs for those greater than
40 pixels against the average task duration in Figure 6 and,
as expected, we see a very strong fit (r2 = 0.96). Based on
these results, designers should expect that with standard
target sizes and column widths passed 40 pixels, Fitts’ law
should be used to estimate user performance.

Composition

For the third task, our main goal was to observe the
influence of the sharp angle users must make in order to
select 3 targets in one stroke. To investigate this, users were
required to select 3 highlighted targets in a 3 column dialog
box as shown in Figure 7. Participants were asked to first
cross the start target and then the three highlighted targets
from left to right. We decided to include six rows of targets
in this task since for larger IDs it is faster to lift the pen to
perform selections [4], which seems appropriate since our
study focuses on command selections in one stroke. Like in
the previous task, the start target was not strictly necessary,
but reduced the effect of occlusion and errors caused by
users entering a “stride” in a given setting. In this task, the
distance between columns was 80 pixels and the landing
and takeoff margins were both 70 pixels, all of which were
conservative values according to our pilot studies. Because
the margin sizes and column widths are constant within this
task, we were able to include textual labels on each target
to provide a more realistic setting. During pilot studies, we
did not notice any significant effect from the presence of
labels. To avoid a combinational explosion, we did not
repeat identical compositions. For example, in Figure 7,
selecting “otter”, “deer” and “cow” is considered identical
to selecting “koala”, “sloth”, and “zebra” since these two

interactions have congruent angles of inflection and general
directions of travel. In some cases the performance of
identical compositions may be affected by the bounding
dialog box, such as in Figure 7 the border of the dialog box
may affect the selection of “gorilla”, “sloth”, “zebra”
differently than “panda”, “lion”, “chicken.” In these
situations we tested both compositions. We tested each
composition 3 times to increase reliability, and there were
91 unique composition patterns, which yielded 273 total
trials for this task. Before this task, we also informed users
of the main techniques for crossing; we explained to users
that one common technique is to cross orthogonally to the
targets, or to cross by drawing a straight line between
targets (shown in Figure 9).

With the complex selections in this task, there are two main
difficulties for users. First, the distance between targets will
be greater. This will increase the overall ID for the task.
Second users must make a sharper turn while selecting the
second target. Cao and Zhai [8] showed that in a free
gesture setting, the time to draw a corner was typically less
than 40 milliseconds (and practically negligible here).
However, our setting is different in that goal constraints are
imposed and users may decide to not strictly cross at a rigid
angle. Instead, we expect that for steeper angles of
inflection, the task will become more difficult. It is also the
case that users may not need to make an inflection point,
but the general direction of travel is at a nonzero degree
angle from the horizontal (e.g. in Figure 9, if the user
selects “Comic”, “Italic”, and “10 pt”), which may cause a
decrease in apparent target size. Since we are interested in
how the stroke complexity influences users’ performance,
we decided to consider the sum of the angles from the
horizontal (e.g. in Figure 9 the angle created by moving
from “Arial” to “Underline” plus the angle from
“Underline” to “10 pt”) as a proxy for complexity. To
remove the influence of the distance between targets, we
defined the time corrected for distance (TCD) of a task as:









−=

REF

REF

ID

Duration
IDDurationTCD * (4)

ID

0 5 10 15 20 25 30

D
u
ra

ti
o
n
 (

m
s
)

0

1000

2000

3000

4000

MT = 155+120*ID

Figure 6: ID vs. task duration. For column widths under 40
pixels Tunnel law IDs were used, for those above 40 pixels,

Fitts’ law IDs were used.

Figure 7: An example trial of the composition test. In this
example, the user must cross the start target left to right.

where DurationREF and IDREF refer to the average duration
and Fitts’ ID for the 0 degree angle setting.

Results

Out of 1,139 trials in this task, there were 94 errors
(8.25%). The most common error (occurring 62 times) was
when users slightly missed a target, but continued with the
interaction and crossed the successive target. The second
most common error (occurring 22 times) was that users
lifted the pen just before passing through the final target.
Users also selected the wrong target 7 times and exited the
box while crossing 3 times.

