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Abstract

Memory management performance is critical to any modern computing

system. The page replacement problem has been extensively studied, but

little attention has been given in literature to the page I/O problem, namely

the problem of scheduling the I/O operations needed to manage page faults.

The aim of the present work is to use optimal control techniques to find

page I/O management policies that minimize the fault service time, that is

the amount of time that passes from when a page fault arises to when the

referenced page becomes available.

To this end, we make use of the simplified dynamical system model of a

VMM system proposed in [3]. In this context, some novel statistical models

for the disk access times are developed, witch special focus on the average

bandwidth obtained by common disk scheduling algorithms as a function of

the size of the I/O queue.

Given a formulation of the problem into the optimal control framework, firstly

a relaxed problem is completely solved obtaining an useful lower bound to

the optimal fault service time. Moreover some interesting properties regard-

ing the optimal control policy are finally proved, the most important one

regarding the optimal closed form control law for load operations.
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Chapter 1

Introduction

A virtual memory system involves the separation of logical memory as

perceived by users from physical memory. This separation allows an ex-

tremely large virtual memory to be provided for programmers when only a

smaller physical memory is available, through a combination of hardware and

software components that allow to map a large logical address space onto a

smaller physical memory.

Virtual memory is commonly implemented by paging, that involves breaking

physical memory into fixed-sized blocks called frames and dividing logical

memory into blocks of the same size called pages.

Since virtual memory is usually larger than the available physical memory,

only a subset of the virtual pages are mapped onto physical memory, while

the others are stored on secondary memory (usually a disk).

If a process tries to use an unmapped page, it causes the CPU to trap the

operating system and, in that case, a page fault is said to occur. To solve the

problem, the Operating System has to fetch the page just referenced into a

free page frame before restarting the trapped instruction. In order to main-

tain a pool of free frames (or to free one if the pool is empty), it also has to

pick a page frame according to a page replacement policy to be evicted by

writing its contents back to the disk. We define the time elapsing from when
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a fault arises to when the referenced page becomes available in memory fault

service time, that is obviously equal to the amount of time that the process

has to wait before being restarted.

When the operating system decides to write a page to the disk or to fetch

an unmapped page, it has to forward these I/O requests to the disk subsys-

tem. Following [3], we call page I/O manager the component responsible of

scheduling these operations, namely responsible of deciding when to submit

the requests to the disk.

While the aim of page replacement policies is to minimize the number of oc-

curring faults by properly choosing the pages to be evicted, the problem we

are facing in this work is to find and analyze page I/O policies that minimize

the fault service time.

The basic policy that issues load requests as soon as the faults arise and the

store requests as soon as the pages to be evicted are chosen, is not generally

optimal. In fact, fault service time is influenced directly only by the time

needed to load the unmapped page into memory, but, at least if there are

free frames left, it does not directly depend on the store operations needed

for the evictions. Moreover, if the system keeps a pool of free frames, the

page I/O manager can, at least to a certain degree, decide the timing of

the evictions. Therefore, while on the long term the number of stores must

correspond to that of loads, on the short term it is convenient to give some

priorities to loads over stores.

As reported in [3], another key issue of the problem is the fact that all the

most common scheduling algorithms used to manage disk devices can reduce

average disk access times when the number of pending I/O requests increases.

As a consequence, a candidate I/O policy that issues store requests only when

there is no load requests waiting, is not generally optimal. In fact with this

choice it is possible that the resultant average size of the pool of I/O requests

visible to the disk becomes too small, and hence the disk throughput does
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not suffice to keep up with the page fault generation rate.

The present work is organized in the following way: in chapter 2 we will

present the promising model of a virtual memory management (VMM) sys-

tem developed in [3], that among the others features, permits to decouple the

page I/O problem from that of the page replacement, under weak assump-

tions typically satisfied by real systems. In chapter 3 we will develop some

novel statistical models for the disk access times, that represent the bottle-

neck of every virtual memory system. In particular, we will mainly focus

our attention on the response in terms of bandwidth of the disk scheduling

algorithms to the size of the pool of I/O requests, obtaining some inter-

esting analytical results for the most common algorithms. In chapter 4 we

will briefly describe some useful topics of the Optimal Control Theory, with

particular reference to [1] and [2]. Moreover, we will show how to make

use of them by presenting the optimal control framework developed by the

authors of [3] for the page I/O management problem. Finally chapter 5 is

dedicated to obtain some insights about the structure of the optimal control

policy. Firstly, an useful reformulation of the cost function associated with

the problem is presented, that leads to a stronger understanding of the prob-

lem. This result is used to entirely solve the relaxed problem in the ideal

case of unlimited free frames, obtaining both the optimal policy and its re-

sultant average fault service time, that represents an useful lower bound for

the original problem. Regarding the latter unrelaxed problem, although we

won’t be able to show a closed form solution for the control law, we’ll be able

to prove mathematically which is the structure of the optimal load policy.

The proof also provides some interesting insights about the store policy, that

confirm the heuristic conjectures proposed in [3]. Moreover, some regularity

properties regarding the infinite control horizon will be proved.
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Chapter 2

VMM as a dynamical system

2.1 Structure of a VMM system

With the purpose of designing an optimal page I/O policy, we consider

the simplified model of a VMM system proposed in [3]. Although this model

constitutes a greatly simplified picture of any real operating system, it cap-

tures the essential features needed to study the page I/O problem. The key

aspects of this model are a workload, a paged memory, a fault queue, a disk

subsystem and a page I/O manager ; for the clearness of exposition we pro-

vide a brief description of each of these items.

The workload is viewed as a sequence of events called page faults, that

arise when a program accesses a page that is mapped in the virtual address

space, but not loaded into the physical memory. When a page fault occurs,

the operating system tries to handle it by allocating physical memory space

to the corresponding page and, if it is needed, by loading its content from

the external storage.

In a real system, the number and the timings of such faults is determined

by many factors such as the nature of the processes in execution, the CPU
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scheduling policy adopted by the Operating System and, of course, by how

virtual memory is managed. To be more precise, it depends heavily on the

page replacement policy used, but also on the page I/O policy adopted, that

is the object of our analysis. All these elements are interacting in a very

complex manner, hence for the sake of mathematical tractability we will

model the fault process as statistically independent of any other event in the

system.

As we have seen so far, the model refers to a paged memory, that can be

modeled as a set of M page frames, whose size is equal to that of a virtual

page. If supported by the architecture, operating systems can change the

page size; default values for operating systems like Windows Xp and Linux

are 4096 bytes for the x86 platform. Frames are categorized into 4 types:

• Active frames. Frames to which a virtual page is assigned and the state

of such page is correctly reflected in the frame.

• Free frames. Frames to which no virtual page is assigned.

• Load frames. Frames to which a virtual page has been assigned but the

page state has yet to be loaded from the disk.

• Store frames. Frames to which a virtual page has been previously

assigned, then evicted and its state has yet to be stored to the disk.

When a page fault arises, it has to wait a certain amount of time before

a free frame is assigned to the desired page that was not loaded in physical

memory. During this period, the fault is kept by the operating system in a

fault queue. This queue is generally managed with a FIFO policy, but the

policy adopted won’t affect our analysis.

While studying the page I/O problem it is clearly of paramount impor-

tance to model the external storage used to store programs and data that
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are currently inactive and not held in physical RAM. In fact external storage

access times, that are much higher than those of main memory, represent the

bottleneck for every Virtual Memory Management system. In the present

work we will take into account the case of a disk drive, that is the most

common option. We will model this part as a disk subsystem, whose aim is

to model both the disk device and the data structures used by the operat-

ing system to interact with the disk, such as the queue of pending requests

maintained by the OS. This queue can be managed with different policies,

such as SSTF, SCAN, CSCAN, algorithms that try to find a compromise be-

tween optimizing disk access time and maintaining a certain fairness. Often

requests of the same type (load or store operations) that operate on contigu-

ous areas of the disk device are put together into one single request.

The duty of the page I/O manager is to decide

• when to assign a free frame to a waiting fault

• when to evict an active frame

When a free frame is assigned to a waiting fault, the page I/O manager issues

a load operation to the disk subsystem, to transfer the corresponding page

into the physical memory. On the contrary, when an active frame is evicted,

it is responsibility of the page I/O manager to save its state to the disk with

a proper store operation. It’s important to stress the fact that the page I/O

manager decides only when and how many pages to load or store but not

which ones. In this way the page I/O problem is decoupled from that of the

page replacement, achieving a great simplification. In fact the performance

of the page replacement policy affects the VMM system described only in an

indirect way, by influencing the workload and hence the fault process.
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2.2 A dynamic system model

In this section we will give a brief description of the VMM dynamic model

developed in [3]. In particular the authors model the VMM system as a dis-

crete time dynamical system, where the state of the system describes the

state of the fault queue and of the memory subsystem, by counting the num-

ber of the various types of frames described in section 2.1 at a certain time.

The model proposed has no outputs and a certain number of inputs, some

of which are adjustable by the page I/O manager, while the so called distur-

bances are not.

The time scale at which events related to the virtual memory management oc-

cur in real computing system is very small because it is imposed by the CPU

cycle time. In fact faults can arise whenever a memory access is requested by

a process, hence with an extremely high frequency. However from the page

I/O management point of view it is unpractical to control the system with

such a high sampling frequency because it would cause an extremely high

management computation overhead. Therefore it is convenient to model an

undersampled version of the VMM system with a sample time τ equal to the

time interval between two consecutive calls of the control algorithm (namely

the page I/O manager). Hence the value of τ should be considered a de-

sign parameter that represents a compromise between the readiness of the

controller and the computational overhead it causes. Considered that the

controller is usually invoked by Operating Systems either when a fault arise

or a disk operation is completed, a convenient value of τ should be that of

the average time required for a disk operation. Therefore, for modern disk

drives, it should be of the order of milliseconds.

The nonlinear dynamic model proposed in [3] is described in space state
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form by the following transition equation

xk+1 = f(xk, uk, wk) (2.1)

where xk is the state of the system at step k (namely at time kτ), uk is the

set of controllable inputs while wk represents the disturbances or uncontrol-

lable inputs. As we have already said, this is an undersampled version of the

real VMM system, therefore many events and actions could happen in a time

step. The transition function should take into account this fact and model

the cumulative effect of all the events occurred.

The state xk is a four dimensional vector of non-negative integers xk =

(xf
k , x

q
k, x

`
k, x

s
k) ∈ N4. In particular xf represents the number of free frames,

xq the number of faults in the fault queue, x` the number of load frames

while xs stands for the number of store frames. It is possible to define a set

of admissible states S as follows:

S = {(xf , xq, x`, xs)| 0 ≤ xf ≤ xF , 0 ≤ xq ≤ xQ, 0 ≤ x` ≤ xL, 0 ≤ xs ≤ xS,

xf + xs ≤ xF , xs + x` ≤ xD}.

(2.2)

The upper bound set on the values of the state variables, that is imposed by

noticing that computer systems work with a finite arithmetic, will sometimes

be relaxed by setting it to ∞ for reasons of mathematical tractability.

The bound x` +xs ≤ xD is set to model the fact that the number of pending

requests in the disk queue can be limited in practical settings. The constraint

xf + xs ≤ xF means that at any time the number of frames that are free of

will become free (because they have been chosen to be evicted) cannot exceed

xF . This bound is particularly important, because it is needed to properly

decouple the page replacement problem from that of the page I/O. In fact in

this model we are assuming a fault generating process independent from any
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other event in the system. However in a real system increasing the number

of free frames reduces the number of active frames and hence usually results

in an increased fault rate. Therefore it is crucial that xF is small (below

0.1 % of the total number of frames), otherwise the instantaneous value of

xf would be too correlated with the fault rate, resulting in an unrealistic

independence assumption.

In order to properly decouple the Page Replacement problem from the Page

I/O problem, we can assume that the fault rate φ depends on XF in the

terms of a function g(.) as follows:

φ = g(XF ),

where the exact form of g() is hard to determine and heavily depends on the

Page Replacement Policy adopted and on the workload being considered.

Even if we don’t know it precisely, it’s reasonable that

∂g

∂XF

≥ 0,

that describes the fact that higher XF means fewer usable pages and thus

an increased fault rate. In any case, let us consider the average service time

Tfst of a fault. We have

Tfst = f(φ,XF )

∂f
∂XF

≤ 0

∂f
∂φ

≥ 0,

where f(·) depends on the page I/O policy adopted. Therefore we can study

the problem considering the parameters φ and XF as independent, being

aware that at least in principle it’s possible to obtain the optimal XF by

minimizing f(g(XF ), XF ).

