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ABSTRACT 

We present an empirical analysis of crossing-based dialog 
boxes. First, we study the spatial constraints required for 
efficient crossing-based interactions in the case of a simple 
multi-parameter dialog box. Through a series of 3 tasks, we 
establish the minimal value of the landing margin, the 
takeoff margin, and the column width. We also offer an 
estimation of the role of stroke shape on user performance. 
After studying the reasons for errors during our experiment, 
we propose a relaxed crossing semantic that combines 
aspects of pointing and crossing-based interfaces.  

To test our design, we compare a naïve dialog box 
implementation with our new implementation, as well as a 
standard point-and-click dialog box. Our results reveal that 
there is not a significant difference between the naïve 
crossing implementation and the standard point-and-click 
interface and that the new crossing semantic is faster than 
both the naïve crossing implementation and the point-and-
click interface, despite a higher error rate.  

Together these two experiments establish that crossing-
based dialog boxes can be as spatially efficient and faster  
than their point-and-click counterpart. Our new semantic 
provides the first step towards a smooth transition from 
point-and-click interfaces to crossing-based interfaces. 
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INTRODUCTION 

As the number of Tablet PCs in use steadily increases, it is 
important to better understand the performance 
characteristics of interfaces specifically designed for pen 
interactions. One class of interfaces comprises goal 
crossing-based interfaces in which all interactions are 
performed by crossing targets on the screen. Such 
interaction styles appear to have a great potential: Accot 

and Zhai [2] demonstrated that crossing tasks can be 
described by Fitts’ law, with performance comparable to 
standard point-and-click tasks, and suggested that in certain 
scenarios, such as when targets can be cascaded, crossing 
interfaces might be faster than point-and-click interfaces. 
Taking note of this advantage, Apitz and Guimbretière [6] 
showed that one can design a complete application (a 
simple drawing program called CrossY) which relies only 
on goal crossing for all interactions. CrossY not only 
demonstrated that goal crossing-based interfaces could be 
as expressive as standard point-and-click interfaces, but it 
also illustrated several of the potential advantages of 
crossing-based designs. These include the ability to use a 
rich gesture set on top of interface elements such as the 
scrollbar (an approach reminiscent of the Gedrics system 
[12]), and the ability to compose several commands in one 
gesture. 

The latter feature is unique to the crossing style of 
interactions and could offer a significant speed advantage 
for pen-based interactions. However, Apitz and 
Guimbretière warned that designers might face a trade-off 
between speed of execution of composite commands [6], 
and the screen real estate required for these interactions. 
This problem arises from the fact that when users quickly 
select several options with a single gesture, they tend to be 
sloppier and require more space to move without triggering 
unwanted commands. Apitz and Guimbretière do not report 

 

Figure 1: An example crossing dialog box with several spatial 
parameters labeled. The user selects targets from left to right, 

in this case crossing options Arial, Underline and 10 pt. 
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any empirical evidence of the amplitude of this problem but 
suggest that this problem could be alleviated by using 
gesture based recognition mechanisms such the one used by 
the SHARK keyboard system  [17]. 

In this paper we offer the first empirical evaluation of the 
space versus speed trade-off that might occur while 
designing a typical crossing-based dialog box. A simple 
example of such a dialog box used to select several text 
attributes is shown in Figure 1. Like in CrossY, users 
trigger an action by crossing the bar that is behind each 
label (as shown in Figure 1).  To evaluate this setting, we 
first conducted an experiment designed to explore the 
minimum spatial requirements for efficient option selection 
in the dialog box, such as the ones shown in Figure 1. In 
particular we studied the impact of key parameters, 
including the required margins around the goals, the 
spacing of columns of targets as well as the overall cost of 
making complex selections in a three column box. Our 
results show that the spatial requirements for crossing-
based interfaces are very similar to those of point-and-click 
interfaces. Based on our findings, we present guidelines for 
the design of space efficient crossing-based dialog boxes. 

The observations gathered during our first experiment 
offered some insight on how to improve the performance of 
complex selections involving a middle goal either far below 
of far above the horizontal line formed by the first and last 
options selected. In such a situation, it is often difficult for 
users perform the change in direction when selecting the 
middle option. To address this problem, we propose to 
blend the point-and-click and the crossing semantics to 
offer a style of interaction which is more forgiving of 
common errors, such as crossing just above a target. To 
evaluate our solution, we conducted a second experiment 
designed to compare the speed performance of crossing-
based and point-and-click interfaces. In this experiment we 
compared our new semantic to a naïve crossing-based 
interface and a standard point-and-click interface. Our 
results showed that in our setting, there was no significant 
speed difference between the naïve crossing-based interface 
and the point-and-click interface, whereas the new 
implementation offered a significant speed advantage 
despite a higher error rate. Our solution, which could be 
implemented as an extension of current point-and-click 
interfaces for pen-based computing, could significantly 
increase the efficiency of command selection in pen-based 
computing.  

