
Integrating Advanced GLSL Shading and XML Agents into a
Learning-Oriented 3D Engine

Edgar Velázquez-Armendáriz, Erik Millán
Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Estado de México
Atizapán de Zaragoza, Estado de México, 90210, México

E-mail: {A00464175, emillan}@itesm.mx

Abstract

Most of the existing 3D engines are overwhelmingly
complex and do not integrate support for virtual charac-
ters. We have developed a teaching oriented 3D engine with
support for such tasks as model loading and setup, shad-
ows, level of detail as well as advanced shading techniques
using the OpenGL Shading Language (GLSL), developed
following Object-Oriented techniques and built upon stan-
dard open source components. We have also extended previ-
ous work by seamlessly incorporating XML driven crowds
which can interact with the elements of the environment.
The resulting system is a highly capable, yet easy to learn
and use 3D engine which may be used for students in Com-
puter Graphics to quickly build interactive applications and
to provide a framework to begin using specialized shading
techniques with GLSL. The engine also serves as a motivat-
ing development environment for creating visually attrac-
tive crowds of agents, aimed at students of introductory Ar-
tificial Intelligence courses.

1. Introduction

Computer Graphics has become a very popular topic in
the recent years. With the advent of commodity hardware,
which is capable of rendering real time graphics that rival
the quality of production level software renderers, a great
amount of college students show interest in the area. Those
who are learning the principles of graphics, however, must
take a big leap in moving from the simple and isolated ex-
amples that show only one feature at a time to the more
complete systems that integrate several of such functionali-
ties together.

To make a more advanced application, users might
choose to use one of the available 3D engines, but their
use is cumbersome by those less exposed to the graphics

programming, given that those engines include a myriad of
functionalities, exposed over hundreds or even thousands
of API calls. Other option for the initiated graphics practi-
tioners would be to write their own engine. That approach
would add the inherent difficulties of developing an entire
system architecture to the challenges of implementing the
tasks of the main application.

The complexity of both approaches causes that students
implementing a project cannot incorporate more advanced
features as shadows and custom shader programs [19]. The
industry is moving away from the fixed graphics pipelines
to custom functionality programmed in high level languages
as GLSL, HLSL or Cg, therefore it is valuable to allow them
a quick peak into that technology.

Either implementation strategy misses entirely support
for artificial intelligence characteristics, which are widely
used in interactive applications as games. The user would
have to create hand-coded characters. And from the stu-
dents of AI courses perspective, when developing intelli-
gent agents they face not only the problems of implement-
ing their agent i.e., using the subsumption architecture, but
also to create a proper interface to display those agents.

To overcome those limitations, we propose a 3D engine
aimed both at AI and CG students simple enough to be used
with a small learning curve and that still allows them to use
more interesting features as the GLSL shaders. It also in-
tegrates the work by Rudomı́n and Millán in [16], which
allows the creation of virtual characters and crowds using
images and XML files.

In the following section of this paper, we will make a
brief review of the existing related work. In Section 3 we
will review the architecture and capabilities of the proposed
engine. In Section 4 we will analyze the interactive XML
features of the system. Section 5 presents the obtained re-
sults and in Section 6 will state our conclusions and future
work.

Appears in the CONIELECOMP 2006 conference proceedings



2. Related work

The Generic Rendering System of Döllner and Hin-
richs [5], encapsulates different rendering components in
an object oriented framework using shapes, attributes,
handlers, techniques and engines as the main compo-
nents. Their system can use different components such
as OpenGL, Renderman or POVRay to perform different
tasks. This system is able to perform real time effects
like Phong shading using multiple rendering passes. Their
architecture allows having a platform independent system
core, hence it runs using MFC, Qt, or Tcl-Tk for the GUI
on several different systems.

Among the several available open source 3D engines,
OGRE [1] is one of the best regarded ones. It has exten-
sive support for loading models, textures, animations and
materials, as well as the ability to use custom shaders using
both high level languages and assembly instructions. It is a
multiplatform development toolkit, which runs in Windows,
Linux or Macintosh computers. However, the produced ap-
plications are intended for high-end computers.

Irrlicht [7] by Gebhardt is another open source engine
with increasing support from the community. It is oriented
towards high performance on low-end machines, supporting
many of the features of OGRE. It has just recently added the
capability to use GLSL shaders.

