A Unified Framework for Knowledge Assessment and Progression Analysis and Design

Shuhan Wang Fang He Erik Andersen
Level 3
Level 2
Level 1
Student’s Knowledge
Current Education System

Educator

Python

Python!

Content

Classroom

Feedback

Separate
Our Unified Framework

Framework

- A
- B
- AB
- ABC
- ABCB
- BCC
- AABC
- ABCBD
- D

Knowledge Assessment

Performance Prediction

Learning Progression Analysis
Our Unified Framework

- Framework
- Knowledge Assessment
- Performance Prediction
- Learning Progression Analysis
Knowledge Organization

Study the relationship between practice problems & Build the hierarchical structure.
Partial Ordering on Practice Problems

\[p_1 \text{ is at least as hard as } p_2 \text{ if:} \]

\[\text{skills}(p_1) \supseteq \text{skills}(p_2) \]
Practice Problems

A

B

AB

BCC

AABC

ABCB

D

ABCBD
Partial Ordering Graph
Property of Partial Ordering

If p_2 is at least as hard as p_1, then

• Students who understand p_2 will also understand p_1
• Students who don’t understand p_1 will not understand p_2
Coloring Partial Ordering Graph

Knowledge Boundary
Knowledge Boundary

Knowledge Boundary (K.B.):

the set of the hardest problems that a student can understand.

We use Knowledge Boundary to model a student’s knowledge within the Partial Ordering Graph.
Our Unified Framework

- Knowledge Assessment
- Performance Prediction
- Learning Progression Analysis
Rasch Model

Student Performance P is a function of the difference between the student’s ability θ and the problem’s difficulty b.

$$P(\theta, b) = \frac{e^{\theta - b}}{1 + e^{\theta - b}}$$

<table>
<thead>
<tr>
<th></th>
<th>Student Ability θ</th>
<th>Problem Difficulty b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasch Model</td>
<td>Unidimensional Numeric Scores</td>
<td></td>
</tr>
<tr>
<td>Our Model</td>
<td>Knowledge Boundary</td>
<td>Node in Partial Ordering Graph</td>
</tr>
</tbody>
</table>
Distance to Knowledge Boundary

In order to measure the **difference** between student ability θ and problem difficulty b,

We calculate the **distance** between Knowledge Boundary and the problem(node) in Partial Ordering Graph.
Experiments: A Japanese Assessment Tool

First 10 sentences:

• Students answered whether they can understand those sentences.
• The responses were used for assessing students’ knowledge.

Next 5-8 sentences:

• Students answered how well they understand those sentences.
• The responses were used as the test set for performance prediction.
Results
Our Unified Framework

Framework

A
B
AB
BCC
AABC
ABCB
D
ABCBD

Knowledge Assessment

Performance Prediction

Learning Progression Analysis

- Genki
- Reinforcement
- Recombination
- Introduction

Standard Japanese
When I have a “Library” of practice problems

Which Problem should I learn first?

This is too hard!! Am I learning too fast?

When should I review what I have learned?

Learning Progression
In order to automatically design learning progressions, we need to study expert-designed learning progressions.
Progression Analysis on Textbooks

We are Looking for General Principles of designing good learning progressions.
Progression Metric: Learning Pace

A student’s *Knowledge Size* is the number of problems p s.t. the student has learned p or some other problem that is harder than p.

$$Pace = \frac{\Delta \text{Knowledge Size}}{\Delta \text{time}}$$

Both textbook progressions are following a similar, steady pace.
Progression Metric: Balance of Learning and Review

We classify problems in a learning progression into **Introduction**, **Reinforcement** and **Recombination**.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Knowledge</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Introduction</td>
</tr>
<tr>
<td>3</td>
<td>BC</td>
<td>Introduction</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Reinforcement</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>Reinforcement</td>
</tr>
<tr>
<td>6</td>
<td>ABC</td>
<td>Recombination</td>
</tr>
</tbody>
</table>
Progression Metric: Balance of Learning and Review
Future work

• Apply to Different Educational Domains
 • Especially Computer-Assisted Language Learning (CALL)

• A Science of Progression Analysis
 • Pacing and Sequencing: Find the Best Principles.

• Automatic and Adaptive Tutoring System
 • Rapid Initial Assessment
 • Progression Tailoring
Summary

• Organizing Practice Problems into **Partial Ordering Graph**
 • A hierarchical structure of knowledge

• Knowledge Assessment within Partial Ordering Graph
 • Knowledge Boundary -- student modeling
 • Distance to K.B. -- performance prediction

• Analyzing Learning Progressions from Textbooks
 • Learning pace
 • Balance of Learning and Review