ANATOMY OF CROSSING-BASED DIALOG BOXES 

The typical layout of a goal crossing-based dialog box is 
presented in Figure 1. In this example, users can select 3 
different values for 3 text attributes (from left to right, Font, 
Style, and Size). Since possible values for each attribute are 
exclusive, the dialog box presents the possible values of a 
given attribute in a column layout. Although users could 
select the value for each attribute one at a time, the crossing 
paradigm [4] makes it possible to select several attributes 
using a single stroke as shown in Figure 1. This is the case 

we are considering in detail in this paper because results 
from Accot and Zhai [4] show that when the Fitt’s law ID 
between targets in a dialog box are below 5 this is the 
fastest mode of operation. It is also unique to crossing-
based interactions [6].  

Now, consider the case where one would like to set the 
following font attributes in one stroke: Arial, Underline, 
and 10pt. First, we note that the work by Accot and Zhai on 
the performance of goal crossing [4] does not directly 
apply, since several effects, such as the presence of a 
limited landing margin and the need to travel at an angle, 
were not considered in their study. Therefore, we proceed, 
similarly to Pastel et al. [16], by decomposing the different 
steps required to perform this selection; highlighting how 
previous results might help predict the performance of each 
action. The first step is for the user to land near the start 
position to the left of the ‘Arial’ target. This part of the 
interaction can be modeled as a bivariate Fitts’ law task [5] 
(or alternatively [13] if the landing region is not 
rectangular) in which both the landing margin (see Figure 
1) and the height of the first target (including the distance 
between target and maybe the top margin size) will 
influence user performance. Then as users cross the target, 
the speed will be limited by the target width as studied by 
Accot [3] .  

During the next step of the selection process, users have to 
travel toward the next target, ‘Underline’. During this 
segment of the selection, one can expect two distinctive 
types of behavior: if the column width is small, the 
different options will appear as a tunnel users must travel 
through without crossing the boundary. In that case, user 
performance will be modeled by the Steering law for 
tunnels [3]. As the space between columns increases, Accot 
suggests in his thesis [3] that the Tunnel law will not apply 
anymore. Instead the tunnel becomes so wide that a normal 
“ballistic” movement has little chance to cross the borders, 
and users’ interactions are modeled by Fitts’ law with a 
possible influence of the direction of movement [9, 15]. 
The exact transition between the two will depend on the 
experimental setting. 

Reaching the vicinity of the ‘Underline’ target, the user 
must now cross the target while performing a sharp turn. 
To our knowledge there have been no direct investigations 
of such interactions, but several related studies might help 
predict users’ behavior. Pastel et al. [16] studied the 
influence of angle while navigating through corners, 
reporting that “users will round off corners while gesturing 
or negotiating menu hierarchies.” Also, Cao and Zhai [7, 8] 
presented a new quantitative model for single stroke pen 
gestures, the Curves, Line Segments, and Corners (CLC) 
model, which demonstrated that in a free setting, it 
typically takes users within 40 milliseconds to draw a 
corner.  

In the final stage of the selection, the user must aim at and 
cross the third target “10 pt” before lifting the pen. As 
before, user performance will be influenced by the distance 



 

between the columns and the size of the target. It will also 
be influenced by the size of the takeoff area, probably 
following the bivariate Fitts’ law task [5] in which both the 
takeoff margin (see Figure 1) and the height of the target 
(including the distance between target and maybe the top 
margin size) will influence user performance. 

In summary, to better understand how the layout of a 
crossing-based dialog box influences user performance, one 
has to consider: 

• How the dialog box margins might influence landing 
and takeoff performance; 

• How the distance between columns might influence 
user performance; 

• How the need to perform sharp turns while selecting 
several commands in a row might influence user 
performance; 

We proceed with the description of our first experiment 
designed to evaluate the impact of these parameters. 

EXPERIMENT I 

To keep the complexity of our experiment in check, we 
decided to divide our experiment into three tasks, each 
investigating one of the parameters described above. While 
this might hide potential interactions between these 
variables we felt that a full factorial design was unpractical 
and might not be necessary at this stage of our 
investigation. 

In our first task, we presented users with a simple dialog 
box with one column of options to study the influence of 
the takeoff and landing margins. For our second task, we 
used a two column dialog box to study the influence of the 
distance between columns on user performance. Finally, for 
our third task, we focused on the effect of command 
composition by asking users to select 3 parameters. 