However, none of these engines provides a straightfor-
ward way to turn objects into interactive agents. Such func-
tionality must be implemented, if desired, on top of the pro-
vided API.

Research has also being made in the area of systems for
education. The system Alice [4] developed by Conway,
Audia, Burnette et al, is a rendering system intended for
novices. They used semantics similar to the LOGO pro-
gramming language with encouraging results, using nota-
tions closer to the user than those which are more technical
oriented.

Works in the area of education by Sung and Shirley [19]
have found that a popular choice for students projects in
courses following a top-down approach is an interactive
graphics application, which allows the user to update the
state of the application interactively.

3. System’s architecture

In this section we will explain the design architecture of
our system. The core GLM++ library will be explained, as
well as the rendering capabilities built into the engine.

3.1. System’s object layout

The main elements in the system are the 3D objects and
the cameras. Both elements are built as a C++ class hierar-

FCullerBase


Camera


FPCamera
 ModelingCamera


ObjLOD


Object3D


ParticleSet
 SkyBox


GLM++


«uses»


«uses»


«uses»


Figure 1. Main engine architecture.

chy which is illustrated in Figure 1, using polymorphism an
inheritance to build increasingly specialized classes.

The cameras have an interface to allow interaction by
reacting to user input, such as keyboard strokes or mouse
movements. They are also able to compute the distance
from the camera to any given object. One of the available
cameras mimics the views provided by a rendering system,
being specifically tied to the movements of the perspective
cameras of Maya [3]. The other camera provides a first per-
son perspective that allows the users an immersive view in
the virtual world that is being developed, and responses in
the same way of popular First Person Shooter games.

The base 3D object class provides a way to draw, scale,
move and rotate an object through simple function calls.
The object may not be drawn if it is not visible by using
a frustum culler object, which receives perspective infor-
mation from the current camera and the object that is being
queried. Specialized objects that support level of detail use
the distance from the camera data to calculate a quality fac-
tor in the range [0, 1], where 0 means to avoid drawing and 1
requests to use the full detail of the mesh.

Collision detection among objects is performed using the
open source library Coldet [8], which was improved to use
SSE instructions for its calculations. It may be used to trace
collision rays, which may be employed in such actions as
shoots or object picking. A simple particle engine has also
been added to visualize these collisions. The interaction
between these components can be seen in Figure 2.

A base skybox class allows the rendering of panoramic
objects, for which the users only need to provide the re-
quired textures. Finally, all the objects in the world are
drawn using the active camera, through which the user in-
puts are interpreted. The engine may draw also auxiliary
shapes such as the bounding spheres used for the frustum

Appears in the CONIELECOMP 2006 conference proceedings



Figure 2. Collision detection and particles.

culling or the wireframe to provide a better understanding
of the underlying functionality of the engine.

Computer Science students are more likely to use differ-
ent operating systems, as Windows or Linux, than the av-
erage user. For this reason the framework is built around
cross platform open source libraries, such as xerces for
XML parsing, GLEW for OpenGL extensions management,
freeglut for the windows system, fmod for sound support
and libpng for the textures, using a standard dialect of C++.
This way, the source code can be compliled for both Win-
dows and Linux, using the gcc 3.x or Visual C++ compilers,
with only some spare lines of non portable code, most of
them for the platform dependent PBuffers, required for the
shadow maps, which will be explained in Section 3.3. Code
readability and maintenance is greatly improved this way.

3.2. GLM++ Library

Although the class hierarchy provides a natural interface
to interact with the elements in the world, it does not pro-
vide by itself a way to draw a model or load a texture. To
perform such tasks we created the GLM++ library, which
extends the original glm libray by Nate Robins [15].

The original library allows loading models from Wave-
front OBJ files, reading their material attributes and drawing
them using standard OpenGL calls. It is also capable of per-
forming correction operations to the normals of the objects
that allows rendering the objects either with facet normals
or as smooth objects.

This functionality was extended to create the vectors re-
quired to make the conversion from object space to tangent
space. That information is required to use the rendering
techniques described in Section 3.3. The library is able to
initialize the loaded object for future collision detection.