In this task we excluded error trials and again took the
median trials from each user. We then looked at average
task durations for each setting. We looked at the influence
of the total stroke angle versus the task time corrected for
distance (using IDREF = 4.89 and DurationREF = 716.8 ms in
equation (4)), which is plotted in Figure 8. It is evident that
the TCD of the task generally increases as the stroke angle
increases. The angle influencing the TCD in this way
makes sense because for steeper angles, the user must
choose between either drawing long, s-shaped strokes, or
by drawing straight strokes and greatly limiting the
apparent target size, which is not present in Cao and Zhai’s
scenario.

Based on these results, designers should expect an
approximately linear decrease in performance as strokes
become more angular.

APPLYING THE RESULTS

From the results of this experiment, we can now determine
the parameters that describe the optimal crossing-based
dialog box. We give the minimum dimensions that should
not hinder user performance in Figure 9. However, for
design purposes, larger dimensions might be necessary. For
the takeoff and landing margins, we suggest widths at least
50% larger than the target height (we suggest 30 pixels in
our setting). Our second task revealed that column widths
at least 9.6mm (40px) provide sufficient widths for dialog
boxes sized similar to ours, however, note that this value is
quite small compared to typical label sizes, which implies
that most application designers should expect user behavior

to be modeled by Fitts’ law. We also recommend that the
combinations which will be selected most often be as close
as possible to a horizontal line to avoid the linear decrease
in performance as strokes become more angular. Although
we fixed our top and bottom margins to half of the target
height in the third task, we suggest heights a bit larger,
around the target height, as half was an extreme limit and
design might demand a slightly bigger value to give users
more space for the more difficult tasks against the border.

While Experiment I illustrated how to adjust the spatial
parameters of the dialog box, we also noticed several
aspects of the dialog box implementation that can be
improved. One of the first issues was the difference
between the possible stroke styles. During pilot studies, we
noticed that a straight stroke style (as seen in Figure 10,
left) can typically lead to faster task completion time. We
also noticed that users typically crossed orthogonally to the
targets during the third task, most likely because it provided
the largest perceptual target size. Next, we noticed that it
was often difficult to aim at the second target and negotiate
the sharp angle simultaneously, which often caused users to
slightly miss the second target. Last, we noticed that in
many cases, users began crossing to the right of the first
target or lifted the pen before crossing the last target (as
shown in Figure 10, left, the user does not completely cross
the “flamingo” and “mouse” targets).

A New Crossing Detection Algorithm

To address this problem, just as Lank et al. [14] allowed for
sloppier selections when circling targets, we decided to
relax our crossing semantic. First we assigned an invisible
interaction box around each target as shown in Figure 10,
left. In addition to detecting standard cross events, each
interaction box detects three fundamental interactions:
pressing down with the pen, lifting the pen, and creating a
sharp angle. Detecting pen down events allows users to
combine landing interactions and selecting their first target
into one motion by allowing users to start on the target (or
maybe a little bit to the right of it). Similarly, detecting pen
up events allows for users to release the pen in the general
vicinity of a desired target (or maybe a little bit left of it),
giving a larger tolerance of error when selecting the last

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140

Angle (degrees)

T
im

e
 C

o
rr

e
c
te

d
 f
o

r
D

is
ta

n
c
e

Figure 8: The sum of the angles from the horizontal that

describe a composite command stroke vs. difficulty.

Figure 9: Design specifications for an efficient dialog box
based on a target height of 18 pixels.

target of a stroke. If the user wishes to select a single target,
detecting pen down and pen up events will conflict. To
solve this, our implementation ignores a pen up event that
occurs on the same target directly after a pen down event.
Finally, detecting a sharp angle makes it easy for users to
make a selection while negotiating a turn through the
middle target since the use of a box increases the apparent
width of the target. For example, in Figure 10, left, the user
only needs to draw an angle in the “penguin” region rather
than specifically crossing the vertical target.

To detect sharp angles, we perform the Douglas-Peucker
line simplification algorithm [10] on strokes within the
interaction box, and issue a crossing event when an
inflection point has been detected. Note that in the case
where the three targets are aligned, there will be no
inflection and if the user slightly misses the middle target,
an error will occur. To reduce the likelihood of missing the
middle target in this scenario, our algorithm adds four
invisible pixels to each target (two above the target and two
below). It should also be noted that our implementation is
local to each target so it can be implemented using standard
event-loop dispatching techniques.