To further simplify our design, we did not include the 
target height and the size of the top and bottom margins as 
variables in our experiment. With respect to the target size, 
we turned instead to existing systems, fixing all target 
heights to 18 pixels, with 9 pixels of vertical space between 
targets. This corresponds to the standard checkbox sizes 
used in Mac OS X [1]. With respect to the top and bottom 
margins, we investigated their influence during pilot studies 
and found that there were no notable effects on user 
behavior as long as they were wider than 3 pixels. For an 
added margin of safety, we fixed the top and bottom 
margins to 9 pixels, such that every target was surrounded 
equally by 9 pixels of space. 

Although each the of three tasks were presented in 
successive blocks in one experimental session, in the 
following we will present each task and the corresponding 
results as separate sections for the sake of clarity. 

Protocol and Participants 

The three tasks were presented in blocks. Before 
completing each task, users completed a training session 
until they were comfortable with the task (typically around 

45 trials). Subjects were asked to cross targets as fast as 
possible, but with precision. They were asked to keep an 
error rate below 6% and were given a visual warning when 
their error rate exceeded 4% (the error counter changed 
from yellow to red). Participants were allowed to rest as 
soon as they finished a trial.  

We recruited 12 participants (8 male, 4 female; age range 
18-51 years). All subjects were right-handed. Subjects 
received $10 for their participation. 

Apparatus 

All subjects completed the tasks on a Toshiba Protégé 
Tablet PC, with 2 GB RAM and a 1.7 GHz CPU frequency. 
The diagonal of the screen was 307mm and the resolution 
was set to the tablet’s native 1024 x 768 pixels (or a 0.24 
mm pixel pitch). The tablet screen was folded so that the 
computer appeared as a slate and placed in portrait 
orientation. The test application was written in C# and all 
actions performed by users were logged. 

Takeoff and Landing Margins 

Our goal for this task was to understand the influence of 
takeoff and landing margins on user performance. To 
measure these effects experimentally, we created a simple 
task in which users must first cross a fixed starting target, 
then cross another target to the right of the starting point as 
shown in Figure 2. We fixed the distance between the 
starting point and the goal at 200 pixels, but to introduce 
variety, the target goal could be one of three targets in the 
dialog box, and the angle between the two targets and the 
horizontal varied from 0 to 80 degrees. During the 
experiment, we systematically varied the width of both the 
takeoff and landing margins and observed their effect on 
the task time, defined by the time from when users crossed 
the fixed target to when they lifted the pen after crossing 
the second target. To investigate possible interactions 
between the takeoff and landing areas, we decided to run a 
factorial design, crossing the two parameters. We picked 
the following values for each margin: 5, 10, 15, 20, 25, 30, 
40, 50, 60, and 70 pixels, with 5 pixels being the smallest 
practical target (corresponding to an ID of 5 in our setting) 
and 70 being well into the performance plateau according 

 

Figure 2: An example trial of the landing and takeoff test. The 
landing margin is 30 pixels and the takeoff margin is 50 pixels.  



 

to our pilot studies. The composition of the goal target 
varied randomly between trials to offer a more realistic 
setting. Each possible combination of margins was tested 3 
times for a total of 300 trials. 

Because the landing region can be described as a 
rectangular target [5], we expected that the users’ total 
movement time (MT) would follow a the bivariate version 
of Fitts’ law described by the following formula:  
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in which D is the distance between the fixed target and the 
goal target, W is the margin width, T is the target height 

(shown in Figure 2) and η is an experimentally determined 
constant. One would expect user performance to plateau 
after the margin size grows larger than the target height as 
the target height will become the limiting factor. We were 
expecting a similar effect to take place for the takeoff 
margin.  

Results 

Out of the 1197 trials, there were a total of 36 errors, 
yielding an error rate of approximately 3%. 27 (75%) of the 
errors were caused by users crossing the boundary of the 
box during a selection. The majority (21 occurrences) of 
these occurred within the 5-pixel takeoff margin setting. 
This makes sense as it becomes difficult to cross the target 
without exiting the box for such small takeoff margins. 9 
(25%) of the errors were occurrences of users selecting 
targets in the wrong direction. This seems to be primarily 
because users would cross the goal target and then slightly 
backtrack because of the difficulty to aim in such a small 
region. We now proceed to look at the task durations with 
respect to the margin widths. 

We examined the average duration for each combination of 
landing and takeoff margins, where the duration was 
defined from when the user presses down with the pen in 
the dialog box to when the user lifts the pen after 

successfully crossing the goal target. We looked at the 
duration of each user’s median trial for every setting 
(excluding trials with errors) and averaged all participants 
to obtain an estimate for each task time. We removed the 5 
pixel landing margin, 70 pixel takeoff margin setting from 
one user because his or her trial times were 10 times slower 
than any other user. This did not change the nature of our 
findings. 