The controllable inputs of the VMM system are those that can be de-

cided by the page I/O manager, and in this model they are represented as
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a two-dimensional vector of non-negative integers (u`
k, u

s
k). The value of u`

k

represents the number of faults that are assigned a free frame by the page

I/O manager at step k. The state of these pages that have been assigned

a free frame has to be loaded from the disk, hence until this operation is

done they are classified as load frames. On the other hand, us
k stands for the

number of pages to be evicted at step k, whose state has to be stored in the

secondary memory (the disk). In this case a certain number of active frames

will become store frames, at least until the store operation is completed by

the disk.

Given a certain state x, the controllable inputs that are admissible for x are

defined as follows:

U(x) = {(u`, us) ∈ N2 | 0 ≤ u` ≤ uL(x), 0 ≤ us ≤ uS(x, u`)},

where

uL(x) = min(xf , xq, xD − x` − xs) ,

uS(x, u`) = min(xF − xf − xs, xD − x` − xs − u`).

The upper limit uL(x) models the fact that the number of faults that are

assigned a free frame cannot exceed nor the number of faults in queue nor

the number of free pages. Moreover it guarantees that the length of the

disk queue never exceeds its maximum value xD. The constraint imposed on

us(x) through uS is needed again to limit the length of the disk queue and to

make sure that the number of frames that are free of will become free cannot

exceed xF .

The values of a certain number of inputs cannot be controlled by the

page I/O manager. The so called disturbance vector is a three dimensional

vector of non-negative integers (wφ
k , w`

k, w
s
k) ∈ N3. The value of wφ

k stands

for the number of faults that arise in the in the time interval [kτ, (k + 1)τ ],

where τ is the length of the time step. Furthermore, the values of w`
k and ws

k

represents respectively the number of loads and store requests completed by
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the disk in the same time interval as before. The set of admissible values of

the disturbance vector depends both on the current state of the system and

on the controllable inputs applied by the page I/O manager. This situation

can be explained by thinking that the page I/O manager issues its commands

at the very beginning of a time interval, while the disturbances take place

during all the interval and therefore depend on what the controller decided

at the beginning.

The set of admissible disturbances is defined as follows:

D(x, u) = {(wφ
k , w`

k, w
s
k) ∈ N3 |0 ≤ wφ

k , 0 ≤ w`
k ≤ x` + u`, 0 ≤ ws

k ≤ xs + us}
(2.3)

While no upper bound is set on the maximum number of arrivals per step,

the limits imposed on w`
k and ws

k simply reflect the fact that the number of

services completed by the disk cannot exceed the number of requests present

in its queue. The transition function resulting from the considerations made

is

xf
k+1 = xf

k − u`
k + ws

k

xq
k+1 = xq

k − u`
k + wφ

k

x`
k+1 = x`

k + u`
k − w`

k

xs
k+1 = xs

k + us
k − ws

k

or in matrix form

xk+1 = f(xk, uk, wk) = Axk + B

 uk

wk

 (2.4)


xf

k+1

xq
k+1

x`
k+1

xs
k+1

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

A


xf

k

xq
k

x`
k

xs
k

 +


−1 0 0 1 0

−1 0 0 0 1

1 0 −1 0 0

0 1 0 −1 0


︸ ︷︷ ︸

B



u`
k

us
k

w`
k

ws
k

wφ
k


.
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The first equation reflects the fact that the number of free frames is decre-

mented by the load control u` (because they are assigned a faulting page),

and so is the number of faults in queue xq
k. The number of free frames xf

is incremented whenever the disk completes a store operation, while xq is

incremented when new faults arise and they are consequently enqueued.

As far as xs and x` are concerned, they are incremented when the page I/O

manager issues new operations (load or store, respectively through u` and

us) and decremented as soon as the disk completes them (reflected by the

values of w` and ws).

If we assume that there is no limit on the number of faults in the fault queue

(xQ = ∞), then it’s easy to see that given an admissible state xk, if uk ∈ U(x)

and wk ∈ D(x, uk) then xk+1 = f(xk) = Axk + Buk is also admissible.

Regarding the modeling of the fault process wφ
k , we have already seen that

it depends in a complex way from the interaction between many components

of the operating system and thus is extremely difficult to capture its true

nature. Therefore, for reasons of mathematical tractability, wφ
k is assumed

as an independent identically distributed stochastic process. Moreover it is

assumed independent from any other event of the VMM system. Clearly this

is not true for real systems: as an example is it clear that it depends on the

number of free frames, in fact an high number of free frames reduces that of

active frames and hence it increases the faulting probability.

Furthermore page faults also depend on each other: if a memory access of a

process raises a page fault, then the process must wait it to be served before

continuing its execution, hence it cannot trigger any more faults.

A common choice in Queue Theory to model arrival processes like wφ
k is to

assume a Poisson distribution, with an average arrival rate per step φ. In

our case, φ represents the number of faults that arise on average in a time

step of length τ . The resulting probability distribution is

P [wφ
k = h] =

e−φφh

h!
∀ h ≥ 0, ∀ k, (2.5)
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that represents the probability of exactly h faults arisen in the time interval

[kτ, (k + 1)τ ].

As far as w` and ws are concerned, it is worth to point out that disk

access times represents the bottleneck for every Virtual Memory Management

system. In fact the secondary memory is by definition slower than primary

memory, but in the case of a disk drive its average access times (of the order

of milliseconds) are much higher than those of the primary memory (of the

order of nanoseconds). Therefore it is of primary importance to understand

its behavior in detail, also because the disk subsystem we are considering

can be managed in very different ways from the operating system. In fact

the I/O request queue is usually maintained with policies that rearrange the

items in order to reduce the service times, while granting at the same time

a certain fairness between them. In this way a more timely service can be

delivered when there are many requests pending in queue. A separate chapter

will be devoted to understand how much this increased throughput can be,

considering some common queuing policies like SSTF and CSCAN. Moreover

the analysis will capture how physical parameters of the disk device, such as

the spinning velocity or the number of tracks, affects its bandwidth, according

to the models we will develop.

While building a statistical model for disk access time, it’s important to

note that the time needed to service a certain I/O request depends both on

the physical address (on the disk device) of such request and on the current

state of the disk, namely the state of the disk head. Since in the model

we are using we are not considering the individual identity of each page, we

don’t know their physical address either. Since adding this information to

the model would be too complicated, we will construct an averaged statistical

model for disk service times.

Although in chapter 3 some rather complex analytical models for the disk
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subsystem will be derived, it is useful to describe the so called b(y)-DS model,

introduced by the authors of [3], that will be often used in the following chap-

ters, mostly for its simplicity. The in depth analysis developed in chapter

3 will also be useful to understand when the b(y)-DS model is appropriate

and, in that case, how to set its parameters properly.

Whichever is the disk subsystem model used, we will always model w`
k

and ws
k as random variables affected solely by the numbers y`

k = x`
k + u`

k and

ys
k = xs

k +us
k, that is the number of load and store requests visible to the disk

during the time interval [kτ, (k + 1)τ ]. By further assuming stationarity, the

disk subsystem model can be described by the probability distribution

P [w`
k = `, ws

k = s|y`
k = i, ys

k = j], (2.6)

where for the definition of admissible disturbances 2.3,

P [w`
k = `, ws

k = s|y`
k = i, ys

k = j] = 0

if ` > i or s > j, because the disk cannot service more request than those

effectively present in queue.

The b(y)-DS disk model proposed in [3] describes the probability 2.6 in terms

of a bandwidth function b(y) : N → [0, 1] with the following properties:

• B0: b(0)=0

• B1: limy→∞ b(y) = 1

• B2: if z > y then b(z) ≥ b(y)

• B3: if z > y then b(z)/z ≤ b(y)/y

In a b(y) disk subsystem, the joint probability distribution 2.6 is such that

E[w`|y` = i, ys = j] = b(i + j)i/(i + j),

E[ws|y` = i, ys = j] = b(i + j)j/(i + j).
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In particular in a Bernoulli b(y)-DS model the probability 2.6 is set in the

following way:

P [w` = 1, ws = 0|y` = i, ys = j] = b(i + j)i/(i + j),

P [w` = 0, ws = 1|y` = i, ys = j] = b(i + j)j/(i + j),

P [w` = 0, ws = 0|y` = i, ys = j] = 1 − b(i + j).

In a b(y)-DS model, if there are y pending request, b(y) are completed on

average in one step, hence b(y) represents the average disk bandwidth, mea-

sured in requests per step. Property B0 implies that no requests are serviced

if there is none, while it is assumed that load and store operations are equally

likely to be served. Property B2 formalizes the fact that the disk bandwidth

increases with the number of requests to be serviced, however property B3

ensures that this growth rate is always sub-linear.

In the particular Bernoulli case, it is assumed that no more than one request

can be serviced in one step, hence the step time τ has to be properly chosen,

otherwise the Bernoulli model is not appropriate. The Bernoulli model will

be adopted for the analysis developed in chapter 5, mostly for its simplicity.

It is important to note that with a b(y)-DS disk subsystem model, the

overall VMM model looses the linearity property because of the non-linear

state feedback introduced by the disk-subsystem. Hence if we want to model

it as a dynamical system with only three inputs (u`
k,u

s
k,w

φ
k ), namely the ones

that are really external to the system, then we have to cope with its inherent

non-linearity.



Chapter 3

The disk I/O subsystem

As we have seen in the previous chapter, disk latencies plays a key role

in determining the performance of any virtual memory system, therefore the

disk subsystem model is likely to have a strong impact on the structure of

the optimal page I/O manager.

If we look at the problem from the perspective of designing a page I/O

manager, the key issue does not seem to give accurate estimates of disk

access times, but rather to understand how much they are influenced by

the number of requests visible to the disk. In fact disk access times have

surely a great impact on the overall performance of the system, but the page

I/O manager has no control over them. Instead it can choose the timings

of the I/O operations to take advantage of the bandwidth increment, that

consequently seems the most important aspect to be modeled.

Given a generic stationary disk subsystem model, that can be described by the

joint probability distribution 2.6, it is always possible to define a bandwidth

function

E[w` + ws|y` = i, ys = j] = b′(i, j).

In most cases there’s no reason to consider asymmetries between load and

store operations, hence b′(i, j) = b(i + j).
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Therefore the aim of this chapter is to understand in depth what are plausi-

ble growth rates of b(·) and, at the same time, how do physical properties of

the disks such as the number of tracks and rotational speed affect it. In this

way we will also be able to obtain some insights about the choice of b(y)-DS

models described in chapter 2.

Once these properties are well understood, it will be much more easy to

tune the page I/O manager for a certain system configuration: for example a

system administrator could simply set a number of of important parameters

(like the number of tracks, the disk’s rotational speed) and the controller will

be able to adjust itself to perform in a semi-optimal way in that setting. This

goal also fits perfectly with the autonomic computing vision ([6]), whose aim

is to split hugely complex systems into a number of interacting, autonomous

and self-governing components.

Consequently, the aim of this chapter is to investigate how the bandwidth of

the disk subsystem is related to the amount of workload it is subjected to.

In particular we suppose that the Operating System maintains a queue of

requests (both load and store operations) for a certain disk, managed with

a scheduling policy. Those requests, passed to the physical device in an or-

der depending on the policy in use, are served by the disk within a certain

amount of time. Our goal is to study how the length k of the queue af-

fects the performance of the systems in terms of mean service time E[T (k)].

The bandwidth function b(·), that represents the average number of request

serviced by the disk in an interval of length τ , can therefore be estimated as

b(k) = τ
1

E[T (k)]
.

In particular we will consider both C-SCAN and SSTF policies in our models

and we’ll be able to solve them analytically proving some useful statistical

results.
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To estimate the average service time, we assume that while the disk is work-

ing, it spins with a fixed angular speed. To perform any kind of operation

on a certain sector, the disk’s head has to move onto the target sector in the

track it belongs to. The time required for the head to reach the right track

is usually called seek time.

Once the head has reached the track, it has to wait until the desired sector

passes beneath it: only at this time the disk controller proceeds issuing the

desired read or write operation. The time spent waiting for the disk to ro-

tate is referred as rotational delay. Summing the rotational delay with the

seek time we obtain a good estimate of the service time, usually called access

time.

