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Traditional graphical user interfaces have been designed with the desktop mouse in mind, a
device well characterized by Fitts’ law. Yet in recent years, hand-held devices and tablet personal
computers using a pen (or fingers) as the primary mean of interaction have become more and more
popular. These new interaction modalities have pushed the traditional focus on pointing to its limit.
In this paper we explore whether a different paradigm—goal crossing-based on pen strokes—may
substitute or complement pointing as another fundamental interaction method. First we describe
a study in which we establish that goal crossing is dependent on an index of difficulty analogous
to Fitts’ law, and that in some settings, goal crossing completion time is shorter or comparable to
pointing performance under the same index of difficulty. We then demonstrate the expressiveness
of the crossing-based interaction paradigm by implementing CrossY, an application which only
uses crossing for selecting commands. CrossY demonstrates that crossing-based interactions can
be more expressive than the standard point and click approach. We also show how crossing-based
interactions encourage the fluid composition of commands. Finally after observing that users’
performance could be influenced by the general direction of travel, we report on the results of
a study characterizing this effect. These latter results led us to propose a general guideline for
dialog box interaction. Together, these results provide the foundation for the design of effective
crossing-based interactions.
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1. INTRODUCTION

Over the last few years, pen- and finger-based interactions have started to play
an increasingly more important role in user interface design. In particular
they have been the interactions of choice for a wide variety of devices from
cell phone, to tablet computer, to table and wall interactive surfaces. Not sur-
prisingly, these new modalities pushed the WIMP-interface (Windows, Icons,
Menus, and Pointers) to its limit, since it was tuned to a typical desktop config-
uration. In that configuration, users control a cursor on the screen by moving
a mouse on their desk. This indirect setting prevents any occlusion problems,
while the accuracy of the mouse makes it easy to access very small targets such
as the “close window” icon, double click, and the use of multiple buttons. Such
interactions are often difficult to perform with a pen or a finger. Further, WIMP
interfaces often rely extensively on keyboard shortcuts for expert interactions,
making them slow to use on devices such as pen-based tablet computers. Notic-
ing that pens are naturally suited to draw strokes, it seems natural to consider
an interface paradigm in which the basic element of interaction is to draw
strokes on a target to trigger an action. Here we are presenting an overview of
our initial work on crossing-based interfaces.

The idea behind crossing-based interfaces is simple. Users cross a target on
the screen to trigger the action associated with a given widget (Figure 1(b)) as
opposed to clicking on a target. In this article, we first present a characterization
of the overall performance of the crossing paradigm [Accot and Zhai 2002]. We
show that crossing performance is well described by Fitts’ law [Fitts 1954],
and we present an analysis on how the relative performance of crossing-based
interaction depends on factors such as the need to lift the input device between
two targets or the orientation of the two targets with respect to the main
direction of travel. Of particular interest are findings suggesting that crossing
tasks can be as fast as, or faster than, clicking tasks of the same index of
difficulty (ID).

We then demonstrate the expressiveness of the crossing paradigm, by de-
scribing CrossY [Apitz and Guimbretière 2004] a crossing-based drawing ap-
plication. While examples of crossing-based interactions such as Lotus Notes
[IBM 2004] and Baudisch’s toggle map [Baudisch 1998] have been proposed
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Fig. 1. Two different paradigms for triggering actions in a graphical user interface.

before, CrossY is the first application to rely exclusively on crossing to issue
commands. Our work with CrossY demonstrates that crossing- based interfaces
are more expressive than standard point and click interfaces. For example the
interface can take into account the orientation and direction of the crossing
stroke to distinguish between different types of commands on the same inter-
face element. Crossing-based interaction also offers the option of composing
several command invocations in a single stroke—something that is not possi-
ble in the point and click paradigm. Based on our experience building CrossY,
we describe our initial recommendations on how to best leverage the unique
aspects of crossing-based interactions.

During our work on CrossY we discovered that our original empirical
characterization of crossing-based interactions needed refinement to better
conceptualize the impact of layout on user performance. We conducted a follow-
up study examining additional parameters of the crossing task, including
target orientation in relation to movement direction. The empirical findings in
this study provided additional guidelines and insights for crossing-based user
interface design.

Together, this work lays the foundations needed by designers to design ef-
ficient crossing-based interfaces well suited to pen- and finger-based interac-
tions.

2. PREVIOUS WORK

In the process of deriving the law of steering from Fitts’ law, Accot and Zhai
[1997] found that for a goal-crossing task the time to cross a goal can be deter-
mined by the goal distance and goal width. In fact, this relationship takes the
same form as in Fitts’ law. More precisely, both the time needed to reach and
click on a target of width W that lies a distance D away (Figure 2(a)), and the
time needed to cross a goal of width W that lies a distance D away (Figure 2(b))
are given by:

T = a + b log2

(
D
W

+ 1
)

︸ ︷︷ ︸
Index of difficulty (ID)

, (1)

where a and b are experimentally determined performance constants. The log-
arithm factor in Equation (1) is called the index of difficulty (ID) of the pointing
or crossing task.

This model of goal crossing first presented in Accot and Zhai [1997] consti-
tutes a necessary but not a sufficient foundation for studying and designing
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crossing-based interfaces. In order to establish crossing as a general paradigm
of user interface design, more work is needed both in systematic theoretical
analysis and in practical design exploration.

First, since the graphical targets to be crossed (goals) can be either
orthogonal or collinear to the direction of pen’s movement, it is important to
understand the impact of target orientation to user performance. This issue
has been at least indirectly addressed in traditional pointing tasks. Some
Fitts’ law research, such as Jagacinski and Monk [1985] or MacKenzie and
Buxton [1992] and Hoffmann and Sheikh [1994], has tackled situations where
the pointing target has constraints in two dimensions, implicitly incorporating
directional error in pointing research. Most recently, in conjunction with the
study presented here, one of us has conducted a study to refine Fitts’ law to
account for both directional and amplitude constraints more completely [Accot
and Zhai 2003].

Previous work on crossing also goes beyond theoretical analysis. Although
rare, crossing as an interaction method has been used in some commercial prod-
ucts. In Lotus NotesR©, multiple emails can be selected by crossing their header
in a designated area. Similar operations have been generalized to “area paint-
ing” as a way of turning multiple toggle switches in a research prototype by
Baudisch [1998]. Researching interaction techniques based on a laser pointer,
Winograd and Guimbretière [1999] proposed “gesture-and-sweep” instead of
“point-and-click” as a selection technique in interactive rooms. Research has
shown that point-and-click is particularly difficult with a laser pointer [Myers
et al. 2002]. In the context of exploring pen-based interaction, Ren and Moriya
[2000] studied entering and leaving a button as alternative strategies to click-
ing, and further pointed out the need for a theoretical model for studying these
strategies.

Other examples that are well suited for pen use and show the application
of crossing can be found in menu design. For example many pop-up menu
systems are well adapted for pen-based interaction. Several systems, such as
Pie Menu [Hopkins 1991] and Marking Menu [Kurtenbach 1993], use direction
and pen-up transition to select commands. Other menu systems such as Control
Menu [Pook et al. 2000] and FlowMenu [Guimbretière and Winograd 2000]
use crossing as a way to select commands. More recently the Scriboli system
[Hinckley et al. 2005, 2006] has studied the potential of self-crossing (to create
a small pigtail) as a way to segment an ink stroke into a selection stroke and a
command stroke.

In recent years, several systems also challenged the use of the point-and-
click interface for whiteboard environments such as Tivoli [Pederson et al.
1993], FlatLand [Mynatt et al. 1999] and PostBrainstorm [Guimbretière et al.
2001], on the desktop [Ramos and Balakrishnan 2003], or for pen comput-
ing [Saund et al. 2003]. These systems are generally tuned to a certain class of
applications (such as brainstorming, for example) and do not focus on crossing
as the sole interaction paradigm. The work presented here, is an attempt to
design a general pen centric-framework that will support such applications. Fi-
nally, several systems, such as SATIN [Hong and Landay 2000], have explored
gesture-based interactions. Although, gestures are important to crossing-based
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Fig. 2. Pointing vs. crossing: the experimental paradigms differ in the direction of the variability
allowed in the termination of the movement.

interfaces, the gestures are relatively simple and, by adding a crossing require-
ment, ambiguity is reduced. In that respect, the requirements are similar to
Gedrics [Geissler 1995], a system in which users can select the action performed
by an icon by drawing a given gesture on top of it.

3. CROSSING AND POINTING WITH CONSTRAINTS

While Accot and Zhai (1997) have found that crossing-action follows a strong
speed (time) and accuracy (size of the goal) tradeoff relationship (Equation (1),
Figure 2), more modeling work is needed to systematically understand the
difference between pointing and crossing. The two tasks in Figure 2 vary at
least in two dimensions. One of the differences is pointing versus crossing.
The other difference lies in the task precision constraint, one on the amplitude
and the other on the direction of movement. When the orientation of preci-
sion constraint is collinear to movement, for either pointing (Figure 3(a)) or
crossing (Figure 3(c)), the task performer has to primarily control the move-
ment’s amplitude. When the orientation of precision constraint is orthogonal
to movement, for either pointing (Figure 3(b)) or crossing (Figure 3(d)) tasks,
the performer has to primarily control the movement’s direction. Because the
two types of constraints could exist in both tasks, we cannot have a systematic
understanding for crossing interfaces based on the study of Accot and Zhai
[1997] alone (Figure 2). Instead, we need to understand the two types of action
(pointing vs. crossing) under two types of constraint (amplitude and direction)
in a factorial fashion.