Another important consideration is to ensure that our
modifications do not hinder single target selections. For
example, if the invisible boxes are too close horizontally,
users may cross a single target, such as “dog” in Figure 10,
left, and release the pen within the box surrounding
“iguana,” which would trigger an unwanted selection. To
ensure that this does not happen, we first looked at the
typical stroke widths from the first task of Experiment 1.
For large landing and takeoff margins (60 and 70 pixels),
the average stroke width was approximately 35 pixels
(roughly 17 or 18 pixels before and after the goal). This
suggests that an 18 pixel box is all that is necessary. But
from the first task in Experiment 1 we also noted that for
the landing margin, user performance plateaus at about 30
pixels. Balancing these two data points, we designed each
box as 22 by 50 pixels. This configuration provides the
maximal height (for targets of 18 pixels and 9 pixel spaces)

and 30 pixels between regions assuming an 80 pixel
column width.

Evaluating our Implementation

To verify the effectiveness of our new algorithm for
multiple selections, we conducted a second user study
where we evaluated user performance for each of three
implementations: a traditional goal crossing
implementation, a goal crossing implementation using our
new algorithm and a standard point-and-click
implementation (see Figure 10, right). Each dialog box
consisted of 3 rows and 6 columns and we aimed to give
each implementation identical spatial parameters. All
implementations had 18 pixel visible target heights, 9
pixels between rows, and 80 pixel column widths. For the
point-and-click implementation, we used check boxes for
targets, with textual labels to the right of each target. To
ensure that we are not providing an unfair advantage to the
relaxed setting, we also added four invisible, active pixels
(two above the target and two below the target) to each
target in the point-and-click setting, which is common
behavior in Windows. Also, according to Windows default
behavior, the user may select the checkbox or to the right of
the checkbox (summing to a width of 80 pixels for each
target) to make a selection. The task and settings were
identical to that of task 3 in our first experiment. For each
implementation, participants performed the same 273 trials
as in task 3 of Experiment I blocked together. We fully
balanced the presentation of each technique to limit the
influence of possible skill transfer.

12 participants (1 male, 11 female; age range 18 – 39 years;
all right handed) were recruited for this study and they
received a $10 compensation for their time. We used the
same Tablet PC and the same apparatus settings as
Experiment I. There were two experimenters who each ran
a fully balanced sample of users.

Results

In our experiment, we timed each trial as beginning when
the user presses the pen down inside the dialog box and
ending when the user successfully finishes selecting all
three targets and lifts the pen from the dialog box. We

Figure 10: Left: A crossing scenario that our new backend would accept. Dotted rectangles show the regions (normally invisible)
that detect pen-up, pen-down, and inflection point events. Right: An example trial of the point-and-click implementation.

chose to ignore the time it takes for users to initially travel
from the start target to the dialog box as it mainly
represents thinking time. We did, however, include all of
the time it took users to correct errors in our data. Since our
work is focusing on one stroke selections, we required
users to travel back to the start target and re-perform the
entire trial after committing an error in order to force users
to perform a fully successful selection at the end of each
trial as a baseline reference. In our analysis, we used the
Greenhouse-Geiser correction when sphericity could not be
assumed and we used Bonferonni correction for post-hoc
analysis. Also when performing our analysis of error rates,
we noticed one user’s error rates were more than triple the
average for all three tasks due to frequently selecting the
incorrect target. To limit the possible bias caused by this
behavior, we ran an additional user as a replacement (using
the same technique ordering and experimenter) and report
these results here. This did not change the nature of our
findings for either error rates or performance.