We begin defining the physical parameters that describe all of our disk sub-

system models. It’s important to notice that what we call a disk subsystem

is not an existing physical device: in fact it models components that reside

both in the physical disk and in the Operating system (such as the queue

of pending requests). The following parameters will be common to all our

models:

N = number of tracks;

k = number of pending requests;

ω = rotational speed of the disk;

Nsec = number of sectors per track.

Each one of the k requests is represented in our model as a couple (track,

sector), stochastic and therefore described as a random vector (t, s). More-

over we assume that t is statically independent from s, which means that the

desired sector is independent from the desired track and vice versa.

Furthermore we assume that each request is independent from the others

and uniformly distributed on the entire disk, hence t and s are uniformly

distributed random variables in [1, N ] and [1, Nsec] respectively.
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Considered the extremely high sector-per-track density in modern devices,

we will in some cases assume a continue rather than discrete probability

distribution for s. In that case, s represents the desired angular position

onto a track t rather than a certain sector, hence it should be modeled as

a uniformly distributed random variable in the interval [0, 2π]. For reasons

of mathematical tractability, we assume that the various request are statisti-

cally independent from each other. This assumption is rather unrealistic but

provides mathematical tractability to the problem. In practice, however, it

is likely that requests issued at the same time (or in close succession) refer

to logically related sectors of the disk (for example, where the Operating

System keeps the various part of a certain file).

In the next sections of the present chapter a disk subsystem model will be de-

veloped with respect to the most common scheduling policies used by modern

Operating Systems.

3.1 Modified C-SCAN scheduling policy

The first case considered is that of an Operating System maintaining

the I/O request queue according to a variant of the CSCAN (Cyclic Scan)

scheduling algorithm([12]), which is in turn a modified version of the eleva-

tor algorithm. The elevator algorithm, known by this name both in the disk

world and the elevator world, requires the software to maintain one direction

bit. When a request is serviced, the algorithm check the bit: if it is UP, the

arm is moved to the next higher numbered track with a pending request.

If no request are pending at higher positions, the direction bit is reversed.

When the bit is set to DOWN, the move is to the next lower numbered track

with a pending request, if any.

The Cyclic Scan variant works in a very similar way, with the difference that

when the highest numbered track with a pending request has been serviced,
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the arm goes to the lowest-numbered track with a pending request and then

continues moving in an upward direction (sometimes this algorithm is also

called CLOOK).

In the first model we develop, we consider a variant of the previously de-

scribed scheme where the arm keeps scanning the tracks always in the same

direction until the last track is visited, and then comes back to the first one

before repeating the scanning (when the other is called CLOOK, this algo-

rithm is usually referred as the proper CSCAN). By further assuming that

moving from the last track to the first one takes no time, the motion of the

disk head takes a modular form. In fact the resulting motion resembles that

of the hand of a N hours clock, whose inherent symmetry greatly simplifies

the analysis.

Regarding the seek time, we assume that the time needed by the head to

move by exactly m tracks is directly proportional to m according to a con-

stant A. This assumption is certainly realistic for m large enough, namely

in the case in which the head is in motion at constant speed for the most

part of its path. Unfortunately, when m is small the assumption we made

does not hold, because the resulting motion is largely uniformly accelerated,

hence the seek time results proportional to the square root of m. For even

smaller m the seek time is dominated by the so called settle time, in which

the drive controller sets the system to perform the desired task.

Therefore a more realistic function to model the time needed to move by m

tracks, that takes into account also the accelerated motion phase, is

l(m) =

 a
√

m + s if 1 < m < d

Am + s otherwise
(3.1)

In this case s represents a constant settle time, while d reflects the fact that for

small distances the motion is largely uniformly accelerated, while on longer

distances the constant speed phase prevails.

The values of a, A, d and s can usually be deducted from the drive data-sheet
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or by experimental analysis with good precision. As an example, the value

of A can be obtained by dividing the so called full-stroke time (time needed

to move by N tracks) by N .

In this section we study the steady state behavior of the disk, where we sup-

pose that whenever a request is serviced by the disk, another one immediately

enters the queue, thus fixing the queue length at k elements. Moreover we

suppose that the newly entered request has the same uniform probability

distribution and is independent from the other ones. Our objective is to

find an analytical expression for the average service time in this steady state

condition. We define a random variable Tr that represents the time spent in

queue by a request, counted from when it enters the queue till it is serviced

by the disk.

When a new request enters the queue, it will be p tracks distant from the

current position of the head, where 0 ≤ p ≤ N − 1. Moreover, considered

the statistical independence between the requests in queue and the last one

entered, we can affirm that p is uniformly distributed. Therefore on average

the head must cover N−1
2

tracks to reach it, taking an average time of A N−1
2

.

If we disregard the rotational delays, this time equals the average time spent

in queue by a request, that is

E[Tr] = A
N − 1

2
.

According to the assumptions made, k elements are present in the queue

at any time, each one with an average life length equal to E[Tr] = A N−1
2

.

Therefore the overall average frequency at which new requests are enqueued

fλ can be computed from the following formula:

fλ =
2k

A(N − 1)
.

In fact this also represents the overall average frequency at which requests

are serviced, that is clearly equal to k
E[Tr]

.
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The average arrival frequency of new request fλ is also equal to the reciprocal

of the average time elapsed between two consecutive services performed by

the disk, which we call T . Therefore

E[T (k)] =
1

fλ

=
A(N − 1)

2k
.

If we take into account the rotational delays, we have to specify in detail how

the scheduling policy we are modeling handles requests that belong to the

same track, and in particular in which order they are serviced. In our model

we assume that, in case of multiple request on the same track, the system

privileges the one that has been in the queue for the longest time (thus it is

a FIFO like policy).

In this case the average time that elapses between two consecutive services

can be easily computed by summing the time found in the previous case

(when the rotational delay is set to zero) and the average rotational delay.

Again, considered the independence between the requests in queue, the an-

gular distance between the head and the sector to be read on the newly

reached track can be considered a random variable uniformly distributed in

[0, 2π]. Therefore the average distance is π radians, that implies an average

rotational delay of π
ω
. With the preceding definition of T (k),

E[T (k)] =
1

fλ

=
A(n − 1)

2k
+

π

ω
.

Therefore the average frequency fλ at which requests are serviced is

fλ =
1

E[T (k)]
=

2kω

π2k + A(n − 1)ω
.

It is easy to see that in this model the average service time E[T (k)] is a

decreasing function of k, but there is a lower bound imposed by the rotational

delay that, with the assumptions made, cannot be reduced by increasing k.
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3.2 C-SCAN scheduling policy

In the present section we consider a disk I/O queue maintained with

the unmodified Cyclic Scan scheduling policy, as described in the previous

section. Again we consider a set of k request, independent and uniformly

distributed on the entire disk. This time we are interested in studying the

average time needed to serve all of them, that divided by k provides a good

estimate of the average service time.

First of all, we define Nt as the number of tracks with a pending request.

The expected value of Nt can be computed with the following formula

E[Nt(N, k)] = NP [track is requested],

where P [track is requested] is the probability that a certain track has a pend-

ing request. Obviously

P [track is requested] = 1 − P [track is not requested]

where

P [track is not requested] =

(
N − 1

N

)k

,

that means that all the k requests fall into the other N −1 tracks. Therefore

E[Nt(N, k)] = N

(
1 −

(
N − 1

N

)k
)

.

If there are Nt tracks with pending requests, then whichever is the initial

position of the head, the maximum seek length (measured in tracks) is N −
Nt + 1. In fact the maximum track gap between two consecutive tracks with

pending request is N − Nt.

In this context, we are interested in determining the average seek time spent

to serve all the k requests pending, that we call cs(k). To that end, we begin

determining the expected number of seeks that occur at each distance. Then

we multiply this number for the seek cost of that distance, that we call l(j).
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In the case of seek time linearly dependent from the number of tracks covered,

we have

l(j) = Aj.

However a more realistic function, like 3.1, can be adopted without any

problem.

Whichever is the definition l(j), the value of cs(k) can be computed this way

cs(k) =
N−Nt+1∑

j=1

s(j) · l(j), (3.2)

where s(j) is the expected number of seeks of length j. If we assume that

the head begins its job onto the lowest numbered track, then the expected

number of seeks of length j can be deduced from the the probability pj that

a seek has length j, since we already know that exactly Nt − 1 seeks will be

made, hence

s(j) = (Nt − 1)pj.

Let’s consider a pair of successive track with pending requests that are j

tracks apart. This pair can be found in N − j positions. For any pair, there

are (
N − j − 1

Nt − 2

)
positions valid for the other Nt − 2 selected tracks. Therefore the number of

possible ways of picking two consecutive tracks with a pending request that

are j tracks apart is (
N − j − 1

Nt − 2

)
(N − j).

Furthermore, the number of ways of picking two consecutive tracks with a

pending request is

(Nt − 1)

(
N

Nt

)
,

hence the probability pj can be calculated this way

pj =

(
N−j−1
Nt−2

)
(N − j)

(Nt − 1)
(

N
Nt

) .



28 The disk I/O subsystem

Therefore

s(j) =

(
N−j−1
Nt−2

)
(N − j)(

N
Nt

)
if Nt ≥ 2, N ≥ Nt and N − j − 1 ≥ 0.

Finally, by substitution into 3.2,

cs(k) =
N−Nt+1∑

j=1

s(j) · l(j) =
N−Nt+1∑

j=1

(
N−j−1
Nt−2

)
(N − j)(

N
Nt

) · l(j).

Clearly, the formula just found does not take into account the time needed to

go from highest numbered requested track to the lowest-numbered requested

track, simply because we are supposing that the head begins its job onto the

lowest-numbered track with a pending request.

If we want to consider the general situation, we need to estimate the average

time needed to go from the highest numbered requested track to the lowest-

numbered requested track, that we call r(k).

To this end, we consider k discrete random variables ti, i = 1, . . . , k uni-

formly distributed in [1, N ], that represent the numbers of the tracks re-

quested. We need to evaluate

pmm(k, j) = P [ max{t1, . . . , tk} − min{t1, . . . , tk} = j].

To evaluate pmm(k, j), we note that there are

(N − j + 1)

possible intervals made of j consecutive tracks.

The probability that all the k requests fall into an interval of j tracks is(
j

N

)k

.

Given that k requests fall into it, the probability that there is at least one

request onto the first track of the interval and at least one request onto the

last track of the interval, is(
1 +

(
j − 2

j

)k

− 2

(
j − 1

j

)k
)

.
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Therefore

P [max{t1, . . . , tk} − min{t1, . . . , tk} = j − 1] =

(N − j + 1)

(
j

N

)k
(

1 +

(
j − 2

j

)k

− 2

(
j − 1

j

)k
)

,

hence

r(k) =
N∑

j=2

l(j − 1)(N − j + 1)

(
j

N

)k
(

1 +

(
j − 2

j

)k

− 2

(
j − 1

j

)k
)

.

Therefore a better estimation of the average seek time spent to serve all the

k requests pending is

cs(k) = r(k) +
N−Nt+1∑

j=1

(
N−j−1
Nt−2

)
(N − j)(

N
Nt

) · l(j).

As far as the rotational delay is concerned, we consider the overall average

rotational delay spent to service all the k pending requests, that we call cr(k).

Since there are exactly N tracks

cr(k) = Nβ(k),

where β(k) is the average rotational delay per track.

Modern disk drive controllers based on technology such as SCSI can operate

on a queue of requests simultaneously. Therefore, requests for the same track

can be enqueued in the controller so that it can determine the best way of

retrieving the appropriate sectors in order to reduce the overall rotational

delay. Since the controller has detailed information on the head’s position, it

can arrange the requests in a way consistent with the order with which the

desired sectors will pass underneath the head.

If there are j pending request onto a single track, on average they divide the

track (that can be seen as a circle) into j equal parts, each one of 2π
j

radians.

When the head reaches the track after the seek phase it will find itself in the
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middle of one of these parts.

Therefore the overall time needed to service them all is

2π − π
j

ω

if the disk spins at fixed angular speed ω.

The probability of having exactly j request on a track results

P [j req. present] = (
1

N
)j(

N − 1

N
)k−j

(
k

j

)
.