Returning to the task of crossing, there is yet another task dimension that
has to be considered if a study is to be truly systematic. Crossing can be done
in two ways: either discretely or continuously. When there is nothing between
the targeted goals, one can continuously stroke through these goals (contin-
uous crossing, Figure 3(e),(f)). On the other hand, when there are nontarget
objects (distractors) between the individual goals, one has to land the stylus
(or finger) before an intended goal, cross it, and then lift up (discrete crossing,
Figure 3(c),(d)). This fact is of highly practical interest. Imagine a widget that
has several checkboxes, but the user only wants to select a subset of them. In
this case discrete crossing or a combination of discrete and continuous crossing
is necessary to give the user this flexibility. In addition to flexibility this aspect
can be used to support an easy transition from novice to expert users. Novices
can cross targets and issue commands in a discrete way while more advanced

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 2, Article 9, Publication date: May 2010.



9:6 • G. Apitz et al.

Fig. 3. The six conditions tested. All tasks were reciprocal. Dotted lines indicate that the pen is
not in contact with the tracking surface, for example to avoid a distracter represented by a stripped
area in (c) and (d).

users can use single strokes to issue several commands and remember the
shapes of the strokes that are necessary to achieve these commands. We do
not see this difference in a point-and-click setting since it has to be discrete.
Continuous crossing has another potential advantage which is the combina-
tion of commands. If the user is able to cross several targets in one stroke, it
is also possible to issue several commands this way. We therefore investigated
both discrete and continuous crossing in a systematic experiment as well as in
our prototype application. There we give users the choice to issue commands
either discretely or continuously. Finally, while we are only considering targets
placed on the horizontal axis in this section, it is clear that this will not be
always be the case in practice. We will consider the potential impact of the
general direction of travel in Section 5.

Another dimension of potential interest is the input device. In principle,
crossing can be done with any input device, such as a mouse, but a pen (stylus)
is the most obvious choice as a crossing input device. Thus, our crossing-based
application was built for a pen-based setting, where users execute all interac-
tions with a pen without having a keyboard or mouse at their disposal.

3.1 Experiment

We conducted an experiment involving all 6 tasks depicted in Figure 3.
The two pointing tasks differed in the movement precision constraint—one
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directional and the other amplitude. The four goal-crossing tasks differed both
in movement precision constraint (directional/amplitude) and in the nature of
the action (discrete/continuous). The details of each condition are as follows.

AP: Pointing with amplitude constraint (Figure 3(a)). This is the traditional
Fitts’ tapping task [Fitts 1954]. Participants click alternately on two verti-
cal rectangles with width W and “infinite” height. The two target centers are
separated by distance D. We call this task amplitude pointing because the
movement precision (or variability) constraint (W) is imposed on the move-
ment amplitude.

DP: Pointing with directional constraint (Figure 3(b)). This is a variant of
Fitts’ original tapping task. Participants click alternately on two horizontal
rectangles of height W and “infinite” width (to one side), separated by distance
D measured by the gap between the two targets. The precision constraint in
this task is imposed on the movement’s direction.

D/AC: Discrete crossing with amplitude constraint (Figure 3(c)). Participants
alternately cross, by a stroke, two horizontal goals of width W and distance D.
For consistency, they are asked to perform the stroke downward for both goals.
This crossing task is discrete since the stylus tip touches the tablet surface
only when crossing the goal; the rest of the time the stylus is lifted from the
tablet surface. An obstacle line, causing a beep when stroked through, is drawn
between the two goals to remind the participants to use discrete strokes for
crossing the goals.

D/DC: Discrete crossing with directional constraint (Figure 3(d)). Partici-
pants alternately stroke through two vertical goals with height W and distance
D. They are asked to cross the goals from left to right for consistency. As in the
previous condition, an obstacle, that is, a distractor, is drawn between the two
goals to remind participants to lift up the stylus when traveling from one goal
to the other.

C/AC: Continuous crossing with amplitude constraint (Figure 3(e)). Partici-
pants alternately move the cursor through two horizontal goals of width W over
distance D. The crossing task is continuous as participants have to constantly
slide the stylus tip on the tablet surface. If the stylus is lifted during a block
of trials, the system will beep until stylus-tablet contact is resumed. Since the
user has to keep the stylus on the screen one stroke is used to cross both targets
which is not possible with point-and-click. Note that the setting does not make
use of the stroke direction for an easier crossing since the targets are aligned
against the crossing direction.

C/DC: Continuous crossing with directional constraint (Figure 3(f)). Par-
ticipants move the cursor reciprocally through two vertical goals of height W
over distance D. As in condition C/AC, the system will beep when the stylus is
lifted during a block of trials until stylus-tablet contact is resumed. This task
was introduced in Accot and Zhai [1997] and found to follow Fitts’ law when
performed nonreciprocally.

In all six tasks, participants were asked to perform as fast and as accurately
as possible. When a target (or goal) was missed, a beep was played to remind
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the participant to improve accuracy. In case of a miss, participants continued
the trial until they hit the target and their trial completion time increased
as a result. When hit, the target changed color from green to orange. The
time duration between the two alternate target clicks (or two goal crosses) was
recorded as the trial completion time.

3.1.1 Experimental Design and Participants. A within-subject full fac-
torial design with repeated measures was used. The independent variables
were the task type (T = AP, DP, D/AC, D/DC, C/AC, C/DC), the distance
D between targets or goals (D = 256, 1024 pixels) and the target/goal width
(W = 8, 16, 32, 64, 128 pixels). For each task, participants performed three con-
secutive sets of 10 D-W combinations, the first set being a practice session
and the later two, data collection sessions. The ten D-W combinations were
presented in a random order within each session. With each D-W combination,
participants performed a block of 9 trials. The order of testing of the six differ-
ent tasks was balanced among six groups of participants according to a Latin
square.

Twelve people, three female and nine male, all right-handed, participated in
the experiment. They ranged in age from 21 to 51.

3.1.2 Apparatus. The experiment was conducted on an IBM PC running
Linux, equipped with a WacomR© IntuosTM graphics tablet (model GD-0608-U,
20.3 cm×15.2 cm active area, 2540lpi resolution) and a 19” IBM CRT monitor
(model P76, 32 cm×24 cm visual area, 127 dpi resolution). The tablet active
area was mapped onto the display visual area, in absolute mode; the control
gain was close to 1.6. The experiment was done in full-screen mode, with a
black background color. The computer ran in single-user mode, with only a few
active system processes. It was disconnected from the network.

3.2 Results and Analyses

3.2.1 Learning, Time, and Error. Figure 4 shows the average trial time
over the three experimental sessions. The average trial completion time in
the practice session was longer than the time in the two data-collection ses-
sions, due to participants’ inexperience and occasional experimentation with
the tablet-stylus device and task strategy. The performance difference between
the two data-collection sessions was relatively small, and hence both were used
in the following data analyses.

Analysis of variance showed that mean trial completion times were signif-
icantly different across the six tasks (F5,55 = 12.5, p < .001). Task C/AC was
the slowest (see Figure 4). Tasks DP and C/DC were the fastest, at least 10%
faster than other tasks. The rest of the tasks, including the traditional Fitts’
tapping task, fall in the middle range of performance.

Statistically, Fisher’s PLSD test shows that each pair of tasks was signifi-
cantly different from each other (p < .05), except DP vs. C/DC (p = .52), and
AP vs. D/AC.

As illustrated in Figure 5(a), movement distance significantly changed mean
trial completion time (F1,11 = 898, p < .0001). Across all tasks, the greater
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Fig. 5. Effect of distance and width on task completion time.

the distance between targets, the longer the time duration of the trial. As
illustrated in Figure 5(b), target/goal width also significantly changed mean
trial completion (F4,44 = 485, p < .0001). For all tasks, the greater the width of
the target, the shorter the duration of the trial.

The error rate, measured by the percentage of trials that took more than
one click or crossing to hit the target, varied significantly with task (F5,55 =
7.76, p < .0001), target distance (F1,11 = 16.6, p < .01) and target width
(F4,44 = 38.2, p < .0001). As expected, smaller and more distant targets tended
to cause more errors. As shown in Figure 6, except for Task C/AC (9.2%), all
new tasks studied in this experiment had error rates close to and lower than
that of Fitts’ tapping task (AP, 7.6%). D/DC has the lowest error rate with
2.8%.
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Fig. 6. Error rates for each task.

When participants made an error in a trial (missing the target), they were
asked to continue the trial until they hit the target, with multiple clicks or
multiple crossing attempts. The completion time of these trials does not reflect
the same perceptual motor mechanism as successful trials without error; hence
we did not include them in the time analysis in this section. As an extra
caution for the robustness of the conclusions, we also repeated all time-related
analyses with the error trial completion times included, but found no important
or qualitative differences from the conclusions reported in this section.