Our results are shown in Figure 3, left, in which we plot, 
for each takeoff margin, the total task time as a function of 
the landing margin size. As predicted, Figure 3, left, shows 
little change in performance beyond 30 pixels for both 
landing and takeoff margins, but the data is quite noisy. As 
a result, we decided to study the influence of landing and 
takeoff margin separately. To do so, for the landing margin 
(respectively takeoff margin), we ignored data points with a 
takeoff margin (respectively landing margin) smaller than 
30 pixels and aggregated all data captured with a takeoff 
margin (respectively landing margin) greater than 30 
pixels. The results are shown in Figure 3, right, super-
imposed over the best fit of the bivariate pointing model (1) 
with D = 200 and H = 18 for clarity. For the landing 
margin, we again observed a clear plateau starting around 
30 pixels (the duration does not change more than 50ms) 
which corresponds to the total target height if one includes 
the space between targets. For the takeoff margin, the 
plateau seems to come sooner just short of 20 pixels, which 
corresponds to the height of the target. Both results are in 
accordance with our predictions. We conclude that the 
minimum margin should be at least 50% larger than the 
target height (30 pixels in our case). 

Target Column Width 

In the second task, our goal was to determine the effect of 
the column width. Starting from the start target, participants 
were asked to cross the start target, lift the pen, move to the 
dialog box, and then in a single stroke select two 
highlighted (red) targets from left to right (Figure 4). While 
the start button is not strictly necessary for our 
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Figure 3: Left: The margin sizes (pixels) versus average task duration (ms). Each colored sequence represents the corresponding 
takeoff margin width. Right: The landing and takeoff widths excluding the opposing margin widths greater than 30 pixels. 
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measurement, our pilot studies showed that it has two 
beneficial effects: first, it limits potential hand occlusions 
by forcing users to always move back to a position where 
their hand is out of the way. Second, it prevents people 
from entering a “stride” mode in which they mechanically 
repeat the same movement, often missing the fact that a 
new combination of targets was presented. To observe the 
effect of column width over a range of IDs we varied the 
vertical distance between targets from 0, 54, 81, 108, 189, 
and 270 pixels (or 0, 2, 3, 4, 7, 10 vertical steps 
respectively) either upward or downward, a selection 
representative of common dialog boxes (and also seems to 
be the limit of users’ patience for very narrow columns). 

In this task, we methodically varied the column width and 
observed its effect on participant movement time from the 
time the user crossed the first target to the time the user 
crossed the second target. For the width variable, we tested 
10, 15, 20, 25, 30, 40, 50, 60, and 80 pixels, with 10 pixels 
being the smallest practical width and 80 pixels entering 
the range where the task becomes a Fitts’ law pointing task, 
according to our pilot studies. These choices meant that the 
ID of the task varied from 1 to about 27 in the case of a 
large vertical movement through a narrow column. Each 
setting was tested 6 times (3 in the upward direction and 3 
in the downward direction) for a total of 270 trials. 

As mentioned, users’ performance can be described by 
either of two laws in this task. When the column width is 
very small, the surrounding options create a tunnel that the 
users must navigate through without touching the 
boundary, as it would trigger an unwanted option. In that 
setting, the movement time can be described by the 
Steering law [2], where H is the vertical distance between 
targets and W is the column width: 

W
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But as the tunnel becomes larger (H increases), this law 
will no longer apply [3] since the tunnel will become so 
wide that it will not impede direct ballistic movement. In 
this case, Fitts’ law [11] can be used to model the 
movement: 
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Results 

Out of the 1179 trials there were 70 errors (5.9%). 32 errors 
occurred from users lifting the pen before crossing both 
targets, 26 errors occurred from users crossing a wrong 
target, 10 errors occurred from users crossing targets from 
the wrong direction (right to left) and 2 errors occurred 
from users crossing outside of the dialog box. 

For this task we used each participant’s median 
performance, excluded error trials and averaged across all 
participants to obtain an estimation of the time it takes to 
complete the task for each cell. Figure 5 plots, for each 
vertical distance, the average movement time depending on 
the column width. As expected, the trace for 0 pixels of 
vertical distance follows a very different pattern from the 
other conditions because Accot’s law does not play a role. 
For all others settings, one can see that for small inter-
column widths, user performance follows the Steering Law, 
with performance improving as the inverse of the column 
width, as would be expected from (2). Yet, as the column 
width exceeds 40 pixels, user performance begins to follow 
Fitts’ law. For small vertical distances (e.g. 54px, 81px), 
increasing W has a large effect on the total distance 
traveled, and one observes a point of inflection (user 
performance begins to decrease) as user performance 
transitions to Fitts’ law (3). For clarity, we also plotted 
Accot’s law and Fitts’ law against the red 54 pixel series in 
Figure 5, making the curve dotted when the corresponding 
law does not apply. For larger vertical distances (e.g. 
189px, 270px), W has a smaller effect on the total distance 
traveled so the transition to Fitts’ law behavior appears 
more as a slowly rising plateau.  