Therefore we can determine cr(k) in the following way

cr(k) = N
k∑

j=1

2π − π
j

ω
(

1

N
)j(

N − 1

N
)k−j

(
k

j

)
.

At this point the total average time needed to service k requests is obviously

ct(k) = cs(k) + cr(k).

It is also possible to obtain an estimate of the average service time by dividing

the total time ct(k) by the number of requests k,

E[T (k)] =
cs(k) + cr(k)

k
.

As a confirmation of the results found, it is possible to see that, assuming a

constant speed motion of the head (that is l(j) = Aj),

lim
k→∞

cr(k) + cs(k) = 2AN + N
2π

ω
,

that implies

lim
k→∞

E[T (k)] = 0.

In fact a fixed and limited amount of time is needed to explore the entire disk,

hence within that time the device is able to service any number of requests.
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3.3 SSTF scheduling policy

In this section we consider an I/O request queue maintained with a Short-

est Service Time First policy, that is essentially a form of shortest-job-first

(SJF) scheduling. With this scheduling algorithm, the next request to be

serviced is chosen as the pending request closest to the current head posi-

tion. This policy provides a substantial improvement in performance, but

may cause starvation of some requests because it does not ensure any kind of

fairness. When an Operating System uses this kind of algorithm, the defini-

tion of distance used is essentially related to the seek time. In fact it usually

does not have any information about the angular position of the head, hence

the scheduling algorithm cannot take into consideration the rotational delays.

However modern disk drive controllers can operate on a queue of requests si-

multaneously, hence they can use a definition of distance that considers both

the seek time needed to reach a certain track with a pending request and the

rotational delay to be spent once the track has been reached. Therefore in

this section we will consider an SSTF operated queue, where the service time

is the actual access time of a request and not only the seek time component.

We start our analysis by supposing that the head begins its duty of serv-

ing k requests onto a generic track x̄. The rotational delay of each of the k

requests, namely the amount of time the head has to wait until the desired

sector will pass underneath the head (once it has reached the destination

track) is uniformly distributed in [0, 2π
ω

]. In fact all the I/O requests are

supposed to be independent and uniformly distributed onto the entire disk.

We call rotational distance of a certain request the amount of time the head

has to wait until the desired sector will pass underneath the head (once it

has reached the destination track).
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We are interested in determining the average rotational distance of the

h-th closest request, where h = 0 refers to the closest one and h = k − 1 to

the farthest( we are only considering the rotational delay and not the seek

time needed to reach the track it belongs to).

To that end, we consider the probability that a gap of j sectors is present

between the head and the request (notice that this time we are considering a

track divided into sectors), and that exactly h other requests belong to this

gap:

Pgap(j, k, h,Nsec) =

(
k

k − h

)
(
Nsec − j

Nsec

)k−h(
j

Nsec

)h(1 − (
Nsec − j − 1

Nsec − j
)k−h).

The average rotational distance of the h-th closest request, rv(q, h,Nsec) can

be calculated in the following way

rv(k, h,Nsec) =
2π

Nsec

Nsec−1∑
j=1

j Pgap(j, k, h,Nsec).

For Nsec → ∞, the k requests tend to divide the track into k parts each one

of 2π
k

, hence

lim
Nsec→∞

rv(k, h,Nsec) =
π(2h + 1)

k
.

To obtain an estimate of the average overall access time (that takes into

account both the rotational delay and the seek time) we can use the following

formula:

c(k) =
k−1∑
i=0

N−1∑
l=0

c(i, l)P (i, l),

where c(i, l) is the overall access time of the i-th request if it is on the track

numbered l, while P (i, l) represents the probability that the i-th request is

chosen by the SSTF algorithm, again if it is on track l. The ordering we

are considering is the one introduced before that is relative to the rotational

distance.

In the case of seek time linearly dependent from the number of tracks covered,
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we have

c(k) =
k−1∑
i=0

N−1∑
l=0

(
rv(k, i, Nsec)

ω
+ Al)P (i, l).

It remains to find an expression for P (i, l), namely the probability that the

i-th closes request (from a rotational distance point of view) is exactly l

tracks apart from the head and, at the same time, it is the one with the

shortest service time, hence the one chosen by the queuing algorithm. To that

end, let’s consider two random variables xf and xj, discrete and uniformly

distributed in [1, N ]. It’s easy to see that

P [ |xf − xj| = l ] =

 1
N

, if l = 0
2(N−l)

N2 , if l 6= 0

Moreover

P [|xf − xj| > l] =


1 , if l < 0

0 , if l > N − 1
2(N(N−l−1)+

(N+l)(1+l−N)
2

)

N2 , otherwise

In fact the following equation holds

N−1∑
k=l+1

P [|xf − xj| = k] =
N−1∑

k=l+1

2(N − k)

N2
=

2(N(N − l − 1) + (N+l)(1+l−N)
2

)

N2
.

Furthermore

P (i, l) = P [i-th is l tracks apart]P [the others have greater access times]

= P [|xf − xj| = l]
k−1∏

s=0,s6=i

P [s-th request has a greater access time]

To estimate the last unknown probability, we try to render in terms of seek

time the advantage (or disadvantage) of the s-th request in comparison with

the i-th from the rotational distance point of view.

We define

n(s, i, l) = b
rv(k,i,Nsec)

ω
+ Al − rv(k,s,Nsec)

ω

A
c.
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When n(s, i, l) − l > 0, request s is closer to the head than request i. In

that case, n(s, i, l) represents the number of tracks needed to amortize the

advantage from the rotational distance point of view. In other words, it

means that request s has a greater access time than request i only if it is at

least n(s, i, l) tracks apart from the head. Therefore

P (i, l) = P [|xf − xj| = l]
k−1∏

s=0,s 6=i

P [|xf − xj| > n(i, s, l)].

By substitution we obtain the following closed form expression for c(k):

c(k) =
k−1∑
i=0

N−1∑
l=0

(
rv(k, i, Nsec)

ω
+ Al)P [|xf − xj| = l]

k−1∏
s=0,s 6=i

P [|xf − xj| > n(i, s, l)].

It is possible to see that c(k) is well approximated by 1√
k
, a fact that can

be interpreted heuristically in the following way. If we imagine to throw k

points at random on a square area in a plane, the average distance between

them decreases as 1√
k
. Now, if we represent the k requests as points in a plane

with coordinates representing respectively the seek and rotational distance,

the 1√
k

approximation does certainly make sense.

As we have already pointed out before, the estimates of the average service

time just found in this section can be used to find suitable growth rates for

the bandwidth function b(·), starting with physical parameters of the disk

known at design time (or at least set by system administrators and hence

known to the page I/O manager).



Chapter 4

Optimal control problem

formulation

In this chapter we will firstly describe in brief some topics of the optimal

control theory and then we will present the optimal control framework de-

veloped by the authors of [3] for the page I/O management problem.

Optimal control deals with the problem of finding a control law for a

given system such that a certain optimality criterion is achieved. In partic-

ular, given a dynamical system, the objective is to minimize a certain cost

function of the system evolution during a given time interval, a mathematical

expression of what is considered an undesirable outcome.

Following the definition of the problem given in [2], we consider a stationary

discrete time dynamic system

xk+1 = f(xk, uk, wk) k = 0, 1, . . . ,

where for all k, the state xk belongs to the state space S, the control uk is

an element of a space C and wk is an element of a space D. The control uk

is constrained to take values in a given non-empty set U(xk), that depends

on the current state xk. The disturbance wk is modeled as a stochastic
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process, in which each random variable is characterized by a probability

distribution P (·, xk, uk) that might explicitly depend on xk and uk but not

on prior disturbances w0, . . . , wk−1. Moreover the random disturbances wk

are supposed to have identical statistics.

Given a time interval T , that can be either finite or infinite, an admissible

control policy π = {µk, k ∈ T} is a sequence of functions S → C such that

µk(xk) ∈ U(xk) for every xk ∈ S, for each k ∈ T . Given such a control policy

π, we say that the system is operated under the control policy π if it evolves

according to the following equation:

xk+1 = f(xk, µk(xk), wk) k = 0, 1, . . . . (4.1)

In other words, the controllable inputs uk are chosen for each k ∈ T as

uk = µk(xk).

4.1 Finite horizon

In the case of a finite time interval T = [0, 1, . . . , N ], the minimiza-

tion problem arises from the definition of an instantaneous cost function

gk(xk, uk, wk) and of a terminal cost gN(xN) incurred at the end of the time

interval depending on final state reached by the system.

The cost function is additive, in the sense that gk(xk, uk, wk), the cost in-

curred at time k, accumulates over time. Because of the presence of wk, the

state trajectory is in general stochastic, hence it is necessary to introduce

an expectation for the minimization problem to be well-defined. Given an

initial state x0 and an admissible control policy π, equation 4.1 makes xk and

wk random variables with well defined probability distributions. Therefore,

given the instantaneous cost functions gk, k ∈ T , the expected cost

Jπ,N(x0) = E[gN(xN) +
N−1∑
k=0

gk(xk, µk(xk), wk)]
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is well defined.

For a given initial state x0, an optimal control policy π∗ is the one that

minimizes the expected cost, or in other words

Jπ∗,N(x0) = min
π∈Π

Jπ,N(x0),

where Π is the set of all admissible policies and Jπ∗,N(·) is the optimal cost

function.

4.2 Infinite horizon

In the case of an infinite time interval T = [0, 1, . . . , ), the analysis is

restricted to stationary systems, where the transition function, the instanta-

neous cost and the disturbance statistics are constant over the time.

The assumption of an infinite number of stages is never satisfied in practice,

but it is a good approximation of situations in which the control horizon is

extremely long. On the contrary, the assumption regarding the stationarity

of the system is often satisfied in practice, or at least it represents a good

approximation of systems described by with slowly changing parameters.

In the case of an infinite time interval, various classes of problems can be

defined, based on the particular metric used to deal with the total cost over

an infinite number of stages.

In this section we will focus our attention only to the optimization of the

average cost per step starting from state i, which is defined by

Jπ(i) = lim sup
N→∞

1

N
E[

N−1∑
k=0

g(xk, µk(xk), wk)|x0 = i],

where π is an admissible control policy under which the system is operated.

Again, the optimal control problem consists in finding the optimal policy π∗,

that is the policy that minimizes the average cost per stage

π∗ = arg min
π∈Π

Jπ(i).
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The optimal average cost per stage is

Jπ∗(i) = min
π∈Π

Jπ(i),

that is in general dependent from the initial state i. However, in most prob-

lem of interest it results independent from the initial state. Moreover in

most cases minimization of the average cost per stage can be achieved by a

stationary policy, that is µk(x) = µ(x) for each k, a fact that makes their

implementation particularly simple.

4.3 Fault service time minimization

In [3] the authors show how the problem of minimizing fault service time

in VMM can be cast as an optimal control problem. In particular, considered

the dynamical description of the system given in chapter 2.2, they manage to

find a suitable cost function. In this section we will briefly summarize their

findings.

Even if the individual history of each fault is not modeled in the system, it

is possible to see that, from the time it is generated until it is serviced, each

fault is either in the fault queue (contributing to xq) or in the disk subsystem

queue (contributing to x`).

Hence a good definition for the instantaneous cost is

g(x, u, w) = g(x) = x` + xq,

which does not depend on time (hence it is stationary and can be conse-

quently used in an average cost per step minimization problem), on the con-

trol and on the disturbance and is only affected by the state of the system.

By setting the terminal cost to zero, the cost function for a finite control

horizon becomes:

Jπ,N(i) = E[
N−1∑
k=0

x`
k + xq

k |x0 = i]. (4.2)
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The cost function represents the average total amount of time spent in queue

by all the faults arisen in the interval [0, N) (including the ones already

present at the beginning of the interval), and is therefore equal to their

average overall service time.

An estimate of the individual average fault service time achieved by a control

policy π can be obtained by dividing Jπ,N(i) by the average number of faults

arisen in [0, N − 1], at least if iq = i` = 0. In the case of Poisson arrival

process described by equation 2.5, the latter is equal to Nφ. In fact

E[
N−1∑
k=0

wφ
k |x0 = i] = NE[wφ

k ] = Nφ,

because the probability distribution of wφ
k is supposed to be independent

from the state xk and from the controllable input uk.

The average fault service time E[T φ] can therefore be estimated as follows:

E[T φ] ≈ Jπ,N(i)

Nφ
.