Textures are supported through objects that encapsulate

the process of texture management and loading. The sup-
ported formats include PGM, BMP and PNG, using 8, 24
or 32 bit depth. Further formats may be added by extend-
ing the corresponding class hierarchy. The library may also
create normal maps from 8 bit height maps. In this way, the
users can load the same objects, textures and bump maps
they have designed in modeling applications and use them
into the engine.

Support for GLSL [10] shaders received special atten-
tion. This standard language, integrated in OpenGL 2.0 [18]
allows the students to interact with custom shader programs,
a mayor trend in the industry, but whose setup and imple-
mentation details make them too complex for the early prac-
titioners. The shader class performs the tasks of loading the
shader programs from the source files, enable and disable
their use during program execution and giving to them the
uniform parameters they might need.

The shaders can either be incorporated into the 3D ob-
jects, so that each object is rendered using a different pro-
gram, or set within the environment, to render all elements
with the same shader. A fully functional shader, described
in the following section, is provided with the application to
serve as a foundation to the student to begin using GLSL
programs. These abilities will allow the user to focus on the
logic of the shader program instead of the setup details.

3.3. Rendering features

Shadows are a very important way to add detail and pro-
vide volume information within a 3D environment, but they
are not usually implemented in the students’ projects mostly
due to time constraints. The engine provides this feature
through shadow maps for a single point light. As this is an
image space technique, it does not require knowledge about
the object geometry; hence any object in the scene will cast
and receive shadows, including self shadowing.

To provide a visually attractive environment, and to
encourage further experimentation by the students, a full
shader program in GLSL is provided, supporting per pixel
lighting, normal mapping, bump mapping and percentage
closer filtered shadows, with modulated umbra color.

To perform the normal mapping, the shader is fed with
the tangent vectors [12] [17] provided by GLM++, and per-
forms the lighting in tangent space. The lights in OpenGL
are defined in eye space, therefore, given the model view
transformation matrix M , the normal vector ~N , the tangent
vector ~T and the binormal ~B defined as ~N × ~T , all of them
being column major vectors, the transformation of an eye
space vector ~v to the tangent space vector ~v′ yields (1):

~v′ = ([ ~T ~B ~N ] ◦ M−1)(~v) (1)

The color of the fragments of a given object is then cal-
culated using the Blinn-Phong lighting equation [6].

Appears in the CONIELECOMP 2006 conference proceedings



Figure 3. Original model (left), its normal map
(center) and the final result using normal
mapping (right).

Iout = Ilightkd max(0, ~N · ~L)

+ Ilightks max(0, ~N · ~H)n (2)

where Ilight is the color of the light, kd is the diffuse
color, ks the specular color and n the specular exponent.
~L is the normalized vector to the light source and ~H is the
normalized half-way vector defined by (3):

~H =
~L + ~V

|~L + ~V |
(3)

The results of this shading technique are illustrated in
Figure 3. The final color of the fragment is obtained after
applying to Iout the percentage closer filtered shadow con-
tribution factor s.

Ifrag = Iamb +
1
2
(1 + s)Iout (4)

Where Iamb is the ambient light contribution. The
shadow factor s is within the closed interval [0, 1], where
0 represents a fragment in complete shadow and 1 corre-
sponds to a completely lit fragment and s is the average of
the unfiltered binary valued shadow contribution s′i of the
four surrounding fragments. As seen in Figure 4, this way
of calculating the final color results in umbra areas where
diminished color is seen, like occurs in the real world, in-
stead of the completely black areas of the predefined hard-
ware shadows.

The rendering mode can be alternated between the fixed
OpenGL engine and the custom shader at any moment dur-
ing execution. The shadows may also be activated and deac-
tivated at any time, providing the user an easy way to evalu-
ate the differences among the different shading styles. One

Figure 4. Hardware shadows (left) and our
custom shaded shadows (right).

of the benefits of using this pixel shader is that the scene re-
quires only one pass to draw it, and one extra colorless pass
to update the depth texture needed for the shadow map.

Taking the previous rendering elements as a foundation,
the students are able to further experiment with other shad-
ing techniques, such as cel shading, parallax mapping or the
Fresnel effect.

4. Interactive XML crowds

XML based agents have also been integrated into the en-
gine. As in the work purposed by Rudomı́n and Millán
in [16], crowds of virtual characters which interact with
the environment can be created, making different agents
classes, types and behaviors through an XML file, using
either finite state machines or a subsumption architecture.
The 3D models for the characters are loaded from standard
Quake 2 files with animation. Static meshes in OBJ and
3DS file formats are supported as well.