 

Figure 4: A sample trial of the column distance task. In this 
example, the distance between columns is 30 pixels.  
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Figure 5: Column width vs. average duration. Each sequence 
represents a different vertical distance between targets. 
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To explicitly find the transition points between the Tunnel 
law and Fitts’ law, we determined the experimental weights 
in the formulas (2) and (3) by performing linear regressions 
on the extreme scenarios (margin widths of 10 and 80 
pixels). We then used these formulas to solve for each 
travel distance the point where:  

  
sAcFitts MTMT cot'' =  

We found that the transition points ranged from 35 to 40 
pixels. We plotted Accot’s law IDs for settings less than or 
equal to 40 pixels and Fitts’ law IDs for those greater than 
40 pixels against the average task duration in Figure 6 and, 
as expected, we see a very strong fit (r2 = 0.96). Based on 
these results, designers should expect that with standard 
target sizes and column widths passed 40 pixels, Fitts’ law 
should be used to estimate user performance.   

Composition 

For the third task, our main goal was to observe the 
influence of the sharp angle users must make in order to 
select 3 targets in one stroke. To investigate this, users were 
required to select 3 highlighted targets in a 3 column dialog 
box as shown in Figure 7. Participants were asked to first 
cross the start target and then the three highlighted targets 
from left to right. We decided to include six rows of targets 
in this task since for larger IDs it is faster to lift the pen to 
perform selections [4], which seems appropriate since our 
study focuses on command selections in one stroke. Like in 
the previous task, the start target was not strictly necessary, 
but reduced the effect of occlusion and errors caused by 
users entering a “stride” in a given setting. In this task, the 
distance between columns was 80 pixels and the landing 
and takeoff margins were both 70 pixels, all of which were 
conservative values according to our pilot studies. Because 
the margin sizes and column widths are constant within this 
task, we were able to include textual labels on each target 
to provide a more realistic setting. During pilot studies, we 
did not notice any significant effect from the presence of 
labels. To avoid a combinational explosion, we did not 
repeat identical compositions. For example, in Figure 7, 
selecting “otter”, “deer” and “cow” is considered identical 
to selecting “koala”, “sloth”, and “zebra” since these two 

interactions have congruent angles of inflection and general 
directions of travel. In some cases the performance of 
identical compositions may be affected by the bounding 
dialog box, such as in Figure 7 the border of the dialog box 
may affect the selection of “gorilla”, “sloth”, “zebra” 
differently than “panda”, “lion”, “chicken.” In these 
situations we tested both compositions. We tested each 
composition 3 times to increase reliability, and there were 
91 unique composition patterns, which yielded 273 total 
trials for this task. Before this task, we also informed users 
of the main techniques for crossing; we explained to users 
that one common technique is to cross orthogonally to the 
targets, or to cross by drawing a straight line between 
targets (shown in Figure 9). 

With the complex selections in this task, there are two main 
difficulties for users. First, the distance between targets will 
be greater. This will increase the overall ID for the task. 
Second users must make a sharper turn while selecting the 
second target. Cao and Zhai [8] showed that in a free 
gesture setting, the time to draw a corner was typically less 
than 40 milliseconds (and practically negligible here). 
However, our setting is different in that goal constraints are 
imposed and users may decide to not strictly cross at a rigid 
angle. Instead, we expect that for steeper angles of 
inflection, the task will become more difficult. It is also the 
case that users may not need to make an inflection point, 
but the general direction of travel is at a nonzero degree 
angle from the horizontal (e.g. in Figure 9, if the user 
selects “Comic”, “Italic”, and “10 pt”), which may cause a 
decrease in apparent target size. Since we are interested in 
how the stroke complexity influences users’ performance, 
we decided to consider the sum of the angles from the 
horizontal (e.g. in Figure 9 the angle created by moving 
from “Arial” to “Underline” plus the angle from 
“Underline” to “10 pt”) as a proxy for complexity. To 
remove the influence of the distance between targets, we 
defined the time corrected for distance (TCD) of a task as: 
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Figure 6: ID vs. task duration. For column widths under 40 
pixels Tunnel law IDs were used, for those above 40 pixels, 

Fitts’ law IDs were used. 