Moreover it is possible to see that, under assumption typically satisfied by

the dynamical system and by the policy,

E[T φ] =
Jπ(i)

φ
,

a fact that is heuristically confirmed by noticing that

lim
N→∞

Jπ,N(i)

Nφ
=

Jπ(i)

φ

by definition of average cost per stage.

The important consequence of these considerations is that minimizing the

cost function is equivalent to minimize the fault service time, hence the op-

timal control problem formulation is complete. We may now concentrate

our attention to the problem of analyzing the optimal control policy that

minimizes such cost function, a topic covered in chapter 5.
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Chapter 5

Properties of the optimal

control policy

Considered the optimal control framework for the fault service time min-

imization, developed in [3] and described in section 4.3, the goal is to find

an optimal policy. Dynamic programming techniques could be used to solve

the problem, at least when the system spaces are finite. In that case through

a dynamic programming approach it is possible to find both the optimal

control policy π∗ in tabular form and the optimal cost for each initial state.

Even if some problems arise when system spaces are infinite like in our case

(xQ is set to +∞), it is usually possible to approximate the VMM system

with one described by a finite space state. If the state space of the approx-

imate system is large enough, it is possible to apply dynamic programming

techniques to obtain a solution in table form that, in most cases, is a good

approximation of the optimal control policy for the original system.

Unfortunately the space state often results very large, hence in such cases a

control policy in table form is not a good choice in terms of implementation

efficiency. In practice, a closed form feedback law is often necessary to meet

the tight efficiency requirements imposed by the setting in which the con-
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trol algorithm operates. Therefore the role of dynamic programming should

be limited to obtain insights about the the problem and as a benchmark to

compare candidate control policies with the optimal choice.

Moreover the dynamic programming approach needs to know the statistical

description of all the disturbances, including that of the fault process wφ
k . Un-

fortunately, apart from the simplistic description given in chapter 3, a good

statistical description is generally not known at design time and it is very

difficult to obtain one. Moreover it is certainly not stationary, hence even if

a statistical description is known at run time, an online dynamic program-

ming approach would be certainly unpractical for its huge computational

overhead. Therefore a stronger understanding of the problem is needed, to

get the insights needed to develop a closed form control policy that achieves

semi-optimal results under a wide variety of workloads.

In this chapter we will study the problem with reference to the model de-

scribed in chapter 3, to obtain some insights about the structure of the op-

timal control policy. In our particular case there are two controllable inputs

u` and us, hence the optimal control policy for the control horizon T is in

the form:

π∗ = {µk, k ∈ T},

where

µk(x) = (u`
opt(x, k), us

opt(x, k)) k ∈ T.

Throughout this chapter we will always make use of the Bernoulli b(y)-DS

model proposed in [3] and described in chapter 3, mostly for its simplicity.

5.1 Useful reformulations of the cost function

To effectively study the optimal control problem, it is useful to reformu-

late the cost function 4.2 in a way that conveys more clearly the effects of

the controllable inputs on the cost.
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For ease of reference, we rewrite the transition equations 2.4, that describe

the evolution of the system in matrix form:

xk+1 = f(xk, uk, wk) = Axk + B

 uk

wk




xf
k+1

xq
k+1

x`
k+1

xs
k+1

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

A


xf

k

xq
k

x`
k

xs
k

 +


−1 0 0 1 0

−1 0 0 0 1

1 0 −1 0 0

0 1 0 −1 0


︸ ︷︷ ︸

B



u`
k

us
k

w`
k

ws
k

wφ
k


.

For the known properties of linear systems

xk = Akx0 +
k−1∑
i=0

Ak−i−1Bu(i),

but A is the identity matrix, hence

xk = x0 +
k−1∑
i=0

Gu(i) = x0 + G

k−1∑
i=0

u(i).

Therefore the state at time k depends only on the sum of the values of the

total input signal ( that includes both controllable inputs and disturbances),

not on their particular order.

As a consequence,

xq
k = xq

0 +
k−1∑
i=0

wφ
i −

k−1∑
i=0

u`
i , (5.1)

x`
k = x`

0 +
k−1∑
i=0

u`
i −

k−1∑
i=0

w`
i ; (5.2)

by summing equations 5.1 and 5.2 we obtain

x`
k + xq

k = x`
0 −

k−1∑
i=0

w`
i + xq

0 +
k−1∑
i=0

wφ
i . (5.3)
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We recall the definition 4.2 of the cost for an initial state i over a finite

horizon of N steps with control policy π:

Jπ, N(i) = E[
N−1∑
k=0

xq
k + x`

k | x0 = i].

By substituting equation 5.3 into 4.2 we obtain

Jπ, N(i) = E[
N−1∑
k=0

(x`
0 −

k−1∑
n=0

w`
n + xq

0 +
k−1∑
n=0

wφ
n) | x0 = i].

Therefore it easily follows that

Jπ, N(i) = Nx`
0 + Nxq

0 + E[
N−1∑
k=0

(−
k−1∑
n=0

w`
n +

k−1∑
n=0

wφ
n) | x0 = i]

and also

Jπ, N(i) = Nx`
0 + Nxq

0 + E[
N−1∑
k=0

(−
k−1∑
n=0

w`
n + kφ) | x0 = i].

Moreover

Jπ, N(i) = Nx`
0 + Nxq

0 +
N(N − 1)

2
φ − E[

N−1∑
k=0

(
k−1∑
n=0

w`
n) | x0 = i],

or equivalently

Jπ, N(i) = Nx`
0 + Nxq

0 +
N(N − 1)

2
φ − E[

N−1∑
k=1

(
k−1∑
n=0

w`
n) | x0 = i],

that yields the following reformulation of the cost function

Jπ, N(i) = Nx`
0 +Nxq

0 +
N(N − 1)

2
φ−E[

N−2∑
k=0

w`
n(N − 1 − k) | x0 = i], (5.4)

that will be often used while analyzing the optimal control policy. Equation

5.4 also points out that fault service time is directly influenced only by load

operations, stressing the fact that some priority should be given to loads over
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stores on the short term.

The cost function can also be rewritten in the following equivalent forms:

Jπ, N(i) = Nx`
0 + Nxq

0 + E[
N−1∑
k=0

(−
k−1∑
n=0

w`
n +

k−1∑
n=0

wφ
n) | x0 = i]

Jπ, N(i) = Nx`
0 + Nxq

0 + E[
N−1∑
k=0

k−1∑
n=0

(φ − w`
n) | x0 = i]

Jπ, N(i) = Nx`
0 + Nxq

0 + E[
N−2∑
k=0

(φ − w`
k)(N − 1 − k) | x0 = i].

Considering the latter equation, the cost function can be interpreted as the

cumulative length of a queue with wφ
k as arrival process (with an average

arrival rate of φ) and w`
k as departure process.

5.2 The ideal case of unlimited free frames

In this section, we will firstly consider the problem of finding the optimal

control policy in the ideal case of unlimited free frames ( xf
0 = ∞), an highly

advantageous setting in terms of mathematical tractability. In this way we’ll

be able to obtain some useful insights about the way to tackle the original

unrelaxed problem, namely the case in which the number of free frames is

limited. Moreover we will estimate the fault service time associated to the

optimal control policy, that clearly represents a lower bound for the one

relative to the original problem.

5.2.1 The optimal control policy

It is clear by intuition that in this context there is no reason to issue store

operations because with an unlimited pool of free frames there’s never the

need to free more pages. Moreover issuing store operations on average delays

load operations and therefore increases the expected fault service time.



46 Properties of the optimal control policy

As far as the load operations are concerned, intuitively there’s no reason to

delay the forwarding of a load operation to the disk (of course as long as it

is possible to do so, which means that the disk-subsystem queue is not full).

On the contrary, increasing the number of load operations has positive effects

on the bandwidth, therefore we will prove that in this basic case the optimal

control policy is:

µ`
opt(i, k) = µL(i) ∀ i, ∀k, (5.5)

µs
opt(i, k) = 0 ∀ i, ∀k, (5.6)

where uL(i) is the largest admissible value for u` in the state i, that is uL(i) =

min (iq, xD − i` − is + 1).

To prove this statement, let’s recall the alternative formulation 5.4 of the

expected cost Jπ, N(i) over a finite horizon T = [0, N − 1] of N steps with

control policy π and initial state i:

Jπ, N(i) = Nx`
0 + Nxq

0 +
N(N − 1)

2
φ − E[

N−2∑
k=0

w`
k(N − 1 − k) | x0 = i].

It’s clear that for N = 1, Jπ, N(i) is not influenced by the control policy and

depends only on the initial state i.

Since the controllable inputs have effects only on the sum involving w`
k, try-

ing to minimize Jπ, N over the possible control policies π is equivalent to

maximize the following non-negative index

Hπ, N(i) = E[
N−2∑
k=0

w`
k(N − 1 − k) | x0 = i].

We will also call

H∗
N(i) = max

π
Hπ,N(i)

the maximum achievable value of Hπ,N(i) with an admissible control policy

over an horizon of N steps with initial state i. We will prove by induction

the following properties:
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• H∗
N(i) does not depend on if

• H∗
N(i) is monotonically decreasing with is

• H∗
N(i) is monotonically increasing with i`

• u`
opt(i, k) = uL(i) ∀ i, ∀ k = 0 , · · · , N − 2

• us
opt(i, k) = 0 ∀ i, ∀ k = 0 , · · · , N − 2

• H∗
N(xq, x` − 1, xs) + N ≥ H∗

N(xq, x`, xs − 1) ≥ H∗
N(xq, x`, xs)

We choose N = 2 as the base case of induction because, as we have already

seen, Hπ, 1(i) is not well defined, in the sense that Hπ, 1(i) = 0 whichever is

the control policy π. With N = 2 we obtain

Hπ, 2(i) = E[w`
0 | x0 = i] =

b(xs
0 + x`

0 + u`
0 + us

0)

xs
0 + x`

0 + u`
0 + us

0

(x`
0 + u`

0),

where i = (xf
0 , x

q
0, x

`
0, x

s
0) = (if , iq, i`, is). Considered that as an hypothesis

we are considering a disk subsystem whose bandwidth is such that if z ≥ y,

b(z)/z ≤ b(y)/y (which means that increasing the number of request can

never increase the bandwidth per request), it is clear that

us
opt(i, 0) = 0 ∀ i.

Similarly it is easy to prove that

u`
opt(i, 0) = uL(i) ∀ i,

where uL(i) is the largest admissible value for u` in the state i. Therefore

H∗
2 (i) =

b(xs
0 + x`

0 + uL(i))

xs
0 + x`

0 + uL(i)
(x`

0 + uL(i)).

It’s important to note that uL(i) does not depend on the number of free

frames if , essentially because we are considering an ideal case with an un-

limited amount of free pages. In a more realistic case, uL(i) would be limited
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by the number of free frames available, but under the assumptions made

H∗
2 (i) does not depend on if .

With considerations analogous to the one already made, it’s easy to prove

that H∗
N(i) is monotonically decreasing and increasing with is and i` respec-

tively. The last property we need to prove is that

b(xs
0 + x`

0 − 1 + uL(i))

xs
0 + x`

0 − 1 + uL(i)
(x`

0+uL(i)−1)+2 ≥ b(xs
0 − 1 + x`

0 + uL(i))

xs
0 − 1 + x`

0 + uL(i)
(x`

0+uL(i)),

that holds if and only if

−b(xs
0 + x`

0 − 1 + uL(i))

xs
0 + x`

0 − 1 + uL(i)
+ 2 ≥ 0

that is true considered that b(z)/z ≤ 1 . This last property we have proved

could seem quite strange, but it is fundamental for the development of the

proof. In fact, considered a given state i and a certain control law µ(x) =

(u`(i), us(i)), in the general case there are 3 possible events:

• the disk performs a load operation

• the disk performs a store operation

• the disk performs no operation at all

The last property simply means that the most desirable option is the first,

then the second and finally the third. Intuitively, completing a store opera-

tion is slightly better than doing nothing, simply because then future loads

will be less delayed. The importance of this part will be more clear here-

inafter.