3.2.2 Lawful Regularities. Most interestingly, the movement time in each
and every of the six tasks could be largely accounted for by the target-distance
to target-width ratio. More precisely, the difficulty in each task can be qualified
by the following common index:

ID = log2

(
D
W

+ 1
)

(2)

and the movement time can be determined by:

T = a + b ID, (3)

where a and b are empirically determined in each task. Specifically, lin-
ear regression of the experimental data resulted in the following equations
(in milliseconds):

AP : T = 103 + 172 × IDr2 = 0.998 (4)

DP : T = 145 + 146 × IDr2 = 0.986 (5)

D/AC : T = 155 + 165 × IDr2 = 0.994 (6)

D/DC : T = 342 + 133 × IDr2 = 0.975 (7)

C/AC : T = −41 + 242 × IDr2 = 0.995 (8)

C/DC : T = −196 + 235 × IDr2 = 0.984. (9)

In other words, there was a lawful regularity between movement time and
D/W ratio in each of the six tasks. Furthermore, all six laws take the same
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form of logarithmic transformation of D/W ratio as in Fitts’ law, with very
high fitness values (r2 ranging from .975 to .998). If we name laws by their
mathematical appearance, we can say that crossing also follows Fitts’ law—
the law of pointing. If we name performance regularities by the tasks they
describe, we can say there indeed exists a “law of crossing.”

Figure 7 displays the regression lines of completion time as a function of
ID. As we can see, despite the very different constraints and varying action
patterns across the six tasks, the laws of these tasks all fall into a band that
is even narrower than the range of data based on the same Fitts’ tapping task
reported by different authors in the literature [MacKenzie 1992; Zhai 2004].

3.2.3 Task Comparison. Although relatively small, there were important
differences between the six tasks studied in this experiment. Instead of ana-
lyzing all pairs of comparison, we focus on a few comparisons most relevant to
human-computer interaction tasks (illustrated by Figure 8).

First, Task DP, that is, pointing with directional constraint, not only followed
Fitts’ law closely (r2 = .986), but also exhibited similar performance to Task AP,
that is, pointing with amplitude constraint (the traditional Fitts’ tapping task).
On average, DP was 10% faster than AP (Figure 4). As displayed separately
in Figure 8(a), starting from essentially zero, the difference between DP and
AP increased with Index of Difficulty. The greater the ID (either smaller width
or greater distance), the more pronounced this effect (see AP and DP lines in
Figure 5(a)). Apparently it is “easier” to control directional error than amplitude
error in pointing tasks. This is plausible because the former can be dealt with in
the entire course of movement, while the latter can only be controlled at the very
end of the movement. This is also consistent with previous findings in motor
impulse variability research [Schmidt et al. 1979] which has demonstrated
that directional variability is about half of amplitude variability in open-loop
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Fig. 8. Tasks comparisons.

reaching tasks. With closed-loop correction, the difference in this study is much
smaller but the pattern is consistent.

Second, the discrete crossing task with amplitude constraint and the discrete
crossing task with directional constraint followed similar regression lines to
the standard Fitts’ tapping task, as separately shown in Figure 8(b). This
suggests that it is possible to substitute pointing tasks with crossing tasks with
essentially the same time but lower error rate (see Figure 6). This is a strong
theoretical basis for a coexistence of pointing and crossing actions in the same
user interface, since any selection task that can be accomplished by pointing
can also be accomplished by crossing with the same, or shorter amount of time.
Other advantages of crossing emerge as the user becomes more proficient with
crossing actions. Between the two discrete crossing tasks, there was a trade-
off swing by ID. D/DC tended to be faster than D/AC when ID was greater
than 6 bits, and the reverse was true when ID was less than 5 bits. The fact
that D/DC was slower than D/AC in low ID can be partially explained by the
“obstacle” line positioned between the two goals (see Figures 3(c) and 3(d)).
As the distance between the two goals reduces, the constraint of landing the
stylus between the obstacle and the right goal increases. Implicitly there is
a traditional Fitts’ tapping task (AP) involved here with increasing difficulty.
This is not true for the D/AC task because the stylus always lands above the
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Fig. 9. Three scenarios of crossing multiple parallel targets.

horizontal goals. This distractor effect reflects realistic situations in computer
interfaces where the target object can be surrounded by objects that are not
targets at the moment.

Another large difference between the two discrete crossing tasks was that a
much smaller number of errors was made with the D/DC task than with the
D/AC task (Figure 6). This becomes an important aspect when designing low
error rate layouts.

Third, there was a trade-off between C/DC and D/DC tasks (Figure 8(c)).
C/DC was faster than D/DC when ID was lower than 5 bits, and C/DC was
longer than D/DC when ID was greater than 5 bits. This again was partly due
to the obstacle effect in the D/DC task. There was no obstacle in the C/DC task.
Continuous strokes give better performance if the ID is kept low and obstacles
are avoided. When the two goals were very close to each other(Figure 5(a)),
it was possible to cross two goals in one stroke with C/DC. For D/DC, on the
other hand, closer goals make it more difficult to place the stylus between the
obstacle and the goal to be crossed. It is also conceivable that longer distance
would give D/DC an advantage because the lifted stylus might travel faster
than continuously sliding the stylus on the tablet surface in the D/DC condition.
However, such a possibility is not supported by the data (Figure 5(a)).

Fourth, the C/AC task was uniformly slower than the C/DC task
(Figure 8(d)). It also has the highest error rate (Figure 6). This suggests that,
whenever possible, the goals to be crossed continuously should be positioned
orthogonal to the movement direction.

We now consider a practical example, shown in Figure 9. In this case, a se-
ries of vertical goals of size W are horizontally laid-out in parallel with space
S between them (the same analysis applies to a series of vertically laid-out
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goals). If the task is to select all of them at once, users might select them one
by one using a series of small strokes (Figure 9(a)). This approach is similar
to the discrete goal crossing with directional constraint (D/DC) condition of
our experiment. Users might also decide to select them with one continuous
stroke (Figure 9(b)). This is similar to the continuous goal crossing with di-
rectional constraint (C/DC) condition of our experiment. As shown before (see
Figure 8(c)), the discontinuous approach will perform better if log2( S

W + 1) is
greater than about 5 or S is greater than 31W. It is important to note also that
when log2( S

W +1) is smaller than 4 (see Figure 8(c)) or S smaller than 15W, con-
tinuous crossing, is not only faster than discontinuous crossing, but also faster
than consecutively clicking on a series of targets of width W. The fact that con-
tinuous crossing is faster than (discrete) clicking in specific settings has been
leveraged by Lotus Notes, which lets users select a series of continuous emails
by continuously crossing check boxes.

Of course, users might also need to select non-continuous goals, for example,
goal 2 and 7. In that case, the goals in-between are distractors or obstacles
(Figure 9(c)). Then, the only crossing strategy one can employ is discrete cross-
ing (D/DC). Of course, in order to cross goal 7, one first has to land between goal
6 and 7, a task similar to the pointing with amplitude constraint condition (AP)
of our experiment. So the analysis of this task requires considering both a D/DC
aspect with IDD/DC = log2( 5S

W + 1) and an AP aspect with IDAP = log2( 4S
S + 1).

When S is greater than 0.8W, the impact of the obstacle created by the other
crossing target(s) is less important. When S is smaller than 0.8W, the AP aspect
becomes the dominant factor and the entire task is effectively an AP task with
target width of S. In practice, if we consider a quite common situation in which
each target is 5 characters long with one space at the end (or S ≈ 6W), then
IDD/DC > 2IDAP. This means that in general, the constraints imposed by the
D/DC aspect are predominant for design purposes.

4. APPLYING THE RESULTS TO BUILD AN APPLICATION

Drawing from the information and experience described thus far, we devel-
oped a prototype application, CrossY, that gives insights about how a real life
crossing-based application can be designed. The main goal was to create an ap-
plication for which all interface elements (including menus, buttons, scrollbars,
and dialog boxes) rely solely on crossing (Figure 10).

CrossY not only demonstrates the feasibility of crossing as an interaction
paradigm in a real life application, it also provides initial feedback on the
unique challenges of developing such a crossing-based interface. We found that
crossing is well adapted to both pen-based and mouse-based interactions, it
is more expressive than the equivalent point-and-click interfaces, and it en-
courages a fluid composition of commands. We also found that, to leverage this
latter advantage, special consideration of the interface layout is required.

4.1 Requirements for a Crossing-Based Application

Based on the study reported above (see Section 3.2.3), we found that the target
for any crossing interaction should be orthogonal to the crossing direction.
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Fig. 10. A screenshot of the CrossY interface.

Since we assume a general horizontal flow of interaction, the alignment of the
crossing target had to be vertical. Furthermore, as expected from Fitts’ law
and confirmed with the “law of crossing” in section 3.2.2, the distance and size
of crossing targets was a crucial aspect as well. Based on these insights, we
decided to use a low ID for the initial design to minimize the error rate and to
provide the users with a satisfying experience.