These interactive agents can interact with an arbitrary
environment using image based collision and height maps.
This approach has the advantages of having a very small
processing overhead because the collision between agents
and the environment requires only a texture read, and it
does not require knowledge about the underlying geome-
try. Using height maps, the agents can move with better
realism within a non planar surface. The virtual characters
engine may either render a terrain coherent with the pro-
vided height map or just displace the elements according to
the data read in the map. As with the collision map, each
height query needs a single texture lookup.

The seamless integration of the agents with the rendering
environment allows them to be shaded using custom GLSL
programs, and they also cast and receive shadows, as seen

Appears in the CONIELECOMP 2006 conference proceedings



Figure 5. Mars Explorer agents.

in Figure 5. These effects may be used in order to achieve
a highly interactive application which at the same time is
visually attractive.

This approach benefits both computer graphics and artifi-
cial intelligence students. By simply using plain text XML
files, the graphics students will be able to add interactive
elements to their applications, and AI students will have a
3D environment to develop and test their algorithms. Con-
structive learning, which is pursued with the project based
courses, evoke the learners spontaneous interest [20], and a
platform like the one we are presenting helps achieving this
goal.

5. Results

We have built an application using the engine as proof
of concept. It consists in an Acropolis with a temple, a
statue of Pallas Athena, a limiting wall, a hypostyle hall
and the polygon ship from [3] as a reference object. The
walls, floors and the ship are bump mapped; the statue has
a normal map generated from a high resolution model. Two
different XML crowd configurations were created, one that
mimics the Mars explorers, seen in Figure 5, and other of
predators and preys, observed in Figure 6. Each one uses
different models, but interacts with the same Acropolis un-
modified environment.

The application proved to run without code changes in
Windows XP and Linux, using the Fedora Core 2 distribu-
tion. It was executed in very different machines, a legacy
1.13 GHz Pentium III laptop with 512 MB in RAM and
a 32 MB Nvidia Geforce 2 Go GPU, a 2.8 GHz Pen-
tium 4 desktop with 512 MB in RAM and a 128 MB Nvidia
Geforce FX 5200 GPU, and a high end 3.4 GHz Pen-
tium 4 desktop with 1 GB in RAM and a 256 MB Nvidia

Figure 6. Predators and preys agents.

Geforce 6800GT GPU.
The legacy laptop was only able to use the fixed render-

ing pipeline without shadows, because the hardware does
not support them. Both desktop systems supported both the
hardware integrated shadows and the custom shader pro-
grams. The limited number of fragment pipelines in the
Geforce FX 5200 caused the application to noticeably slow
down when using all the rendering features, while the newer
Geforce 6800GT did not show that behavior and performed
considerably faster.

The obtained rendering quality is very high as shown by
Figure 7. The system is able to generate such images more
than 200 times faster than the Maya software renderer us-
ing the same computer. The usage of normal mapping al-
lows displaying excellent quality images without requiring
extremely detailed meshes.

Both of the virtual characters configurations tested in-
tegrated transparently with the environment, moving only
within the limits of the Acropolis while they followed rules
such as not going through the columns or the temples walls,
as well as keeping at the appropriate height at all times. The
realism was conspicuously enhanced with the shadows pro-
jected by all of the elements, especially with the interactive
agents moving around the scene.

6. Conclusions

We have presented a 3D engine geared toward students
implementing both computer graphics and artificial intelli-
gence projects, as a simple to use and at the same time easy
to use base framework. The achieved visual quality moti-
vates further exploration of the capabilities of the custom
shading programs using GLSL and encourages the creation
of autonomous crowds of agents that interact in an appeal-

Appears in the CONIELECOMP 2006 conference proceedings



Figure 7. Polygon ship rendered in Maya (left)
and in our engine (right).

ing environment. The per pixel shading has performance
penalties but those are becoming less apparent with the cur-
rent generation of GPUs, which provides a great number of
fragment pipelines to perform this kind of shading opera-
tions better. While in some systems it may not be possible
to visualize all of the included features due to hardware lim-
itations, the portability of this library allows the use of a va-
riety of hardware platforms for the supported functionality.