Let’s proceed by induction to prove the general case, with a dynamic

programming approach in mind. We consider a general initial state i =

(xf , xq, x`, xs) and we write a recursive formula for H∗
N(i) , assuming H∗

n(j)
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known ∀j, ∀n ≤ N − 1. As we have already said, if we do not consider

the events related to the arrival process wφ
0 ( that is independent from the

system and the controllable inputs), there are 3 possible events related to

the system:

• event A, the disk performs a load operation

• event B, the disk performs a store operation

• event C, the disk performs no operation at all

each of them with an associated probability that depends also on the con-
trollable inputs.
H∗

N(i) can be computed in the following way:

H∗
N (xf , xq , x`, xs) =

max
(u`

0,us
0)∈U(i)

(
(N − 1) + E

w
φ
0
[H∗

N−1(xq − u`
0 + wφ

0 , x` + u`
0 − 1, xs + us

0)]

)
b(xs + x` + u`

0 + us
0)

xs + x` + u`
0 + us

0

(x`
0 + u`

0) +

E
w

φ
0
[H∗

N−1(xq − u`
0 + wφ

0 , x` + u`
0, xs + us − 1)]

b(xs + x` + u`
0 + us

0)

xs + x` + u`
0 + us

0

(xs + us
0) +

E
w

φ
0
[H∗

N−1(xq − u`
0 + wφ

0 , x` + u`
0, xs + us

0)](1 − b(xs + x` + u`
0 + us

0)).

This recursive formula for H∗
N(i) keeps into account the fact that, once one of

the 3 events has happened, we consider to use the optimal policy over N − 1
steps with the newly reached state q as initial state.
The symbol Ewφ

0
[H∗

N−1(x
q − u`

0 + wφ
0 , x` + u`

0 − 1, xs + us
0)] stands for an

expectation taken over the probability distribution of wφ
0 , a random variable

we are supposing independent from anything else in the system. For the
inductive hypothesis we have:

(N − 1) + H∗
N−1(xq − u`

0 + wφ
0 , x` + u`

0 − 1, xs + us
0) ≥ H∗

N−1(xq − u`
0 + wφ

0 , x` + u`
0, xs + us

0 − 1)

and taking an expectation of both sides yields(
(N − 1) + E

w
φ
0
[H∗

N−1(xq − u`
0 + wφ

0 , x` + u`
0 − 1, xs + us

0)]

)
≥ E

w
φ
0
[H∗

N−1(xq−u`
0+wφ

0 , x`+u`
0, xs+us

0−1)].

In a similar way we find:

E
w

φ
0
[H∗

N−1(xq − u`
0 + wφ

0 , x` + u`
0, xs + us

0 − 1)] ≥ E
w

φ
0
[H∗

N−1(xq − u`
0 + wφ

0 , x` + u`
0, xs + us

0)].

These fundamental inequalities mean that when there are N steps left in the

control horizon, the most favorable event for the system is that of a load
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performed by the disk subsystem.

We will now consider the problem of determining the optimal values of u`
0, u

s
0.

From the inductive hypothesis we know that H∗
N−1() is a decreasing function

of xs, therefore it appears clear that increasing us
0 reduces H∗

N(). Unfor-

tunately it’s not so easy to prove this statement because changing us
0 also

changes the probabilities of events A,B,C. In particular it increases the

probability of event B ( a store operation is performed) decreasing the ones

of A e C. By noticing that H∗
N−1() is a decreasing function of xs, the following

inequality holds:

Ewφ
0
[H∗

N−1(x
q−u`

0+wφ
0 , x`+u`

0, x
s)] ≥ Ewφ

0
[H∗

N−1(x
q−u`

0+wφ
0 , x`+u`

0, x
s+us

0−1)]

if us
0 > 0. This means that the worst case ( event C, no operations per-

formed) with us
0 = 0 is still better than event B( a store is performed) with

us
0 > 0. Therefore increasing the probability of event B with us

0 > 0 does not

benefit H∗
N() in any case.

In conclusion, the best option is to choose us
0 = us

opt(i, 0) = 0.

As far as u`
0 is concerned, it’s easy to see that increasing its value not

only increases H∗
N−1() (it’s an increasing function of x`) but it also raises the

probability of event A, which is the most favorable to the system.
Therefore the best option is to choose u`

0 = u`
opt(i, 0) = uL(i).

With these choices for u`
0 and us

0, we have for i = (xf , xq, x`, xs)

H∗
N (i) =

(
(N − 1) + E

w
φ
0
[H∗

N−1(xq − uL(i) + wφ
0 , x` + uL(i) − 1, xs)]

)
b(xs + x` + uL(i))

xs + x` + uL(i)

(
x` + uL(i)

)
+ (5.7)

E
w

φ
0
[H∗

N−1(xq − uL(i) + wφ
0 , x` + uL(i), xs − 1)]

b(xs + x` + uL(i))

xs + x` + uL(i)
(xs) +

E
w

φ
0
[H∗

N−1(xq − uL(i) + wφ
0 , x` + uL(i), xs)]

(
1 − b(xs + x` + uL(i))

)
.

Now it’s easy to see that since uL(i) does not depend on if , neither does

H∗
N(xf , xq, x`, xs). The fact that H∗

N(xq, x`, xs) is a decreasing and increasing

function of xs and x` respectively descends from considerations analogous at

the one carried out while considering the optimal choice for u`
0 and us

0. In

fact increasing xs has the same effect of increasing us
0, and the same property
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holds for x` and u`
0.

It remains to prove that even while considering a control horizon of N steps,

the most favorable event is always that of a load performed by the disk

subsystem, that is:

H∗
N(xq, x` − 1, xs) + N ≥ H∗

N(xq, x`, xs − 1) ≥ H∗
N(xq, x`, xs).

The inequality H∗
N(xq, x`, xs−1) ≥ H∗

N(xq, x`, xs) descends directly from the

monotonicity of H∗
N(·) that we have already proved. Let’s prove that

H∗
N(xq, x` − 1, xs) + N ≥ H∗

N(xq, x`, xs − 1). (5.8)

By the means of equation 5.7, we can think N + H∗
N(xq, x` − 1, xs) as the

expectation of a random variable z defined as follows:

z =


N + (N − 1) + E

w
φ
0
[H∗

N−1(x` − 2 + uL(i), xs, xq − uL(i) + wφ
0 )] = a1 L,L with probability p1

N + E
w

φ
0
[H∗

N−1(x` − 1 + uL(i), xs − 1, xq − uL(i) + wφ
0 )] = a2 L,S with probability p2

N + E
w

φ
0
[H∗

N−1(x` − 1 + uL(i), xs, xq − uL(i) + wφ
0 )] = a3 L,N with probability p3

simply by putting

i = (xf , xq, x` − 1, xs)

p1 = b(xs+x`−1+uL(i))
xs+x`−1+uL(i)

(x` + uL(i) − 1)

p2 = b(xs+x`−1+uL(i))
xs+x`−1+uL(i)

(xs)

p3 = 1 − b(xs + x` − 1 + uL(i)).

In particular, event a1 represents the case of two consecutive loads performed

by the disk subsystem, while event a2 that of a load and a store performed in

that order. If event a3 occurs, the disk subsystem completes a load operation

in the first step and no operation in the second.

Under these assumptions,

N + H∗
N(xq, x` − 1, xs) = E[z] = a1p1 + a2p2 + a3p3.

In an analogous manner we can define

q =


(N − 1) + E

w
φ
0
[H∗

N−1(x` − 1 + uL(j), xs − 1, xq − uL(j) + wφ
0 )] = b2 S,L with probability p̄2

E
w

φ
0
[H∗

N−1(x` + uL(j), xs − 2, xq − uL(j) + wφ
0 )] = b1 S,S with probability p̄1

E
w

φ
0
[H∗

N−1(x` + uL(j), xs − 1, xq − uL(j) + wφ
0 )] = b3 S,N with probability p̄3
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where

j = (xf , xq, x`, xs − 1)

p̄2 = b(xs+x`−1+uL(j))
xs+x`−1+uL(j)

(x` + uL(j))

p̄1 = b(xs−1+x`+uL(j))
xs+x`−1+uL(j)

(xs − 1)

p̄3 = 1 − b(xs − 1 + x` + uL(j)).

In this way we obtain H∗
N(xq, x`, xs − 1) as an expectation of q

H∗
N(xq, x`, xs − 1) = E[q] = b1p̄1 + b2p̄2 + b3p̄3.

Now if we consider the definition of uL(x) = min(xq, xf , xD − x` − xs), with

xf = ∞ we have

i = (xf , xq, x` − 1, xs),

j = (xf , xq, x`, xs − 1),

uL(j) = min (xq, xD − x` − xs + 1) = uL(i),

which also means that p̄3 = p3. Moreover the following inequalities hold

a1 ≥ b1 a2 ≥ b2 a3 ≥ b3.

In fact ,using the inductive hypothesis we obtain

H∗
N−1(x

q − uL(i) + wφ
0 , x` + uL(i), xs − 2) ≤

(N − 1) + H∗
N−1(x

q − uL(i) + wφ
0 , x` − 1 + uL(i), xs − 1) ≤

(N − 1) + (N − 1) + H∗
N−1(x

q − uL(i) + wφ
0 , x` − 2 + uL(i), xs) ≤

(N − 1) + (N) + H∗
N−1(x

q − uL(i) + wφ
0 , x` − 2 + uL(i), xs),

hence taking an expectation on both sides yields

b1 = Ewφ
0
[H∗

N−1(x
q − uL(i) + wφ

0 , x` + uL(i), xs − 2)]) ≤

(N − 1) + (N) + Ewφ
0
[H∗

N−1(x
q − uL(i) + wφ

0 , x` − 2 + uL(i), xs)] = a1.

Obviously

N + H∗
N−1(x

q − uL(i) + wφ
0 , x` + uL(i) − 1, xs − 1) ≥

(N − 1) + H∗
N−1(x

q − uL(i) + wφ
0 , x` + uL(i) − 1, xs − 1),
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which means a2 ≥ b2. Moreover

H∗
N−1(x

q − uL(i) + wφ
0 , x` + uL(i), xs − 1) ≤

(N − 1) + H∗
N−1(x

q − uL(i) + wφ
0 , x` − 1 + uL(i), xs) ≤

N + H∗
N−1(x

q − uL(i) + wφ
0 , x` − 1 + uL(i), xs),

that implies a3 ≥ b3. Furthermore from the inductive hypothesis two more

inequalities hold:

a1 ≥ a2 b2 ≥ b1.

As we have seen so far,

H∗
N(xq, x`−1, xs)+N ≥ H∗

N(xq, x`, xs−1) ⇐⇒ a1p1+a2p2+a3p3 ≥ b1p̄1+b2p̄2+b3p̄3,

where p3 = p̄3. In this case, considered that a3 ≥ b3,

a1p1 + a2p2 ≥ b1p̄1 + b2p̄2 =⇒ a1p1 + a2p2 + a3p3 ≥ b1p̄1 + b2p̄2 + b3p̄3,

where p1 + p2 = p̄1 + p̄2 = 1 − p3. But if we consider that

a1 ≥ a2 ≥ b2 ≥ b1,

it is clear that a1p1 + a2p2 ≥ b1p̄1 + b2p̄2 whichever are the probabilities

p1, p2, p̄1, p̄2. In fact we have that

a1p1 + a2p2

1 − p3

≥ a2 ≥ b2 ≥
b1p̄1 + b2p̄2

1 − p3

which concludes our proof.

5.2.2 An estimate of the fault service time

In this ideal setting of unlimited free frames, it is also useful to estimate

the expected cost associated with the optimal control policy described by

equations 5.5 and 5.6.
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Assuming xf
0 = +∞ and xs

0 = 0, it is easy to see that, at any step k, xf
k = +∞

and xs
k = 0. Therefore the transition equations of interest remain

xq
k+1 = xq

k − u`
k + wφ

k , (5.9)

x`
k+1 = x`

k + u`
k − w`

k. (5.10)

As an additional simplification, we assume xD = ∞ therefore obtaining two

queues with infinite maximum length. Then we have

u`
k = uL(xk) = min (xq

k, x
f
k , x

D − x`
k − xs

k) = xq
k.

By substitution into equations 5.9 and 5.10, we easily obtain:

xq
k = wφ

k−1,

x`
k+1 = x`

k + wφ
k−1 − w`

k.