Expressiveness. One of the most important questions to be addressed is:
Can the new language express as rich a set of features as the language it
means to replace? Therefore, we decided to examine how the key elements of
a basic WIMP interaction can be implemented in a crossing interface. As a
starting point, we decided to implement standard buttons, scrollbars, menu
systems, dialog boxes (including selection of items from a list) and a simple
set of window management tools. In each case, our initial goal was to mimic
existing capabilities before developing new features.

Fluid composition of commands. As illustrated by Lotus Notes [IBM 2004]
and the toggle maps system [Baudisch 1998] interfaces based on goal crossing
promote the fluid, composition of commands. This allows users to issue several
actions (e.g., selecting among a group of toggle switches) in one single stroke. As
shown by systems such as Marking Menu [Kurtenbach 1993], and the SHARK
system [Zhai and Kristensson 2003] there are advantages to encouraging tran-
sition from a a visual interface to a gesture-based interface. Thus our goal was
to determine if crossing based interactions could extend this benefit to a wider
set of interactions such as a search and replace task.

We also examined if the advantages of transitioning from a visual interface to
a gesture-based interface (as demonstrated in the Marking Menu [Kurtenbach
1993]) could be extended to the selection of several commands inside a dialog
box using continuous crossing.
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Fig. 11. Selecting the values for find and replace and applying the command in a continuous
stroke.

Efficiency. Expressiveness and fluidity are of little use if they come at the
price of an inefficient interface. Therefore, efficiency was an important consid-
eration during the design process.

Visual footprint. Screen real estate is a valuable resource and the new
interaction language needs to use it efficiently. Crossing-based interfaces are
unique, since the visual layout affects efficiency when a user selects several
commands in one stroke. For the discrete case the design is as important for
crossing as it is for pointing.

4.2 CrossY in Detail

CrossY1 is a simple sketching program offering several tools (e.g., a pen, a
highlighter, an eraser). It was designed to run on the Tablet-PC platform with-
out a keyboard. CrossY allows users to modify tool attributes. It also offers a
simple search-and-replace feature which lets users find strokes based on their
attributes (color and thickness) and replace them. Although this drawing sys-
tem is primitive by today’s standards, CrossY demonstrates how most of the
standard widgets of point-and-click interfaces can be implemented in a goal
crossing framework.

4.3 Crossing Direction

In contrast to point-and-click designs, the direction of the crossing matters and
can hold information. In the case of CrossY, we decided to use right to left
as the main crossing direction to minimize hand occlusion for right handed
people. There is however one exception: we reverse the stroke direction when
continuous strokes are used for command combinations. An example of this is
our find-and-replace dialog where the crossing direction is reversed for some
actions to allow for the composition of commands. In other words, in the upper
part of this dialogue box the selections are made by crossing from right to left
and in the lower part the selections are made by crossing from left to right.
This enables users to select the stroke width and color to find, issue the find
and replace commands and select the replacement values in one stroke that is
shaped roughly like a “c,” see Figure 11.

1Although the descriptions in the following sections on CrossY are self-contained, a video demon-
stration of CrossY is available at http://www.cs.umd.edu/hcil/crossy/.
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Fig. 12. A traditional scrollbar and the crossbar compared.

4.3.1 Command Selection. Like many drawing applications, the CrossY
interface implements two kinds of menu systems. Common tools are accessed
through a tool palette placed on the right side of the display (Figure 10) and all
the crossing targets except for the checkboxes are vertical to allow a horizontal
crossing direction. This layout was adopted to limit potential hand occlusion.
CrossY offers five basic tools to choose from: a pen, an eraser, a lasso, a high-
lighter, and a search tool. Each of these tools can be selected by simply crossing
its icon from right to left. Users can also move the palette to a more convenient
place. To do so, users cross the center of the title bar between the two black
marks from left to right. This action starts the dragging interaction which will
stop as soon as the pen is lifted from the screen. Crossing the same area from
right to left brings the palette back in its original position. This behavior is
present for all palettes. In addition, CrossY uses FlowMenu as the primary
command selection mechanism to control the application. This includes com-
mands for lasso, open a file, save the current file, and quit the application.

4.3.2 Navigating within the Document. Users navigate the document with
a crossbar, the equivalent of the standard scrollbar shown in Figure 12. The
crossbar looks like a simple bar spanning the length of the document view-
port and shows the current location inside the document. To interact with it,
users perform gestures crossing the bar. Most of these gestures consist of single
strokes to support the notion of continuous stroking. We provide several stan-
dard features such as page up and page down. These commands are triggered
by open triangles drawn on top of the crossbar in the direction of the desired
movement (see Figure 12). To start a continuous page down or page up, the
user simply crosses the bar a third time after issuing the initial command. The
document now scrolls continuously until the pen is lifted. To jump to a specific
position inside the document, the user crosses the bar in the vicinity of the
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Fig. 13. Left: The CrossY palette with the pen-panel opened. A single stroke opens the pen-panel,
selects width and color of the strokes, and validates the selection. By convention, the left and
bottom edges of each dialog box are validation edges (colored green), and the top and right edges
are cancellation edges (colored red). Middle: The dialog box with check boxes to set the stroke-
rendering attributes. A single stroke selects all items. Right: The dialog box with the check boxes
to set the stroke-rendering attributes. A single stroke selects only two items.

target location and then finely adjusts the position by simple dragging motions
on the right side of the bar. Because absolute access and adjustment are now
two different parts of the same interaction, it is possible to provide a different
gain for both phases, enabling either precision or speed amplification similar
in effects to those techniques explored by Albinsson and Zhai [2003]. While
the initial gain is defined by the ratio of the document length to the scroll-
bar length, the gain can be reduced during the adjustment phase to allow for
finer adjustments, by moving the cursor further away from the crossbar. While
some experimental scrollbars such as the FineSlider [Masui et al. 1995] pro-
vide similar options, the fluid integration of the two phases is typically difficult
to achieve in a point-and-click interface. Another advantage of the crossbar is
that users are not required to reach a given area of the bar before interacting.
For example, they can initiate scrolling commands anywhere on the scrolling
area. They also do not need to acquire the crossbar’s slider before moving to
an absolute position in the document; they just need to cross the crossbar at
the target position. This makes the scrolling process faster and reduces the
reliance on visual feedback.

4.3.3 Selecting Pen Attributes. In CrossY, users can select pen attributes
by using either the pen attribute dialog box or the brush palette.

The Pen attribute dialog box is opened by crossing the pen tool button and
extending the stroke towards the left over the edge of the button. Unlike current
implementations, which present “dual-use” in a tool palette (such as in Adobe
Illustrator [Adobe 2005]), our implementation does not force the user to dwell
over the button to access the extended features. This increases the fluidity
of the interaction and promotes chunking. The pen attribute dialog box is
presented in Figure 13, left. It contains a set of crossing-based radio buttons
used to select the size and color of the stroke. The layout of the buttons and
radio buttons was a result of the findings from the experiment that showed an
advantage of crossing targets aligned orthogonally to the pen movement for the
discrete and continuous tasks (C/DC, D/DC see Figure 8). Thus, radio buttons
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Fig. 14. Left: Separate strokes are shown in the find-and-replace dialog box. Users select the
values for the target stroke in the upper panel and the replacement values in the lower panel.
Middle: The separate strokes are combined into one single stroke. Right: Repeated find-and-replace
operations are carried out with one continuous stroke.

are designed such that crossing along the horizontal axis of the label (in either
direction) will toggle the button. This feature is not only a performance choice
but also reinforces the notion that radio buttons represent exclusive choices
(Figure 13, left). For check boxes, on the other hand, the vertically aligned
layout would work against the fact that they are not mutually exclusive and
make it more difficult to select several of them at once in a continuous stroke.
Aligning them horizontally would make single choices difficult. Therefore, we
decided to use tilted crossing targets for check boxes, this way the user can
cross either horizontally to make just a single selection or vertically to make
several selections (Figure 13, middle). Making a stroke that starts vertically
and ends horizontally or similar combinations allow the selection of a subset of
check boxes (Figure 13, right). An unusual aspect of the dialog boxes presented
in Figure 13 is that they do not seem to include an OK/Cancel mechanism.
The corresponding buttons are in fact very close to the edge of the window.
Both the bottom and left border are validating borders (shown in green in
our implementation), while the top and right border are cancellation borders
(shown in red in our implementation). This layout lets users select all relevant
options and validate the selection in one stroke. Even though “the single stroke”
feature is provided, the user can still use discrete strokes to make selections
and confirm or cancel.

