A Unified Framework for Knowledge Assessment and Progression Analysis and Design

Shuhan Wang Fang He Erik Andersen

Source: Center for Game Science

Current Education System

Our Unified Framework

Our Unified Framework

Knowledge Organization

Study the relationship between practice problems &

Build the hierarchical structure.

Partial Ordering on Practice Problems

 p_1 is at least as hard as p_2 if:

 $skills(p_1) \supseteq skills(p_2)$

Practice Problems

Partial Ordering Graph

Our Unified Framework

Property of Partial Ordering

If p_2 is at least as hard as p_1 , then

- Students who understand p_2 will also understand p_1
- Students who don't understand p_1 will not understand p_2

Knowledge Boundary

Knowledge Boundary (K.B.):

the set of the hardest problems that a student can understand.

We use Knowledge Boundary to model a student's knowledge within the Partial Ordering Graph.

Our Unified Framework

Rasch Model

Student Performance P is a function of the difference between the student's ability θ and the problem's difficulty b.

$$P(\theta,b) = \frac{e^{\theta-b}}{1+e^{\theta-b}}$$

	Student Ability θ	Problem Difficulty b		
Rasch Model	Unidimensional Numeric Scores			
Our Model	Knowledge Boundary	Node in Partial Ordering Graph		

Distance to Knowledge Boundary

In order to measure the **difference** between student ability θ and problem difficulty b,

We calculate the **distance** between

Knowledge Boundary and the problem(node) in Partial Ordering Graph.

Experiments: A Japanese Assessment Tool

First 10 sentences:

- Students answered whether they can understand those sentences.
- The responses were used for assessing students' knowledge.

Next 5-8 sentences:

- Students answered how well they understand those sentences.
- The responses were used as the test set for performance prediction

Results

Our Unified Framework

When I have a "Library" of practice problems

In order to automatically design learning progressions,

we need to study expert-designed learning progressions.

Progression Analysis on Textbooks

Standard Japanese

We are Looking for <u>General Principles</u> of designing good learning progressions.

Progression Metric: Learning Pace

A student's Knowledge Size is number of problems p s.t. the student has learned p or some other problem that is harder than p.

$$Pace = \frac{\Delta Knowledge \, Size}{\Delta time}$$

Both textbook progressions are following a similar, steady pace.

Progression Metric: Balance of Learning and Review

We classify problems in a learning progression into Introduction, Reinforcement and Recombination.

Problem	Knowledge	Classification
1	A	Introduction
2	В	Introduction
3	BC	Introduction
4	A	Reinforcement
5	C	Reinforcement
6	ABC	Recombination

Progression Metric: Balance of Learning and Review

Future work

- Apply to Different Educational Domains
 - Especially Computer-Assisted Language Learning (CALL)

- A Science of Progression Analysis
 - Pacing and Sequencing: Find the Best Principles.
- Automatic and Adaptive Tutoring System
 - Rapid Initial Assessment
 - Progression Tailoring

Summary

- Organizing Practice Problems into Partial Ordering Graph
 - A hierarchical structure of knowledge
- Knowledge Assessment within Partial Ordering Graph
 - Knowledge Boundary -- student modeling

- Distance to K.B.
- -- performance prediction
- Analyzing Learning Progressions from Textbooks
 - Learning pace
 - Balance of Learning and Review