                    

Figure 7: An example trial of the composition test. In this 
example, the user must cross the start target left to right. 



 

where DurationREF and IDREF refer to the average duration 
and Fitts’ ID for the 0 degree angle setting.  

Results 

Out of 1,139 trials in this task, there were 94 errors 
(8.25%). The most common error (occurring 62 times) was 
when users slightly missed a target, but continued with the 
interaction and crossed the successive target. The second 
most common error (occurring 22 times) was that users 
lifted the pen just before passing through the final target. 
Users also selected the wrong target 7 times and exited the 
box while crossing 3 times. 

In this task we excluded error trials and again took the 
median trials from each user. We then looked at average 
task durations for each setting. We looked at the influence 
of the total stroke angle versus the task time corrected for 
distance (using IDREF = 4.89 and DurationREF = 716.8 ms in 
equation (4)), which is plotted in Figure 8. It is evident that 
the TCD of the task generally increases as the stroke angle 
increases. The angle influencing the TCD in this way 
makes sense because for steeper angles, the user must 
choose between either drawing long, s-shaped strokes, or 
by drawing straight strokes and greatly limiting the 
apparent target size, which is not present in Cao and Zhai’s 
scenario.  

Based on these results, designers should expect an 
approximately linear decrease in performance as strokes 
become more angular. 

APPLYING THE RESULTS 

From the results of this experiment, we can now determine 
the parameters that describe the optimal crossing-based 
dialog box. We give the minimum dimensions that should 
not hinder user performance in Figure 9. However, for 
design purposes, larger dimensions might be necessary. For 
the takeoff and landing margins, we suggest widths at least 
50% larger than the target height (we suggest 30 pixels in 
our setting). Our second task revealed that column widths 
at least 9.6mm (40px) provide sufficient widths for dialog 
boxes sized similar to ours, however, note that this value is 
quite small compared to typical label sizes, which implies 
that most application designers should expect user behavior 

to be modeled by Fitts’ law. We also recommend that the 
combinations which will be selected most often be as close 
as possible to a horizontal line to avoid the linear decrease 
in performance as strokes become more angular. Although 
we fixed our top and bottom margins to half of the target 
height in the third task, we suggest heights a bit larger, 
around the target height, as half was an extreme limit and 
design might demand a slightly bigger value to give users 
more space for the more difficult tasks against the border.  

While Experiment I illustrated how to adjust the spatial 
parameters of the dialog box, we also noticed several 
aspects of the dialog box implementation that can be 
improved. One of the first issues was the difference 
between the possible stroke styles. During pilot studies, we 
noticed that a straight stroke style (as seen in Figure 10, 
left) can typically lead to faster task completion time. We 
also noticed that users typically crossed orthogonally to the 
targets during the third task, most likely because it provided 
the largest perceptual target size. Next, we noticed that it 
was often difficult to aim at the second target and negotiate 
the sharp angle simultaneously, which often caused users to 
slightly miss the second target. Last, we noticed that in 
many cases, users began crossing to the right of the first 
target or lifted the pen before crossing the last target (as 
shown in Figure 10, left, the user does not completely cross 
the “flamingo” and “mouse” targets). 

A New Crossing Detection Algorithm 

To address this problem, just as Lank et al. [14] allowed for 
sloppier selections when circling targets, we decided to 
relax our crossing semantic. First we assigned an invisible 
interaction box around each target as shown in Figure 10, 
left. In addition to detecting standard cross events, each 
interaction box detects three fundamental interactions: 
pressing down with the pen, lifting the pen, and creating a 
sharp angle. Detecting pen down events allows users to 
combine landing interactions and selecting their first target 
into one motion by allowing users to start on the target (or 
maybe a little bit to the right of it). Similarly, detecting pen 
up events allows for users to release the pen in the general 
vicinity of a desired target (or maybe a little bit left of it), 
giving a larger tolerance of error when selecting the last 
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Figure 8: The sum of the angles from the horizontal that 

describe a composite command stroke vs. difficulty. 

 

Figure 9: Design specifications for an efficient dialog box 
based on a target height of 18 pixels. 



 

target of a stroke. If the user wishes to select a single target, 
detecting pen down and pen up events will conflict. To 
solve this, our implementation ignores a pen up event that 
occurs on the same target directly after a pen down event. 
Finally, detecting a sharp angle makes it easy for users to 
make a selection while negotiating a turn through the 
middle target since the use of a box increases the apparent 
width of the target. For example, in Figure 10, left, the user 
only needs to draw an angle in the “penguin” region rather 
than specifically crossing the vertical target. 