4.3.4 Finding and Replacing Stroke Attributes. Our application also pro-
vides a simple “find-and-replace” function which lets users change the at-
tributes of some strokes on the screen. The function is accessible through a
dialog box which is structured around two panels (Figure 14). On the top
panel, the user can select the width and color of the target strokes using a
set of radio buttons. On the bottom panel, the user can select the new width
and color for the selected strokes. After setting the target attributes, the user
can find the next stroke forward by crossing the “find” button from right to left.
Similarly, replacement is triggered by crossing the “replace” button from left
to right (Figure 14, left). While this layout seems somewhat unusual, it has
been selected to encourage command composition. For example a user can in
one single gesture select “medium” and “red”, cross the “find” button to find the
first occurrence of this type of line, cross the “replace” button to indicate the
need for replacement, and select “blue” and “thin” as the replacement values
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(Figure 14, middle). The command is executed as the pen is lifted from the
panel. Once the parameters have been correctly selected, there is no need to
reselect them, and a simple circular motion between the “find” and “replace”
button will trigger the replacement (Figure 14, right). It is also easy to skip
some replacements by only circling around the “find” button without crossing
the “replace” button. Backwards search is provided by crossing the “find” but-
ton from left to right. An undo for replacements is achieved by crossing the
“replace” button from right to left. Since there are no distracters between the
crossing targets the performance of the continuous stroke is likely to be better
than of single strokes since the overhead of lifting and putting the pen back
on the screen is avoided. This is supported by the experimental results from
Section 3.2.2.

4.3.5 Loading an Existing Drawing. The file dialog box (Figure 15(b–d)) is
called up through a FlowMenu. It lets users navigate the file system and load
an existing drawing. At first glance, using crossing to navigate the file system
hierarchy seems like a challenge since current interfaces rely heavily on the
use of sequential point-and-click operations for this function. In traditional
navigation systems, users first have to search through the list of files that is
present at the current level. This is typically achieved by using the scrollbar
tab for coarse adjustment and the arrow at the end of the scrollbar for line
by line movement. Next, users have to select the next directory (or the target
file) by double-clicking on its name. For directories containing a large number
of items, this method can be quite cumbersome and is far less efficient than a
text based interface with auto-completion enabled. We believe that the crossing
paradigm provides ways to combine the convenience of the graphical interface
with the speed of auto-completion.

In our directory navigation tool, the local directory is scanned and its con-
tents are parsed into a hierarchy of display levels. Exploration of the file hi-
erarchy works on the same basis as auto-completion in text-based systems. At
the first level, we include all the names which are unambiguous (i.e., which do
not share a common prefix with any other name) as well as the maximum com-
mon prefixes for all other names in the directory. For example in Figure 15(a)
top,“ClassFall03,” “ClassFall04,” “ClassSpring04,” and “ClassSpring04” will be
represented by their common prefix “Class...,” “Papers03,” “Papers04,” “Pro-
posal03,” and “Proposal04” are represented by their common prefix “P...,” and
“Resume” is presented as is since it is not ambiguous.

Exploration is performed by expansion of successive prefixes as users move
through successive levels. For each prefix, we add the list of unambiguous
names and maximum common prefixes derived from that prefix by adding in
turn all possible letters following this prefix (see Figure 15(a), left/middle). It is
important to note that there are only a limited set of possible characters (256 in
theory but far less in practice) that may follow a given prefix. As a consequence,
moving from one level to the next only adds a small number of new options for
each prefix (often less than ten). Yet, assuming an average of 10 new words per
prefix, after crossing only 3 levels 1000 elements can be accessed. Once created,
this hierarchy can be navigated as follows (Figure 15(a), right): At all times,
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Fig. 15. The file dialog box in CrossY.
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the currently selected item is presented highlighted at the center of the widget.
Users can change the currently selected item by moving the pen up and down
anywhere on the widget. To move one level downward in the display hierarchy,
users simply make a left-to-right horizontal movement in the current gesture.
This causes the current highlighted prefix (represented with an ellipsis, e.g.,
“P...”) to extend one level. A movement to the right while an unambiguous name
is selected, loads the corresponding directory or file. To move one level upward
in the display hierarchy, users need to make a small right-to-left horizontal
movement in their gesture. Going upward at the root display level loads the
parent directory. During navigation, feedback is provided in several ways: when
the user starts a horizontal segment, a crossing goal is displayed in form of a
little bar indicating the point at which the transition to the next level will be
triggered. This feedback is mostly useful for the novice. For more expert users,
we also provide a “click” sound each time a transition between levels occurs
and a “select” sound each time a directory (or a file) is selected. To distinguish
between files and directories, we display a slash at the end of directory names.

This system is very efficient to navigate through large directory structures
given that the number of levels in the prefix structure of each directory is
typically small. This allows the user to navigate through several directory
levels in the space of a small window.

4.4 Dispatching Events

From our early initial experience with CrossY, we learned that the standard
event dispatch mechanism can result in the loss of crossing events. The problem
is a combination of sampling rate of the pen or pointing device in general and
how the sampled events are distributed to the different recipients. Moving the
device quickly over the screen results in just a few sparsely distributed points.
Distributing only these points can result in the “loss” of crossing events. This
can happen if the pen is moved in such a manner that the points captured are
outside the widget that contains the line to cross. The solution we applied to
this problem is a completely customized dispatch mechanism. Starting off with
a distribution of line segments2 instead of points simplifies the handling of the
crossing events since all the actions that need to be taken are encapsulated
in each widget and are based on the information passed into the widget (see
Figure 16). The central dispatch checks if the current line segment crossed
any widgets and then passes the line segment information on to the widget
(see Figure 17). The mechanisms encapsulated into the widget then trigger the
necessary action. This functionality is provided by a recursive descent of the
windowing hierarchy and thus reaches all involved widgets. One advantage of
this approach is the fact that even in case where the “actual” points are not
on the widget, like in the case of several option boxes in a panel, each widget
gets the information about the line segment if it somehow intersects with it.
The correct receiving of all crossing activity is especially crucial when it comes
to command combination, where the user issues several with one stroke. An

2These are segments rather than lines since we do not dispatch the whole current stroke but only
the last segment of it, thus the naming.
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Fig. 16. An example that visualizes how the dispatch mechanism works. Boxes A–C represent
widgets on the screen. Widget A receives two points P1 and P2, widgets B and C do not receive the
events directly, but the dispatch in widget A computes that the line between P1 and P2 touches B
and thus dispatches the line (P1,P2) to B. The dispatch in B computes that (P1, P2) crosses C and
dispatches it into C, in C the actual crossing is detected without ever receiving a direct event of
points within its boundaries.

Fig. 17. A pseudocode listing of the main loop in the dispatcher which notifies widgets of line
events if they are intersecting in any way with the widget. The LineSegment class ensures that
the translation between window and screen coordinate system is handled correctly when switching
from widgets to their children.

example is the toolbox where the stroke width and color are selected in one
stroke. If some of the points were not on the widget, either the width or the
color would not be selected properly and the user would be forced to reissue.

4.5 Implementation

CrossY was implemented in C# on a Tablet-PC. To achieve the intended be-
havior we created our own stroke/stroke collector class which allows us to have
a standard functionality of adding and removing strokes but also enables us
to add crossing specific features. These are for example the possibility to treat
strokes as a sequence of lines and not as a sequence of points. The whole system
was developed using the .NET framework [Jarett and Su 2002] as the basis for
our design.

4.6 Lessons Learned in Building CrossY

From our experiences gained while implementing CrossY, it is clear that the
crossing paradigm is at least as expressive as the standard point-and-click
interface and provides the same level of functionality as the latter. It is possible
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Fig. 18. The design of a simple dialog box.

to offer a wide range of features with a minimal visual footprint on the screen
because the system accounts for the crossing location (in the crossbar and the
palette for selecting pen attributes), the performed gesture (in the crossbar),
and the direction of the stroke. Similar advantages were achieved in Gedrics
[Geissler 1995] which uses gestures on top of icons.

As mentioned earlier, an interesting aspect of the crossing paradigm is the
possible composition of commands in one single stroke.

The feature of command composition is a unique and fundamental aspect
of this approach since it allows users to smoothly move from novice to expert.
Novice users will perform one command at a time, while relying heavily on
visual feedback. As they become more and more proficient, they start to re-
member the shape of the strokes corresponding to a particular dialog box and
rely less and less on visual feedback. As described earlier, each command com-
bination can also be executed in separate steps. This reduces the cost of making
a mistake while performing a long sequence of actions because the user only
needs to restart the gesture at the point where the error occurred. This is pos-
sible because the actual confirm or reject of a series of commands is done by
crossing the border of the widget as described in Section 4.3.3. While menu sys-
tems such as the Marking Menu were designed to encourage such transitions
in the case of single command selections, we believe that our work is the first
to explore how the same effect can be obtained for a succession of commands.

5. STUDY OF PARAMETERS THAT INFLUENCE CROSSING

In the process of building CrossY, we realized that the data gathered during
our first experiment was not sufficient to understand how the interface layout
might influence users’ performance. In particular, we were interested in the
parameters influencing performance when selecting options in a dialog box
such as CrossY’s pen attribute dialog box. To this end, we designed an empirical
study of parameters influencing the selection performance for a simple, two-
parameter crossing-based dialog box (Figure 18).

When designing CrossY, empirical evidence seemed to imply that the angle α

between the target centerline (see Figure 19) and the horizontal might influence
the values of a and/or b in Fitts’ law (see Equations (2) and (3) in Section 3.2.2).
Based on this observation, we structured our experiment around the angle
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Fig. 19. Key variables for designing crossing-based widgets.

Fig. 20. Screen shot of the two settings in our test application.