There was a significant difference in error rate among the
three conditions (F2,22 = 7.969, p = .002, ηp

2 = .420, the
error rates were 6.72% for the standard crossing, 8.27% for
our new implementation and 4.37% for the point-and-click
interface). Specifically the new implementation had
significantly more errors than the point-and-click
implementation (p = .005). The standard crossing
implementation did not have a significant difference in
error rates from the point-and-click (p = .183) and the new
implementation (p = .286). It should be noted that lifting
the pen before completely selecting all three of the targets
is considered an error in the crossing conditions. In reality,
we expect that users may prematurely lift the pen and then
perform any additional strokes necessary; however, we did
not allow this to force single stroke selections.
Approximately 20% of the errors in the standard crossing
condition and 23% of the errors in the relaxed condition
were lifting errors. Since we are including time for error
corrections, we believe that this effect has a limited impact
on the validity of our results.

With respect to user performance, we removed outlier
trials, which were trials exceeding three standard deviations
from the mean duration for each setting. Figure 12

illustrates the average durations for each of the tasks. A
repeated measure ANOVA on the task time revealed a
significant difference between conditions (F1.22,13.45 = 14.9,
p = .001, ηp

2 = .575). While the standard crossing
implementation was not significantly faster than the point-
and-click implementation (p > .999), the advanced
implementation was significantly faster than both the
standard crossing interface (p < .001) and the point-and-
click interface (p = .010). These results validate our belief
that the relaxed semantic offers better performance.

It is possible that the sample used in this experiment may
bias our result. Thus, to show how different settings
influence the different techniques’ performances, we
plotted in Figure 11 the sum of the Fitts’ law IDs between
targets (e.g. the ID of moving from “flamingo” to
“penguin” plus the ID from “penguin” to “mouse” in
Figure 10) versus the average duration for each task for
error free trials. On one hand, following Accot and Zhai
[4], we see a changeover in performance between the
standard crossing and point-and-click tasks. For small IDs,
the standard crossing task outperforms the point-and-click
task, while for large IDs the point-and-click task is faster.
On the other hand, the relaxed semantic implementation
seems to consistently outperform both for commonly
observed IDs.

Of course, it might be the case that by improving the
performance in composite command selections, we might
have significantly degraded the ability to select one option
at a time. To explore this, we conducted a short follow-up
experiment to compare the error rates of when users select
a single target from the center column of the dialog box in
both crossing-based implementations. We asked 6 new
participants to perform a total of 18 selections (selecting
each target in the center column 3 times) using both
implementations. Users were not told about the difference
in functionality between implementations, and we balanced
the order of presentation. Since the experiment was so
short, participants did not receive any compensation for
their participation. After removing outliers greater than
three standard deviations from the mean, the average
durations for each condition were within 6ms of each other

0

200

400

600

800

1000

1200

1400

1600

4.5 5 5.5 6 6.5 7

Sum of Fitts' Law IDs

D
u

ra
tio

n
 (

m
s
)

Point-and-Click

Relaxed Semantic

Standard Crossing

Figure 11: The sum of Fitts’ law IDs from moving between

targets vs. average duration (error cases removed).

0

200

400

600

800

1000

1200

1400

1

D
u
ra

ti
o
n
 (

m
s
)

Point-and-Click Relaxed Semantic Standard Crossing

Figure 12: Task Type vs. Average Duration with 95%

confidence intervals.

and in both cases there were no errors. This suggests that
our new algorithm improves multiple selection speeds
without affecting single selection difficulty.

DISCUSSION AND FUTURE WORK

Together, our three experiments showed that the crossing-
based versions of a dialog box have similar screen
footprints and performance characteristics as a more
traditional point-and-click dialog box. Our second
experiment showed that blurring the distinction between
the point-and-click semantic and the goal-crossing semantic
can have a significant benefit on user performance during
multiple selections.

We believe that our results have a strong implication for the
deployment of crossing-based interfaces in the field. Our
results imply that it might be possible to leverage the
benefits of crossing-based interface within the framework
of a more traditional point-and-click interface by changing
the dispatch mechanism to accommodate the algorithm
described above. In some systems such changes could be
implemented through a simple update of the GUI base
library. This implies that pen-based interface users might
be able to smoothly transition from a fully point-and-click
style of interaction to a mixed style of interactions with
ease. Such a gradual approach will ease the acceptance of
the crossing-based interface among users, compared to an
abrupt change to a brand new interaction paradigm.