To detect sharp angles, we perform the Douglas-Peucker 
line simplification algorithm [10] on strokes within the 
interaction box, and issue a crossing event when an 
inflection point has been detected. Note that in the case 
where the three targets are aligned, there will be no 
inflection and if the user slightly misses the middle target, 
an error will occur. To reduce the likelihood of missing the 
middle target in this scenario, our algorithm adds four 
invisible pixels to each target (two above the target and two 
below). It should also be noted that our implementation is 
local to each target so it can be implemented using standard 
event-loop dispatching techniques. 

Another important consideration is to ensure that our 
modifications do not hinder single target selections. For 
example, if the invisible boxes are too close horizontally, 
users may cross a single target, such as “dog” in Figure 10, 
left, and release the pen within the box surrounding 
“iguana,” which would trigger an unwanted selection. To 
ensure that this does not happen, we first looked at the 
typical stroke widths from the first task of Experiment 1. 
For large landing and takeoff margins (60 and 70 pixels), 
the average stroke width was approximately 35 pixels 
(roughly 17 or 18 pixels before and after the goal). This 
suggests that an 18 pixel box is all that is necessary. But 
from the first task in Experiment 1 we also noted that for 
the landing margin, user performance plateaus at about 30 
pixels. Balancing these two data points, we designed each 
box as 22 by 50 pixels. This configuration provides the 
maximal height (for targets of 18 pixels and 9 pixel spaces) 

and 30 pixels between regions assuming an 80 pixel 
column width.  

Evaluating our Implementation 

To verify the effectiveness of our new algorithm for 
multiple selections, we conducted a second user study 
where we evaluated user performance for each of three 
implementations: a traditional goal crossing 
implementation, a goal crossing implementation using our 
new algorithm and a standard point-and-click 
implementation (see Figure 10, right). Each dialog box 
consisted of 3 rows and 6 columns and we aimed to give 
each implementation identical spatial parameters. All 
implementations had 18 pixel visible target heights, 9 
pixels between rows, and 80 pixel column widths. For the 
point-and-click implementation, we used check boxes for 
targets, with textual labels to the right of each target. To 
ensure that we are not providing an unfair advantage to the 
relaxed setting, we also added four invisible, active pixels 
(two above the target and two below the target) to each 
target in the point-and-click setting, which is common 
behavior in Windows. Also, according to Windows default 
behavior, the user may select the checkbox or to the right of 
the checkbox (summing to a width of 80 pixels for each 
target) to make a selection. The task and settings were 
identical to that of task 3 in our first experiment. For each 
implementation, participants performed the same 273 trials 
as in task 3 of Experiment I blocked together. We fully 
balanced the presentation of each technique to limit the 
influence of possible skill transfer. 

12 participants (1 male, 11 female; age range 18 – 39 years; 
all right handed) were recruited for this study and they 
received a $10 compensation for their time. We used the 
same Tablet PC and the same apparatus settings as 
Experiment I. There were two experimenters who each ran 
a fully balanced sample of users. 

Results 

In our experiment, we timed each trial as beginning when 
the user presses the pen down inside the dialog box and 
ending when the user successfully finishes selecting all 
three targets and lifts the pen from the dialog box. We 

                                                            

Figure 10: Left: A crossing scenario that our new backend would accept. Dotted rectangles show the regions (normally invisible) 
that detect pen-up, pen-down, and inflection point events. Right: An example trial of the point-and-click implementation. 



 

chose to ignore the time it takes for users to initially travel 
from the start target to the dialog box as it mainly 
represents thinking time. We did, however, include all of 
the time it took users to correct errors in our data. Since our 
work is focusing on one stroke selections, we required 
users to travel back to the start target and re-perform the 
entire trial after committing an error in order to force users 
to perform a fully successful selection at the end of each 
trial as a baseline reference. In our analysis, we used the 
Greenhouse-Geiser correction when sphericity could not be 
assumed and we used Bonferonni correction for post-hoc 
analysis. Also when performing our analysis of error rates, 
we noticed one user’s error rates were more than triple the 
average for all three tasks due to frequently selecting the 
incorrect target. To limit the possible bias caused by this 
behavior, we ran an additional user as a replacement (using 
the same technique ordering and experimenter) and report 
these results here. This did not change the nature of our 
findings for either error rates or performance. 

There was a significant difference in error rate among the 
three conditions (F2,22 = 7.969, p = .002, ηp

2 = .420, the 
error rates were 6.72% for the standard crossing, 8.27% for 
our new implementation and 4.37% for the point-and-click 
interface). Specifically the new implementation had 
significantly more errors than the point-and-click 
implementation (p = .005). The standard crossing 
implementation did not have a significant difference in 
error rates from the point-and-click (p = .183) and the new 
implementation (p = .286). It should be noted that lifting 
the pen before completely selecting all three of the targets 
is considered an error in the crossing conditions. In reality, 
we expect that users may prematurely lift the pen and then 
perform any additional strokes necessary; however, we did 
not allow this to force single stroke selections. 
Approximately 20% of the errors in the standard crossing 
condition and 23% of the errors in the relaxed condition 
were lifting errors. Since we are including time for error 
corrections, we believe that this effect has a limited impact 
on the validity of our results. 