In this context, x`
k represents the number of requests in the disk subsystem’s

queue at step k, wφ
k−1 the arrival process while w`

k stands for the number of

services completed by the disk in the time interval [k, k + 1]. As we will see,

the average length of this queue is closely related to the average fault service

time. In fact, if the system has reached equilibrium, then let

N = lim
k→∞

E[x`
k]

be the average length of the queue.

If Wi is a random variable that represents the time spent in the queue by

request i before being served, we put

W i = E[Wi],

W = limi→∞ W i.

Then by Little’s Theorem we have

L = φW,
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where φ is the average arrival rate. Now it’s easy to prove that the average

fault service time when there are unlimited free frames is

E[Tuff ] = 1 + W = 1 +
L

φ
,

where the term 1 represents the fact that a fault arriving at step k−1 enters

the disk queue at step k, causing a minimum fault service time of at least

one step.

We begin our study on the dynamics of the queue’s length by noticing that,

under the hypothesis we have made, it is represented by a discrete time

Markov Chain. In fact it’s easy to see that if we choose the length of the

queue as the state of the system, then the transition probabilities depend only

on the current state and not on past events. This assumption descends from

the fact that the arrival process wφ
k−1 is assumed to be independent identically

distributed (i.i.d.) while the probability distribution of the departure process

w`
k is

P [w`
k = 1|x`

k + wφ
k−1 = i] = b(i) = bi

P [w`
k = 0|x`

k + wφ
k−1 = i] = 1 − b(i) = 1 − bi,

thus it is completely specified by the state of the Markov Chain x`
k and by

the value of the random variable wφ
k−1 that is independent from past states

of the Markov chain. Therefore x`
k exhibits the Markov property

P [x`
k+1 = a|xk] = P [x`

k+1 = a|xk,P ],

where P represents any event related to the past history of the process x`
k.

We introduce now another simplification assuming a Bernoulli probability

distribution for wφ
k−1:

P [wφ
k−1 = 1] = φ,

P [wφ
k−1 = 0] = 1 − φ,

E[wφ
k−1] = φ.

In this way we obtain a discrete time Death-Birth process. The graph of

the Markov chain associated to the system becomes that shown in figure 5.1,
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Figure 5.1: Graph of the Markov chain with a Bernoulli arrival process.

where

P [x`
k+1 = i + 1|x`

k = i] = φ(1 − bi+1) = λi

P [x`
k+1 = i − 1|x`

k = i] = (1 − φ)bi = µi

P [x`
k+1 = i|x`

k = i] = (1 − φ)(1 − bi) + bi+1φ .

To derive a stationary distribution, we note that if we find a probability

distribution π(i) such that

π(i)P [i → j] = π(j)P [j → i], (5.11)

then π(i) is a stationary distribution (note that this is not a necessary con-

dition). In our case equation 5.11 becomes:

π(n)φ(1 − bn+1) = π(n + 1)(1 − φ)bn+1,

that is for every n ∈ N

π(n + 1) =
φ(1 − bn+1)

(1 − φ)bn+1

π(n)

that yields

π(n) =
n∏

i=1

φ(1 − bi)

(1 − φ)bi

π(0).

The factor π(0) can be found by noticing that π(·) is a probability distribution

and therefore ∑∞
k=0 π(k) = 1,∑∞

k=0

∏k
i=1

φ(1−bi)
(1−φ)bi

π(0) = 1.
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hence

π(0) =
1∑∞

k=0

∏k
i=1

φ(1−bi)
(1−φ)bi

. (5.12)

We have to pay attention to the fact that the above equations are valid only

if the infinite sum converges; a sufficient condition will be derived for that. If

that happens, we can express the expected length of the queue L in a closed

form formula as follows:

L =
∞∑

k=0

π(k)k.

A sufficient condition for equation (5.12) to be well defined is

∃s ∈ N | φ

bs

< 1,

which means that with a queue of length s the disk has enough bandwidth to

serve on average more requests per step than those that arrive, on average,

in one step. In fact we know that if y ≥ s then by ≥ bs, hence by noticing

that 1−x
x

is monotonically decreasing we have, for every k ≥ s

k∏
i=1

φ(1 − bi)

(1 − φ)bi

≤ φk

(1 − φ)k
α

(
1 − bs

bs

)k−s

,

where α =
∏s

i=1
(1−bi)

bi
. Moreover

∞∑
k=0

k∏
i=1

φ(1 − bi)

(1 − φ)bi

π(0) =
s−1∑
k=0

k∏
i=1

φ(1 − bi)

(1 − φ)bi

π(0) +
∞∑

k=s

k∏
i=1

φ(1 − bi)

(1 − φ)bi

π(0)

≤ a +
∞∑

k=s

φk

(1 − φ)k
α

(
1 − bs

bs

)k−s

= a + αβ
∞∑

k=s

φk

(1 − φ)k

(
1 − bs

bs

)k

= a + αβ
∞∑

k=s

(
φ

bs

)k (
1 − bs

1 − φ

)k

< ∞.

We shall now consider the case of a Poisson distributed arrival process, with

the following probability distribution

P [wφ
k = h] =

φhe−φ

h!
= ah.
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Figure 5.2: Graph of the Markov Chain with a Poisson arrival process.

Like in the Bernoulli case considered before, also in this case the average

number of arrivals per step is φ. The resultant stochastic process that models

the length of the queue is clearly still a Markov Chain but it is not a Death

Birth process anymore. In fact in this new setting it is possible to see more

than one arrival in one single step, as it is represented in figure 5.2 that

shows the graph associated to the Markov Chain. The resulting discrete

time dynamic process has the following transition probabilities:

p0(t + 1) = a0(p0(t) + p1(t)b1) + a1p0(t)b1,

pn(t + 1) =
∑n

i=0 ai(pn−i(t)(1 − bn) + pn+1−ibn+1) + an+1p0(t)bn+1,

where pj(t) is the probability of having j requests in queue at time t and bj

has the same meaning as in the previously considered case.

If we impose the stationary condition pj(t + 1) = pj(t) = π(j) ∀ j ∈ N we

obtain the following set of equations:

π(n) = γnπ(0) ∀n ≥ 0

where

γn+1 =
γn −

∑n
i=1 ai(γn−i(1 − bn) + bn+1γn+1−i) − an+1bn+1 − a0γn(1 − bn)

a0bn+1

and γ0 = 1. If we add the further constraint:

∞∑
k=0

π(k) =
∞∑

k=0

γkπ(0) = 1,
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we obtain the value of π(0) = 1∑∞
k=0 γk

and consequently of π(j) ∀j ∈ N. Now

that we have found a formula for the stationary probabilities of every state,

we easily obtain

L =
∞∑

k=0

π(k)k,

which leads to a closed form formula for the average fault service time E[Tuff ]

in the case of a Poisson arrival process.

The lower bound just found on the fault service time is probably tight

in settings with low fault rates (that is when store operations do not delay

significantly load ones). In fact we are considering a case in which store

operations never delay the loads, hence the more the assumption is realistic

the more the bound is tight.

5.3 Optimal load policy

The aim of this section is to characterize the optimal time-variant control

policy π∗ = {µk, k ∈ T = [0, 1, . . . , N−1]} for the original unrelaxed problem,

with an approach similar to the one developed in the previous section. With

the backwards approach of dynamic programming in mind, it is convenient

to define

π∗(i, k) = (ũ`
opt(i, k), ũs

opt(i, k)) = µN−k(i) = (u`
opt(i, N − k), us

opt(i, N − k)),

that is the optimal controllable inputs to be used for state i when there are

k − 1 steps left of the control horizon.

In particular, if the control horizon is in the form [0, 1, . . . , N−1] then π∗(i, k)

is relative to time N − k.

In particular we will prove that, with a control horizon of N steps, π∗(i, k)
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is always in the form:

π∗(i, k) = (ũ`
opt(i, k), ũs

opt(i, k)) = (uL(i), ũs
opt(i, k)) ∀ i, ∀ k = 1 . . . N,

where uL(i) is the largest admissible value for u` in the state i, that is uL(i) =

min (if , iq, xD − il − is). In this way the dimensionality of the minimization

problem is reduced from 2 to 1, since the remaining unknown part regards

only the optimal number of store operations to be issued.

To prove this statement, let’s recall the reformulation 5.4 of the expected

cost Jπ, N(i) over a finite horizon of N steps with control policy π and initial

state i:

Jπ, N(i) = Nxl + Nxq +
N(N − 1)

2
φ − E[

N−2∑
k=0

w`
k(N − 1 − k) | x0 = i].

It’s clear that for N = 1, Jπ, N(i) is not influenced by the control policy and

depends only on the initial state i.

Since the controllable inputs have effects only on the sum involving w`
k, try-

ing to minimize Jπ, N over the possible control policies π is equivalent to

maximize the following non negative index

Hπ, N(i) = E[
N−2∑
k=0

w`
k(N − 1 − k) | x0 = i].

We will also call

H∗
N(i) = max

π
Hπ,N(i)

the largest achievable value of Hπ,N(i) with an admissible control policy π

over an horizon of N steps with initial state i. We will prove by induction

the following properties:

• ũ`
opt(i, k) = uL(i) ∀ i, ∀ k = 1 , · · · , N

• H∗
N(xf , xq, xl − 1, xs) + N > H∗

N(xf + 1, xq, xl, xs − 1)
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• H∗
N(xf , xq + 1, xl − 2, xs + 1) + N ≥ H∗

N(xf , xq, xl, xs − 1) if xf = 0

• ∀ π, there exists π′ such that Hπ′, N(xf − 1, xq − 1, x` + 1, xs − 1) ≥
Hπ, N(xf , xq, xl, xs)

• ∀ π, there exists π′ such that Hπ′, N(xf − 1, xq − 1, x` + 1, xs) ≥
Hπ, N(xf , xq, xl, xs)

We choose N = 2 as the base case of induction because, as we have already

seen, Hπ, 1(i) is not well defined, in the sense that Hπ, 1(i) = 0 whichever is

the control policy π. Therefore we can choose ũ`
opt(i, 1) = uL(i) ∀ i, keeping

in mind that any other choice would be correct.

With N = 2 we obtain

Hπ, 2(i) = E[w`
0 | x0 = i] =

b(xs + xl + ul
0 + us

0)

xs + xl + ul
0 + us

0

(xl + ul
0),

where i = (xf , xq, x`, xs) = (if , iq, i`, is). Considered that as an hypothesis

we are considering a disk subsystem whose bandwidth is such that if z ≥ y,

b(z)/z ≤ b(y)/y (which means that increasing the number of request can

never increase the bandwidth per request), it is clear that

ũs
opt(i, 2) = 0 ∀ i.

Similarly it is easy to prove that

ũ`
opt(i, 2) = uL(i) ∀ i,

where uL(i) is the largest admissible value for u` in the state i. Therefore

H∗
2 (i) =

b(xs + x` + uL(i))

xs + x` + uL(i)
(x` + uL(i)).

Moreover

uL(xf , xq, x` − 1, xs) = min(xf , xq, xD − x` − xs + 1),

uL(xf+1, xq, x`, xs−1) = min(xf+1, xq, xD−x`−xs+1) ≤ min(xf , xq, xD−x`−xs+1)+1.
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As a consequence, if i = (xf , xq, x` − 1, xs) then

H∗
2 (xf + 1, xq, x`, xs − 1) ≤ b(xs − 1 + x` + uL(i) + 1)

xs − 1 + x` + uL(i) + 1
(x` + uL(i) + 1)

≤ b(xs − 1 + x` + uL(i))

xs − 1 + x` + uL(i)
(x` + uL(i) + 1)

and also

H∗
2 (xf , xq, x` − 1, xs) + 2 =

b(xs + x` − 1 + uL(i))

xs + x` − 1 + uL(i)
(x` + uL(i) − 1) + 2.

Therefore we can prove the second part of the base case by the following

inequalities

H∗
2 (xf , xq, x` − 1, xs) + 2 − H∗

2 (xf + 1, xq, x`, xs − 1) ≥
b(xs + x` − 1 + uL(i))

xs + x` − 1 + uL(i)
(x` + uL(i) − 1) + 2 − b(xs − 1 + x` + uL(i))

xs − 1 + x` + uL(i)
(x` + uL(i) + 1)

= −2
b(xs + x` − 1 + uL(i))

xs + x` − 1 + uL(i)
+ 2 ≥ 0

considered that b(z)/z ≤ 1 .