(α) between the centerline of the targets and the horizontal while taking into
account the index of difficulty based on height and distance of the crossing
targets. This choice allowed us to compare our results with previous studies
[Jagacinski and Monk 1985; MacKenzie and Buxton 1992] and to explore the
influence of α in the direct setting.

Another important parameter is target orientation. As discussed in Section
4.3, due to layout constraints in crossing interfaces, it is advantageous to use
vertical targets. Yet as α increase it might become more advantageous to have
targets orthogonal to the direction of travel, since our initial experiment showed
that the C/DC setting was faster than the C/AC setting (Section 3.2.2).

Finally, we felt it was also important to explore the possible influence of the
interaction setting (either direct or indirect). This is because while the initial
empirical study was performed in the indirect setting, CrossY was designed
with a direct setting in mind (Table PC).

In summary, we identified 4 variables that may influence user performance
in crossing interfaces:

(1) α, the angle between the target centerline and the horizontal line, see
Figure 19.

(2) ID, the index of difficulty based on height of targets and the distance, center
to center, between two crossing targets;

(3) orientation, which could be either vertical, or orthogonal to the target
centerline,

(4) setting which can be either indirect setting (interaction on a tablet in front
of the display (Figure 20(a)) or direct setting (interaction directly on the
display, (Figure 20(b)).
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Table I. Height Distance
Combination for the

Experiment

ID Distance Height
2 120 40

180 60
3 280 40

420 60
4 300 20

600 40
5 310 10

620 20
6 630 10

788 13

5.1 Experiment

Fully crossing all these variables would, of course, be unpractical. Instead
we focused on the interaction of ID (Distance, Height) x Angle within three
typical configurations of orientation and setting. First, we were interested in
a situation closely simulating a typical crossing-based interface on a tablet
computer. In the direct vertical condition (DirVert) participants interacted di-
rectly on the screen and the targets were always vertical (Figure 21(a)). To
study the possible effects of target orientation on performance, we also con-
sidered the direct orthogonal condition (DirOrtho), where the targets were
always orthogonal to the centerline between the two targets (Figure 21(b)). In
both conditions, interactions took place directly on the display of the tablet
computer.

Because our first study has focused on indirect settings with crossing targets
orthogonal to the main direction of movement, we included this setting as a
reference point. This condition, IndOrtho, is identical to the DirOrtho setting
except that users were interacting on a WACOM tablet placed in front of the
computer. Figure 20 shows pictures of the direct and indirect setting. We fo-
cused on continuous crossing since we were interested in complex interactions
such as the search and replace dialog box in which the stroke “accumulates”
context.

For ID, we selected ten possible Distance-Height combinations corresponding
to 5 indices of difficulty (2–6), see Table I. Our choice was constrained both by
practical concerns (e.g. in dialogue boxes, targets need to be far enough apart
to allow for a label), and the size of the screen of our tablets. For the Angle, we
selected 0, 15, 30, 45, 60, 90 degrees. While CrossY was built around the idea of a
right-to-left traversal (angles from 180 to 270 degrees), we felt that this might
be too unusual for untrained users. Instead we focused on the upper right
quadrant (0 to 90 degrees) as a compromise between limiting the potential for
occlusion and familiarity.

5.1.1 Task. Users were asked to cross two targets with a single stroke and
without lifting the pen. After crossing the first target, a feedback sound was
played and the color of the target changed. Upon crossing the second target,
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Fig. 21. The setup for our experiment. a) indirect setting; b) direct setting.

the task was completed and the next trial appeared. An error was counted
when the user lifted the pen before crossing the second target, crossed the
target in the wrong direction, or did strokes that involved no crossing at all. To
avoid counting simple landing (i.e., touching the pen to the screen) as an error,
we introduced a minimum stroke length of 10 pixels. Thus, a simple touch
of the screen, as it may occur between blocks, did not count as an error. To
provide the user with feedback about their performance we provided two scales
in the upper left corner of the application window (Figure 21). One represented
the cumulative error rate in the current condition and the other the completion
time for each connection. The first scale was a half-circle consisting of three
evenly sized parts colored in blue, green and red with a representation of an
error rate from 0% on the left side to 8% on the right side of the half circle. The
second feedback widget showed a diagram where the y-axis reflected completion
time and the x-axis represented the trial number. Parallel to the x-axis, a line
indicated the average completion time for the task (based on pilot studies).
After each trial, a dot appeared on the diagram and gave feedback about the
current speed of the user. This was done to ensure that participants maintained
aproximately a 4% error rate to avoid possible problems with speed accuracy
trade-off.

5.1.2 Method. For this experiment we adopted a within-subject design.
This was based on the assumption that skill variation between subjects might
be important and little or no asymmetrical skill transfer was expected. The
presentation of different IDs was randomized. To reduce measurement noise,
each combination was repeated 10 times in a row. As a result, participants
performed 600 connections in each device setting. To limit the influence of skill
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transfer, we used a fully counterbalanced design for the order of conditions
(IndOrtho, DirOrtho and DirVert). In summary, the experiment collected: 5
(distance) × 6 (height) × 8 (angles) × 12 (participants) × 10 (repetitions) =
28’800 trials. Overall, each participant was asked to complete 2400 connections,
including practice crossings.

5.1.3 Apparatus. The main apparatus of the experiment was our test ap-
plication running on two Toshiba Protégé Tablet PCs, both with 1.25 GB RAM
and one with 1.7 GHz CPU frequency and the other with 1.5 GHz. To ensure
that the different CPU frequencies had no influence on our results we fully
balanced the tasks that were done on the different computers. The diagonal
of the screen was 307mm and the resolution was set to 1400 × 1050 pixels.
The tablet PCs were used in the folded configuration when they appear as a
slate to users (see Figure 21). For the indirect condition, we used a Wacom
IntuosII tablet where the gain between pen movement and cursor movement
was set to 1.8. This value corresponds to an average of the values reported in
the literature [Accot and Zhai 2002; MacKenzie and Buxton 1992]. To prevent
confusion and errors, the buttons on the pen for the Tablet PCs and the pen for
the Wacom tablet were disabled. The test application was written in C#. Apart
from presenting the different tasks, it also logged all actions performed by the
users.

5.1.4 Protocol. The participants were 12 students at the University of
Maryland (5 female; age range 18–30 years). One of the participants was left-
handed. The three configurations (IndOrtho, DirOrtho, DirVert) were presented
in blocks. Before completing the actual task, users completed a training session
of 3 connections per ID/Angle combination. participants were asked to complete
the crossing as fast and precise as possible. They were asked to keep the error
rate within the middle area of the error scale described above. This represents
an error rate of 4%. Since we were measuring only the times from first crossing
to second crossing, users had a chance to rest as soon as they completed a
crossing. Auditory feedback was provided through headphones connected to
their tablet as some users were run in pairs in the same room. Users received
$20 for their participation.

5.2 Results and Analysis

For our analysis, we focused on the average completion times for the connec-
tions performed under each combination of Angle, ID, and condition. Bonferroni
adjustments for multiple comparisons were used.

To evaluate the possibility of asymmetrical skill transfer [Poulton and
Freeman 1966], we performed a condition (IndOrtho, DirOrtho, DirVert) x order
analysis of variance (ANOVA). There was no main effect of presentation order
(F2,15 = 1.61, p = .233) and no interaction between condition and presentation
order (F4,15 = 1.12, p = .385).

To compare the error rate across the different conditions we performed a
within-subject ANOVA on error rate for each condition. We found that there
was a significant effect (F2,22 = 5.46, p = .012), driven by a high value (8.54%) for
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the indirect setting (IndOrtho) compared to the direct settings (5.0% and 5.6%
for DirOrtho and DirVert respectively). Yet no significant pairwise differences
were found. This indicates that we were only moderately successful in holding
error rates constant across conditions.

To examine the influence of different CPU frequencies we performed an
ANOVA with condition as a within-subject factor and CPU frequency (1.7 vs.
1.5 GHz) as a between-subject factor with average crossing time as the depen-
dent variable. We found no significant main effect of CPU frequency on total
crossing time (F1,20 = 1.44, p = .244) No interaction between CPU frequency
and condition was found (F1,20 = 1.437, p = .245).

Next we performed a (Condition × ID × Angle) within-subject ANOVA
on average crossing time. There was a significant main effect for condition
(F2,22 = 15.7, p < .001). Post-hoc tests indicated that the indirect condi-
tion was significantly slower than either of the direct conditions (p < .005).
There were no significant differences between the direct conditions (p = .34).
These findings are not surprising, because hand-eye coordination provides a
significant advantage in the case of the direct conditions. This is consistent
with the comments of users who reported that they felt more control over
the interaction in these settings. We also found a significant main effect of
ID, (F4,44 = 656, p < .001), reflecting Fitts’ law. In addition, there was a
main effect of Angle (F5,55 = 34.4, p < .001). These main effects were qual-
ified by a complex interaction pattern. We observed a significant (Condition ×
Angle) interaction (F10,110 = 11.3, p < .001), a (Condition × ID) interaction
(F8,88 = 8.58, p < .001) as well as a significant 3-way (Condition × ID × Angle)
interaction (F40,440 = 1.73, p < .005). To explocate this interactions, we are now
proceeding with an analysis on a method per method basis.