With respect to user performance, we removed outlier 
trials, which were trials exceeding three standard deviations 
from the mean duration for each setting. Figure 12 

illustrates the average durations for each of the tasks. A 
repeated measure ANOVA on the task time revealed a 
significant difference between conditions (F1.22,13.45 = 14.9, 
p = .001, ηp

2 = .575). While the standard crossing 
implementation was not significantly faster than the point-
and-click implementation (p > .999), the advanced 
implementation was significantly faster than both the 
standard crossing interface (p < .001) and the point-and-
click interface (p = .010). These results validate our belief 
that the relaxed semantic offers better performance. 

It is possible that the sample used in this experiment may 
bias our result. Thus, to show how different settings 
influence the different techniques’ performances, we 
plotted in Figure 11 the sum of the Fitts’ law IDs between 
targets (e.g. the ID of moving from “flamingo” to 
“penguin” plus the ID from “penguin” to “mouse” in 
Figure 10) versus the average duration for each task for 
error free trials. On one hand, following Accot and Zhai 
[4], we see a changeover in performance between the 
standard crossing and point-and-click tasks. For small IDs, 
the standard crossing task outperforms the point-and-click 
task, while for large IDs the point-and-click task is faster. 
On the other hand, the relaxed semantic implementation 
seems to consistently outperform both for commonly 
observed IDs.  

Of course, it might be the case that by improving the 
performance in composite command selections, we might 
have significantly degraded the ability to select one option 
at a time. To explore this, we conducted a short follow-up 
experiment to compare the error rates of when users select 
a single target from the center column of the dialog box in 
both crossing-based implementations. We asked 6 new 
participants to perform a total of 18 selections (selecting 
each target in the center column 3 times) using both 
implementations. Users were not told about the difference 
in functionality between implementations, and we balanced 
the order of presentation. Since the experiment was so 
short, participants did not receive any compensation for 
their participation. After removing outliers greater than 
three standard deviations from the mean, the average 
durations for each condition were within 6ms of each other 
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Figure 11: The sum of Fitts’ law IDs from moving between 

targets vs. average duration (error cases removed). 
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and in both cases there were no errors. This suggests that 
our new algorithm improves multiple selection speeds 
without affecting single selection difficulty. 

DISCUSSION AND FUTURE WORK 

Together, our three experiments showed that the crossing-
based versions of a dialog box have similar screen 
footprints and performance characteristics as a more 
traditional point-and-click dialog box. Our second 
experiment showed that blurring the distinction between 
the point-and-click semantic and the goal-crossing semantic 
can have a significant benefit on user performance during 
multiple selections.  

We believe that our results have a strong implication for the 
deployment of crossing-based interfaces in the field. Our 
results imply that it might be possible to leverage the 
benefits of crossing-based interface within the framework 
of a more traditional point-and-click interface by changing 
the dispatch mechanism to accommodate the algorithm 
described above. In some systems such changes could be 
implemented through a simple update of the GUI base 
library. This implies that pen-based interface users might 
be able to smoothly transition from a fully point-and-click 
style of interaction to a mixed style of interactions with 
ease. Such a gradual approach will ease the acceptance of 
the crossing-based interface among users, compared to an 
abrupt change to a brand new interaction paradigm.  

Our present work is only the first step in that direction, and 
we need to extend the external validity of our results by 
exploring more complex interactions (such as selecting 
more than 3 options) and conducting longitudinal studies of 
user performance in everyday tasks. To this end, we are 
planning to develop a new crossing-based interface toolkit 
that will make it easy for users to smoothly transition from 
point-and-click interfaces to crossing-based interfaces. 
Providing a drop-in implementation like this can also help 
decrease the dependence on point-and-click interfaces since 
it will make crossing-based components readily available, 
and thus cost effective, for designers.  

CONCLUSION 

In this paper, we provided a better understanding of the 
parameters influencing the performance of crossing 
interfaces. We explored the space-time tradeoff within the 
crossing-based dialog box and provided the first design 
rules indicating the optimal parameters for such a tradeoff. 
Finally, we proposed a new crossing-based interaction 
semantic that allows for faster and more fluid interactions. 
We believe our experiment results accompanied with our 
new algorithm will promote the deployment of crossing-
based interfaces and thus strengthen pen-based interfaces.  
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