Our present work is only the first step in that direction, and
we need to extend the external validity of our results by
exploring more complex interactions (such as selecting
more than 3 options) and conducting longitudinal studies of
user performance in everyday tasks. To this end, we are
planning to develop a new crossing-based interface toolkit
that will make it easy for users to smoothly transition from
point-and-click interfaces to crossing-based interfaces.
Providing a drop-in implementation like this can also help
decrease the dependence on point-and-click interfaces since
it will make crossing-based components readily available,
and thus cost effective, for designers.

CONCLUSION

In this paper, we provided a better understanding of the
parameters influencing the performance of crossing
interfaces. We explored the space-time tradeoff within the
crossing-based dialog box and provided the first design
rules indicating the optimal parameters for such a tradeoff.
Finally, we proposed a new crossing-based interaction
semantic that allows for faster and more fluid interactions.
We believe our experiment results accompanied with our
new algorithm will promote the deployment of crossing-
based interfaces and thus strengthen pen-based interfaces.

AKNOWLEDGEMENTS

This work was supported by the NSF Grant 0414699 and
by Microsoft Research as part of the Microsoft
Center for Interaction Design and Visualization at the
University of Maryland. We would like to thank Corinna

Löckenhoff, Leianna Ridgeway, and Hyunyoung Song for
providing many useful comments.

REFERENCES

1. Apple Developer Connection. 2006.
2. Accot, J. and S. Zhai. Beyond Fitts' Law: Models for

Trajectory-Based HCI Tasks. Proceedings of CHI'97,
pp. 295 - 302.

3. Accot, J., Les Tâches Trajectorielles en Interaction
Homme-Machine—Cas des tâches de navigation., PhD
thesis, Université de Toulouse 1. 2001

4. Accot, J. and S. Zhai. More than dotting the i's ---
foundations for crossing-based interfaces. Proceedings

of CHI'02, pp. 73 - 80.
5. Accot, J. and S. Zhai. Refining Fitts' law models for

bivariate pointing. Proceedings of CHI'03, pp. 193 -
200.

6. Apitz, G. and F. Guimbretiere. CrossY: A Crossing-
Based Drawing Application. Proceedings of UIST'04,
pp. 3 - 12.

7. Cao, X. and R. Balakrishnan. VisionWand: interaction
techniques for large displays using a passive wand
tracked in 3D. Proceedings of UIST'03, pp. 173 - 182.

8. Cao, X. and S. Zhai. Modeling human performance of
pen stroke gestures. Proceedings of CHI'07, pp. 1495 -
1504

9. Card, S.K., W.K. English, and B.J. Burr, Evaluation of
Mouse, Rate-Controlled Isometric Joystick, Step Keys
and Text Keys for text selection on a CRT. Ergonomics,
1978. 21(8): p. 601 - 613.

10. Douglas, D.H. and T.K. Peucker, Algorithms for the
reduction of the number of points required to represent
a line or its caricature. The Canadian Cartographer,
1973. 10(2): p. 112-122.

11. Fitts, P.M., The information capacity of the human
motor system in controlling amplitude of movement.
Journal of Experimental Psychology, 1954. 47: p. 381 -
391.

12. Geissler, J. Gedrics: the next generation of icons.
Proceedings of INTERACT’95, pp. 73 - 78.

13. Grossman, T., N. Kong, and R. Balakrishnan. Modeling
pointing at targets of arbitrary shapes. Proceedings of
CHI'07, pp. 463 - 472.

14. Lank, E. and E. Saund. Sloppy Selection: Providing an
Accurate Interpretation of Imprecise Stylus Selection
Gestures. Proceedings of Computers and Graphics, pp.
490 - 500.

15. MacKenzie, I.S. and W. Buxton. Extending Fitts' law to
two-dimensional tasks. Proceedings of CHI'92, pp. 219
- 226.

16. Pastel, R. Measuring the difficulty of steering through
corners. Proceedings of CHI'06, pp. 1087 - 1096.

17. Zhai, S. and P.-O. Kristensson. Shorthand writing on
stylus keyboard. Proceedings of CHI'03, pp. 97 - 104.