5.2.1 The Indirect Orthogonal Condition. We performed an (ID × Angle)
within-subject ANOVA on average crossing time in the indirect orthogonal
condition (Figure 22(a)). It revealed a strong main effect of ID (F4,44 = 639, p <

.001) suggesting a direct linear dependency between total crossing time and ID
which reflects Fitts’ law:

T = 292ID − 463, (r2 = 0.996).

The main effect of Angle (F5,55 = 1.62, p = .21) and the (ID × Angle) interaction
(F20,220 = 1.34, p = .32) were not significant. In general, these findings on
crossing with different approaching angles are consistent with previous studies
in Fitts’ law pointing tasks [Jagacinski and Monk 1985; MacKenzie and Buxton
1992], although in our case, the 45 degree angle does not seem to stand out.

5.2.2 The Direct Orthogonal Condition. We performed an (ID × Angle)
within-subject ANOVA on average crossing time in the direct orthogonal con-
dition (Figure 22b). There was a main effect of Angle (F5,55 = 7.89, p < .001)
and a (ID × Angle) interaction (F20,220 = 1.93, p < .012). Post-hoc comparisons
suggested that the only significant differences were between angles lower than
15 degrees and the 90 degree condition (p < .03; mean difference around
115 ms.). Further, there was a main effect of ID (F4,44 = 332, p < .001)
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Fig. 22. The effects of ID and angle on crossing time.
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Fig. 23. The influence of angle on crossing time averaged over all IDs using the crossing time
at Angle = 0 degree as a reference point. (�tre f =15deg(Angle) = 3.64(Angle − 15) + 15.9, Angle ≥
15degree, r2 = 0.99 ).

reflecting that, as predicted by Fitts’ law, there was a strong linear dependency
between the total crossing time and ID for each angle:

T = 257ID − 498, (r2 = 0.956), Angle = 0degree

T = 245ID − 444, (r2 = 0.973), Angle = 15degree

T = 274ID − 539, (r2 = 0.962), Angle = 30degree

T = 262ID − 471, (r2 = 0.964), Angle = 60degree

T = 298ID − 544, (r2 = 0.975), Angle = 90degree.

In a direct setting (and without acceleration), the two extreme directions (0
and 90 degree) different directions involve different muscle groups, particularly
when ID (and hence the distance to travel) is high. Specifically, we observed
that as the angle nears 90 degrees, the upper arm and the shoulder participate
in the movement. These proximal joins have slower bit rates than more distal
joins like the wrist [Langolf and Chaffin 1976] and this may account for the
slower crossing times.

5.2.3 The Direct Vertical Condition. We performed an (ID × Angle) within-
subject ANOVA on average crossing time in the direct vertical condition
(Figure 22c). Again, there was a main effect for Angle (F5,55 = 54.2, p < .001)
and an a (ID × Angle) interaction (F20,220 = 1.80, p < .023). The effect of Angle
was considerably stronger than in the direct orthogonal condition. For example
the difference between angle = 0 and angle = 90 degree was 262 ms (p < .001).
Setting aside the special case of angle = 0 (for which we observed an unex-
plained “bump” at ID 6), we observed that the difference between measured
task completion time and the observed task completion time at angle = 15
degree increase linearly as a function of Angle. (Figure 23). Again there was a
strong main effect on ID (F4,44 = 380, p < .001) reflecting Fitts’ law. For each
angle we observed a strong linear dependency between the total crossing time
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Fig. 24. Users take different paths depending on the setting and path angle. In the first and
second column (Orthogonal setting), paths are relatively straight for all angles. In the third column
(Vertical setting) we see an increasing in curvature with increasing angles. The paths shown are
the 9th and 10th strokes of each user for each setting for ID = 5 (Height = 20 pixels).

and ID:

T = 266ID − 546, (r2 = 0.942), Angle = 0degree

T = 235ID − 440, (r2 = 0.968), Angle = 15degree

T = 243ID − 404, (r2 = 0.989), Angle = 30degree

T = 254ID − 392, (r2 = 0.989), Angle = 45degree

T = 247ID − 289, (r2 = 0.989), Angle = 60degree

T = 218ID − 91, (r2 = 0.991), Angle = 90degree.

As for the DirOrtho condition, these results can be explained by the pro-
gressive involvement of more proximal joints in the movement. Yet, the effect
is much stronger than in the DirOrtho condition and additional factors may
play a role. One possible explanation might lie in the dynamic of the movement
itself [Viviani and Terzuolo 1982] (see Figure 24). As expected, the IndOrtho
condition appears noisier than the DirOrtho—probably because of the high
gain for this condition. However, the most interesting difference is between the
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DirOrtho and DirVert condition. Participants no longer take a straight path
between the two crossing targets but start to use more S-like strokes to achieve
shallower entry and exit angles into the crossing targets.

5.2.4 User Feedback. The results of the user testing show that the crossing
paradigm is easy to understand and to transfer into action even by novice users.
Overall, the direct setting was in all cases preferred to the indirect setting. This
suggests that direct pen-based interactions are easier to perform than indirect
pen-based interactions. All participants agreed that the indirect setting was
more difficult to handle and more error prone. This is reflected in the increased
crossing time (see Figure 22(a)) and a higher error rate.

6. DISCUSSION AND IMPLICATIONS FOR CROSSING-BASED INTERFACES

In this section we are reporting the insights we gathered while designing
CrossY and how these insights, combined with the findings from our second
study, can be applied to crossing-based interfaces in general. For illustration
purposes, we use the simple case of a two-column dialog box as shown in
Figure 18 as a running example, and restrict ourselves to the case of interac-
tions in the first quadrant (e.g., selecting the font “Georgia” and font size “12”
in sequence).

6.1 Space and Time Efficiency

When designing the dialog box in this example, one first needs to consider
how much space is required to comfortably perform selections. This includes
the space needed to land the pen before the connection, the minimum space
required between the two columns, and the space needed to take off the pen
before crossing the dialog box boundary. In our experience, if one considers
novice users, the space requirements of a crossing-based interface will be sim-
ilar to the equivalent point-and-click interface. This is derived from the fact
that the crossing efficiency is similar to that of pointing which was described
earlier (DP task, see Figure 3(b)). Thus one can simply substitute every stan-
dard button with a crossing button of the same size. Yet, when one wishes to
leverage command composition, a space vs. speed trade-off will appear because
some space will be needed due to the sloppiness of rapid gestures. This means
that we need to provide more space for each widget in order to ensure relia-
bility. Based on our experience, we believe that a slightly larger footprint may
be acceptable as the expected speed benefits from command composition are
substantial. Furthermore, natural constraints of efficient visual layout (such
as the use of negative space Mullet and Sano [1994]), may be all that is needed.

6.2 Landing and Takeoff Space

As seen in Figure 18, a certain area needs be reserved for landing and taking off
before and after the actual crossing interaction. To better understand the user
requirements for landing and takeoff, we plotted the distribution of landing and
takeoff points from our follow-up study (Figure 25). As the target grows bigger,
the users are able to comfortably land their pen further away. This can be
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Fig. 25. Distribution of the landing points (left column) and take-off points (right column) relative
to the crossing target height and the connection angle. Black vertical lines represent the crossing
target position. Points further than 125 pixels from target center are not shown (less than 10% of
all points).
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Fig. 26. Sample dialog box with measurements.

explained by the fact that they are trying to maintain a comfortable angle
through which they are “seeing” the target upon landing [Accot 2001]. A
similar behavior is observed for takeoff. From a design perspective, this means
that one has to reserve a 70 pixel (12.3mm) margin to the left of the first
column and a 100 pixel (17.5 mm) margin to the right of the second column
if one assumes a typical crossing target height of 30 pixels, as in CrossY. We
also measured the maximum bounding box for the S shape connection curve.
For the 90 degree angle, this box is 100 pixels (17.5mm) by 70 pixels (12.3mm),
which implies that the distance between columns should be at least 200 pixels
(35mm), see Figure 26. These values are based on our findings but need to be
validated experimentally.

6.3 How Do Users Cross and React to Errors?

Based on the results from our first study, we designed CrossY so that the major-
ity of crossing targets was directly orthogonal to the crossing direction. In cases
where several commands had to be selected consecutively we used targets with
a low index of difficulty. From informal interviews with our users, we learned
that the initial layout was successful and was well perceived. We observed that
the strategies for crossing, reacting to errors and interaction with the tilted
lines in the checkboxes (see Figure 13) varied between users. Some examples of
different paths users drew are shown in Figure 24. It is important to note here
that the findings from the C/AC and C/DC settings in our first experiment were
confirmed: performance, in term of time and error rate decreased the further
the crossing targets were away from being orthogonal to the crossing direction.
The most extreme cases are the angles close to 90◦ where users perform a S-like
stroke to cross both targets. This slows them down and increases the chance of
errors (see Section 3.2.3). Also, in terms of error correction, some users simply
continued with a loop back after missing the second target, instead of starting
over again (See Figure 24 (DirVert, 45◦), where one stroke extends longer than
the others. This stroke was not counted as an error since, after missing the
second target, the user traveled back and crossed it successfully. This suggests
that a backtracking path (e.g., for checkboxes) has to be considered.
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Fig. 27. Each contour plot shows the predicted crossing time (in ms) it will take a participant
to connect two targets (with the first target at the origin and the X,Y coordinates describing the
center of the second target).