Future work would expand the use of XML files to cre-
ate complex object from several meshes and with as much
fine grained detail as a manually written subclass. To in-
crease the portability of the engine, the PBuffers would be
substituted by the newly supported framebuffer objects of
OpenGL, which allows direct Render To Texture (RTT) re-
gardless of the underlying windows system.

Another interesting area for future work would be to
add communication capabilities between agents to allow for
planning and cooperation strategies, using the descriptive
XML files to specify them. Networking support would per-
mit interaction among agents running in different environ-
ments or even heterogeneous systems, further improving the
complexity of the behaviours that can be developed using
the XML system.

Acknowledgements

The authors thank Luis Antonio Landgrave Romero of
ITESM Campus Estado de México for his support in de-
veloping the GLM++ library and integrating the collision
detection and sound support into the engine.

References

[1] Ogre 3d: Open source graphics engine. http://www.ogre3d.
org.

[2] Nvidia sdk, 2005. http://http://developer.nvidia.com/object/
sdk home.html.

[3] Alias. Learning Maya 6 — Foundation. Sybex, 2004.
[4] M. Conway, S. Audia, T. Burnette, D. Cosgrove, and

K. Christiansen. Alice: lessons learned from building a 3d
system for novices. In CHI ’00: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
486–493, New York, NY, USA, 2000. ACM Press.

[5] J. Döllner and K. Hinrichs. A generic rendering system.
IEEE Transactions on Visualization and Computer Graph-
ics, 8(2):99–118, 2002.

[6] C. Everitt. Mathematics of per-pixel lighting,
aug 2001. http://developer.nvidia.com/object/
mathematicsofperpixellighting.html.

[7] N. Gebhardt. Irrlicht engine. http://irrlicht.sourceforge.net.
[8] A. Geva. Coldet - free 3d collision detection library, 2000.

http://photoneffect.com/coldet/.
[9] J. Kessenich. Features of the OpenGL Shading Language.

3Dlabs Inc. Ltd., may 2005.
[10] J. Kessenich, D. Baldwin, and R. Rost. The OpenGL Shad-

ing Language, apr 2004.
[11] P. Kipfer, M. Segal, and R. Westermann. Uberflow: a gpu-

based particle engine. In HWWS ’04: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, pages 115–122, New York, NY, USA, 2004.
ACM Press.

[12] E. Lengyel. Mathematics for 3D Game Programming &
Computer Graphics. Delmar Thomson Learning, ”second”
edition, 2003.

[13] E. Lindholm, M. J. Kligard, and H. Moreton. A user-
programmable vertex engine. In SIGGRAPH ’01: Proceed-
ings of the 28th annual conference on Computer graphics
and interactive techniques, pages 149–158, New York, NY,
USA, 2001. ACM Press.

[14] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Wat-
son, and R. Huebner. Level of Detail for 3D Graphics. The
Morgan Kaufmann Series in Computer Graphics. Morgan
Kaufmann, ”first” edition, 2002.

[15] N. Robins. Nate robins - opengl. http://www.xmission.com/
∼nate/opengl.html.

[16] I. Rudomı́n and E. Millán. Xml scripting and images for
specifying behavior of virtual characters and crowds. In
CASA ’04: 17th International Conference on Computer An-
imation and Social Agents, Geneva, Switzerland, jul 2004.

[17] G. Schrröcker. Hardware accelerated per-pixel shading.
Technical report, Graz University of Technology, 2002.

[18] M. Segal and K. Akeley. The OpenGL Graphics System: A
Specification, oct 2004.

[19] K. Sung and P. Shirley. A top-down approach to teaching
introductory computer graphics. In GRAPH ’03: Educa-
tors program from the 30th annual conference on Computer
graphics and interactive techniques, pages 1–4, New York,
NY, USA, 2003. ACM Press.

[20] G. Taxén. Teaching computer graphics constructively. In
GRAPH ’03: Educators program from the 30th annual con-
ference on Computer graphics and interactive techniques,
pages 1–4, New York, NY, USA, 2003. ACM Press.

[21] L. Wilkens. A multi-api course in computer graphics. In
CCSC ’01: Proceedings of the sixth annual CCSC north-
eastern conference on The journal of computing in small
colleges, pages 66–73, , USA, 2001. Consortium for Com-
puting Sciences in Colleges.

Appears in the CONIELECOMP 2006 conference proceedings