6.4 Influence of Layout on Performance

As discussed for the DirVert condition (Section 5.2.3), the crossing time between
two targets whose centerline is α degree from the horizontal is given by the
following formula (for α ≥ 15 degree3):

T = 235ID − 440 + 3.64(α − 15).

We used this formula to draw the contour plot presented in Figure 27(b). Given
two targets (of height 20), one with its center at the origin of the graph and one
with its center at the (x, y) coordinate, the value read at the (x, y) will provide
an estimation of the crossing time. For example if one places a target at (400,
386) one might expect a 800ms crossing time. As a reference, we also show
in Figure 27(a) the same contour plot for the indirect condition. This graph
confirms our informal observations during the development of CrossY that as
the dialog box becomes taller it also become more cumbersome to use.

6.5 Relationship to Pointing and Steering

While we have focused on performance regularities as a function of crossing
target characteristics, it is obvious that in real system design, other constraints
may play a role, and sometimes dominate the crossing constraints. For example,
if one has to cross a goal with distracter close by, Fitts’ law for pointing (placing

3For α < 15 degrees our data were inconclusive suggesting that users performed similar as in the
horizontal condition.
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Fig. 28. The influence between angle and target height.

the pen between target and the distractor goals) may dominate, as we have
previously shown in Section 3.2.3. Similarly, in the case of a two column design
for a cro in ssing dialog (Figure 18), if the two sets of goals are too close
to one another, they will form a “tunnel” users will have to negotiate (i.e.
selecting Tahoma 10 in one stroke in Figure 18). In such cases the steering law
[Rashevsky 1959; Drury 1971; Accot and Zhai 1997] effect may dominate the
total task completion time. Note that the steering law effect levels off when
the steering ID (tunnel distance to tunnel width ratio in the simple cases) is
below 4 ([Accot and Zhai 1997], page 301). In the present set-up of CrossY, the
steering law effect therefore should not dominate the crossing effect.

6.6 Beyond Two Columns

Of course, applications may use more than 2 columns in their dialog boxes.4

We did not investigate situations in which more than two marks are crossed in
succession. Yet, our data provide us with two important pieces of information:
the target entry angles and the target exit angles. These values are graphed
in Figure 28. The figures show that for low angles, the entry and exit angles
roughly correspond to the angle of the target centerline. However, after the
angle reaches 20 degrees, users limit the entry angles around 30 degrees. A
simple additive formula for successive connections will at least require input
and output angle to be similar (so that there will be very little influence from
the first path to the second). Our data suggest that even within the restric-
tions of the first quadrant, interactions between successive connections are to
be expected. Of course, the problem will be even more acute in the case of
connections which require users to first go up and then go down. Additional
experiments are needed to explore these cases.

4The empirical evaluation of the 3 columns case [Dixon et al. 2008] was published after this work
was done.

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 2, Article 9, Publication date: May 2010.



9:38 • G. Apitz et al.

6.7 A Quick Reference for Designers

Based on the considerations outlined so far we now present a summary of
the most important points to keep in mind when designing crossing-based
interfaces for quick reference.

(1) The predominant constraints for the interface layout will be imposed by
interactions requiring discrete directional crossing. As a result, support for
continuous crossing can lead to more compact interface design.

(2) Crossing targets that are to be crossed continuously should be positioned
orthogonal to the movement direction whenever possible.

(3) The further a crossing path deviates from the horizontal, the more difficult
it will be for users to perform. As a results, application designers should be
sure to place the most frequently used sequence on a more or less horizontal
path.

(4) The design should provide enough space to allow for “recovery” strategies
for missed crossings during multitargets interactions.

(5) The normal dispatch of mouse events might not always provide for accurate
crossing detection during fast gestures.

(6) Crossing and pointing can be used as parallel interaction methods.
(7) Crossing as an interaction method works in a direct and indirect setting,

even though our users preferred the direct setting.

7. FUTURE WORK

Although it is too early to judge the success of the command composition ap-
proach, this work illustrate the potential of this technique. For example, our
implementation demonstrates how crossing may alleviate the need for dwell
time for several types of interactions. Somewhat like the text input systems
proposed in Zhai and Kristensson [2003] and Perlin [1998], we envision a sys-
tem in which, as novice users discover the interface, they also train themselves
towards generating accurate gestures for the most commonly used commands.
At some point, users will be able to remember the shape of the gesture well
enough to be able to generate it on top of the interface elements without the
need for visual feedback. We believe that such a system could be implemented
by having two concurrent tracking mechanisms for user input. The first mech-
anism will be based on the techniques we used while implementing CrossY and
will track the crossing of each interface element. This mechanism will typically
require visual feedback. The second tracking mechanism will use a gesture
recognition engine to classify user input into possible strings of commands.
Depending on specific aspects such as the start of the stroke, the scale of the
stroke, or its overall speed, the input of both systems can be integrated to infer
users’ commands. Relying only on visual feedback limits the performance of
crossing to the speed of hand-eye coordination. Therefore crossing interfaces
could potentially benefit from simple haptic or tactile feedback on the stylus
when a goal is crossed. There are various ways to add tactile feedback to a pen
[Lee et al. 2004] or touch-screen [Poupyrev and Maruyama 2003]. With these
tactile feedback enabled digital pens, it is possible to emit a click to the pen as
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it crosses a graphical line, as if it crosses a physical edge. This can be partic-
ularly powerful when visual appearance of the goals, such as a “raised” edge,
and the form of the tactile feedback, such as a click, are consistent [Campbell
et al. 1999]. With such feedback, the “tail” end of crossing could be shorter due
to the feedback effect.

7.1 Special Application Domains of Crossing Interfaces

While CrossY is a “pure” crossing-based application it is important to note that
pointing and crossing do not have to be mutually exclusive. One could have
a “double representation” interface where both actions are enabled.5 First,
the increased flexibility of both pointing and clicking is beneficial from the
perspective of reducing repetitions of the same action. The same user may
choose either crossing or pointing depending on the idiosyncrasies of the task
at hand. Second, users may tend to use one mode or the other depending
on individual preference. Some users have gotten used to pointing and will
continue their habitual primary mode of action. Others, including some elderly
users and users with certain motor disabilities, may have difficulty clicking
without moving the cursor position, or worse, double-clicking [Walker et al.
1996, 1997]. For these users, crossing may become the main interaction mode.
Second, hyperlinks in Web pages are especially difficult for pointing due to
their narrow height (one line of text) but easy for crossing due to the much
greater width (one word long and often much longer). It is also possible to cross
a list of links in a cascade. This, in fact, has been demonstrated in the “Elastic
window” prototype [Kandogan and Shneiderman 1997].

Finally, traditional GUI widgets are very difficult to integrate in virtual
reality types of 3D interfaces—partly because point and click is necessarily
dependent on a solid 2D surface. In contrast, 1D goals (bars) can be easily
crossed (“chopped”) without having to be on a 2D surface. Similarly, actions may
be triggered when crossing a 2D surface, like a door or portal (e.g., Haisenko
and Musgrave [2001]).

8. CONCLUSION

In experiment 1, we compared human performance in both pointing and cross-
ing tasks, with an emphasis on systematic variations in terms of task difficulty,
the direction of movement constraint, and the nature of the task (discrete vs.
continuous). We found a robust regularity among trial completion time, dis-
tance between targets, and target width in all six tasks under examination.
Our results show that all tasks follow Fitts’ law with parameters which are
task dependent. Observing that in some settings, crossing can be faster than
pointing and clicking, we explored crossing as the primary building block of
a graphical user interface in CrossY. We found that crossing as interaction
technique is as expressive as the more traditional point-and-click interface and
provides designers with more flexibility than the latter because it takes into

5This idea has been explored further after the work presented here was conducted: Dixon et al.
[2008] demonstrated that it can also improve the speed of interaction.
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account the shape and direction of the strokes. We also found that a crossing-
based interface can encourage the fluid composition of commands in one stroke,
as illustrated in our find-and-replace dialog box. Ultimately, we believe that the
fluid composition of commands will lead to more efficient and natural interfaces
for pen computing.

Our experience while designing CrossY showed us that more empirical data
was needed to better understand the design parameters influencing the per-
formance of crossing based design. We explored them in experiment 2, which
showed that that for the direct configuration with vertical targets, connection
time depended on the angle between the centerline of the two targets and
the horizontal. We also showed how the empirical data gathered in experi-
ment 2 can be applied to better understand the implications of a given layout
on overall crossing performance. This work lays the foundation for designing
crossing-based user interfaces in which, crossing is used instead of or in addi-
tion to pointing, as a fundamental interaction technique. The use of crossing
action may not be limited to a certain device but applicable to many pen-based
or touch-screen devices from small display smart phones to large-sized wall
mounted displays.
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ACCOT, J. 2001. Les tâches trajectorielles en interaction homme-machine—cas des tâches de
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