Similarly, if i = (xf , xq, x`, xs − 1) and j = (xf , xq + 1, x` − 2, xs + 1)

uL(i) = min(xf , xq, xD − x` − xs + 1)

and

uL(j) = min(xf , xq + 1, xD − x` − xs + 1),

and consequently

uL(j) ≥ uL(i).

Furthermore

H∗
2 (xf , xq, x`, xs − 1) = H∗

2 (i) =
b(xs + x` − 1 + uL(i))

xs + x` − 1 + uL(i)
(x` + uL(i)),

while

H∗
2 (xf , xq + 1, x` − 2, xs + 1) + 2 = H∗

2 (j) + 2 =

=
b(xs + x` − 1 + uL(j))

xs + x` − 1 + uL(j)
(x` − 2 + uL(j)) + 2 ≥

b(xs + x` − 1 + uL(i))

xs + x` − 1 + uL(i)
(x` − 2 + uL(i)) + 2.
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Hence

H∗
2 (xf , xq + 1, x` − 2, xs + 1) + 2 − H∗

2 (xf , xq, x`, xs − 1) ≥
b(xs + x` − 1 + uL(i))

xs + x` − 1 + uL(i)
(x` − 2 + uL(i)) + 2 − b(xs + x` − 1 + uL(i))

xs + x` − 1 + uL(i)
(x` + uL(i))

= −2
b(xs + x` − 1 + uL(i))

xs + x` − 1 + uL(i)
+ 2.

Since we know that

−2
b(xs + x` − 1 + uL(i))

xs + x` − 1 + uL(i)
+ 2 ≥ 0

then

H∗
2 (xf , xq + 1, x` − 2, xs + 1) + 2 − H∗

2 (xf , xq, x`, xs − 1) ≥ 0.

It remains to prove that for every policy π, there exists π′ such that

Hπ′, 2(x
f − 1, xq − 1, x` + 1, xs − 1) ≥ Hπ, 2(x

f , xq, x`, xs).

In particular we can choose π′ as the optimal control policy π∗, hence if

H∗
2 (xf − 1, xq − 1, x` + 1, xs − 1) ≥ H∗

2 (xf , xq, x`, xs)

then

Hπ′, 2(x
f − 1, xq − 1, x` + 1, xs − 1) = H∗

2 (xf − 1, xq − 1, x` + 1, xs − 1)

≥ H∗
2 (xf , xq, x`, xs) ≥ Hπ, 2(x

f , xq, x`, xs),

whichever is π. If we put i = (xf − 1, xq − 1, x` + 1, xs − 1) then

H∗
2 (xf − 1, xq − 1, x` + 1, xs − 1) =

b(xs + x` + uL(i))

xs + x` + uL(i)
(x` + 1 + uL(i)).

If j = (xf , xq, x`, xs) then uL(j) ≤ uL(i) + 1, hence

Hπ, 2(x
f , xq, x`, xs) =

b(xs + x` + uL(j))

xs + x` + uL(j)
(x` + uL(j))

≤ b(xs + x` + 1 + uL(i))

xs + x` + 1 + uL(i)
(x` + uL(i) + 1)

≤ b(xs + x` + uL(i))

xs + x` + uL(i)
(x` + uL(i) + 1) = H∗

2 (xf − 1, xq − 1, x` + 1, xs − 1)
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that concludes the proof for the base case of induction.

As far as the inductive step is concerned, let’s consider a generic state

i = (xf , xq, x`, xs) and a generic control policy π such that the controllable

inputs for state i are

π(i, N) = (u`(i, N), us(i, N))

for a control horizon of N steps. Thus if it is in the form [0, 1, . . . , N−1], then

(u`(i, N), us(i, N)) are the controls used by the policy π at time 0. We will

refer to this kind of time interval hereinafter, without any loss of generality

considered that the dynamical system is time-invariant.

We wish to prove that if (u`(i, N) + 1, us(i, N)− 1) is an admissible control,

then there exists a new policy π′ that performs better, in the sense that

Hπ′, N(i) > Hπ, N(i)

and consequently π is not optimal.

Since for the optimal substructure property an optimal policy over N steps

is also optimal over the remaining N − 1 steps, we can assume that

Hπ, N−1(x
f , xq, x` − 1, xs) + (N − 1) ≥ Hπ, N−1(x

f + 1, xq, x`, xs − 1)

because otherwise π could not be optimal.

With π as a control policy and i as initial state, considered the transition

equations, the newly reached state has the following form:

(x1|x0 = i, π) = (xf−u`(i, N)+ws
0, x

q−u`(i, N)+wφ
0 , x`+u`(i, N)−w`

0, x
s+us(i, N)−ws

0).

We choose π′ such that the controllable inputs in state i are

π′(i, N) = (u`(i, N) + 1, us(i, N) − 1) = (u` + 1, us − 1)

hence

(x1|x0 = i, π′) =

(xf − u` − 1 + ws
0, x

q − u` − 1 + wφ
0 , x

` + u` + 1 − w`
0, x

s + us − 1 − ws
0).
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While comparing the two policies, it’s possible to note that wφ
0 = wφ

0 since

it is an exogenous input independent from anything else in the system, so

they both have the same probability distribution. Moreover, considered its

independence from the other stochastic variables, the joint probability dis-

tribution can be factorized.

By the means of Bellman equation:

Hπ, N(i) = Ewφ
0
[(Hπ, N−1(i

`
π) + (N − 1))P [ws

0 = 0, w`
0 = 1] +

Hπ, N−1(i
s
π)P [ws

0 = 1, w`
0 = 0] + Hπ, N−1(i

N
π )P [ws

0 = 0, w`
0 = 0]],

where

(i`π) = (xf − u`, xq − u` + wφ
0 , x` + u` − 1, xs + us),

(isπ) = (xf − u` + 1, xq − u` + wφ
0 , x` + u`, xs + us − 1),

(iNπ ) = (xf − u`, xq − u` + wφ
0 , x` + u`, xs + us),

and Ewφ
0
[·] stands for an expectation taken using the probability distribution

of wφ
0 .

With π′ as a control policy it becomes

Hπ′, N(i) = Ewφ
0
[(Hπ′, N−1(i

`
π′) + (N − 1))P [ws

0 = 0, w`
0 = 1] +

Hπ′, N−1(i
s
π′)P [ws

0 = 1, w`
0 = 0] + Hπ′, N−1(i

N
π′)P [ws

0 = 0, w`
0 = 0]],

where in this case

(i`π′) = (xf − u` − 1, xq − u` − 1 + wφ
0 , x` + u` + 1 − 1, xs + us + 1),

(isπ′) = (xf − u` − 1 + 1, xq − u` − 1 + wφ
0 , x` + u` + 1, xs + us + 1 − 1),

(iNπ′) = (xf − u` − 1, xq − u` − 1 + wφ
0 , x` + u` + 1, xs + us + 1).

For the inductive hypothesis we know that ∀ π, there exists π′ such that

Hπ′, N−1(x
f − 1, xq − 1, x` + 1, xs − 1) ≥ Hπ, N−1(x

f , xq, x`, xs), thus we can

choose π′ such that

Hπ′, N−1(i
`
π′) ≥ Hπ, N−1(i

`
π),

Hπ′, N−1(i
s
π′) ≥ Hπ, N−1(i

s
π),

Hπ′, N−1(i
N
π′) ≥ Hπ, N−1(i

N
π ).
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Therefore

Hπ′, N(i) ≥ (Hπ, N−1(i
`
π) + (N − 1))P [ws

0 = 0, w`
0 = 1] +

Hπ, N−1(i
s
π)P [ws

0 = 1, w`
0 = 0] + Hπ, N−1(i

N
π )P [ws

0 = 0, w`
0 = 0].

As far as the probabilities are concerned, the following inequalities hold:

P [ws
0 = 0, w`

0 = 1] > P [ws
0 = 0, w`

0 = 1],

P [ws
0 = 1, w`

0 = 0] < P [ws
0 = 1, w`

0 = 0],

P [ws
0 = 0, w`

0 = 0] = P [ws
0 = 0, w`

0 = 0].

At this point, since we know that (Hπ, N−1(i
`
π)+ (N − 1)) > Hπ, N−1(i

s
π), it’s

easy to see that

Hπ′, N(i) > Hπ, N(i),

whichever is the probability distribution of wφ
0 .

Let’s now consider a generic state i = (xf , xq, x`, xs) and a generic control

policy π such that the controllable inputs for state i are

π(i, N) = (u`(i, N), us(i, N)).

We will prove that if (u`(i, N) + 1, us(i, N)) is an admissible control, then

there exists a new policy π′ that performs better, in the sense that

Hπ′, N(i) > Hπ, N(i)

and hence π is not optimal.

With π as a control policy and i as initial state, considered the transition

equations, the newly reached state has the following form:

(x1|x0 = i, π) = (xf−u`(i, N)+ws
0, x

q−u`(i, N)+wφ
0 , x`+u`(i, N)−w`

0, x
s+us(i, N)−ws

0).



5.3 Optimal load policy 67

We choose π′ such that the controllable inputs in state i when there are N−1

steps left are

(u`(i, N) + 1, us(i, N)) = (u` + 1, us),

and consequently

(x1|x0 = i, π′) =

(xf − u` − 1 + ws
0, x

q − u` − 1 + wφ
0 , x

` + u` + 1 − w`
0, x

s + us − ws
0).

In this case

(i`π′) = (xf − u` − 1, xq − u` − 1 + wφ
0 , x` + u` + 1 − 1, xs + us),

(isπ′) = (xf − u` − 1 + 1, xq − u` − 1 + wφ
0 , x` + u` + 1, xs + us − 1),

(iNπ′) = (xf − u` − 1, xq − u` − 1 + wφ
0 , x` + u` + 1, xs + us).

For the inductive hypothesis we know that ∀ π, there exists π′ such that

Hπ′, N−1(x
f − 1, xq − 1, x` + 1, xs) ≥ Hπ, N−1(x

f , xq, x`, xs), hence we can

choose π′ such that

Hπ′, N−1(i
`
π′) ≥ Hπ, N−1(i

`
π),

Hπ′, N−1(i
s
π′) ≥ Hπ, N−1(i

s
π),

Hπ′, N−1(i
N
π′) ≥ Hπ, N−1(i

N
π ).

Therefore

Hπ′, N(i) ≥ (Hπ, N−1(i
`
π) + (N − 1))P [ws

0 = 0, w`
0 = 1] +

Hπ, N−1(i
s
π)P [ws

0 = 1, w`
0 = 0] + Hπ, N−1(i

N
π )P [ws

0 = 0, w`
0 = 0].

As far as the probabilities are concerned, the following inequalities hold:

P [ws
0 = 0, w`

0 = 1] > P [ws
0 = 0, w`

0 = 1],

P [ws
0 = 1, w`

0 = 0] < P [ws
0 = 1, w`

0 = 0],

P [ws
0 = 0, w`

0 = 0] = P [ws
0 = 0, w`

0 = 0].

At this point, since we know that (Hπ, N−1(i
`
π)+ (N − 1)) > Hπ, N−1(i

s
π), it’s

easy to see that

Hπ′, N(i) > Hπ, N(i),
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whichever is the probability distribution of wφ
0 .

Therefore we have proved that any control policy π such that it does not

issue the maximum number of load operations possible for very state i is not

optimal. Consequently

ũ`
opt(i, N) = uL(i) ∀ i.

Now let’s consider a generic state j = (xf − 1, xq − 1, x` + 1, xs − 1) and

a generic control policy π; we need to show that there exists π′ such that

Hπ′, N(xf − 1, xq − 1, x` + 1, xs − 1) ≥ Hπ, N(xf , xq, x`, xs).

If we put i = (xf , xq, x`, xs), let (u`(i, N), us(i, N)) be the controllable inputs

chosen by the policy π.

u`(i, N) ≤ uL(i) = min (xq, xf , xD − x` − xs),

us(i, N) ≤ uS(i) = min (xF − xs − xf , xD − x` − xs − u`(i, N)),

uL(j) = min (xq − 1, xf − 1, xD − x` − xs) ≥ uL(i) − 1.

Now if u`(i, N) = u` 6= 0 then u`(i, N) − 1 is an admissible control for state

j. In that case

uS(j) = min (xF − xs − xf + 2, xD − x` − xs − u`(i, N) + 1) ≥ uS(i) + 1.

Therefore we can choose π′ such that the controllable inputs for state j are

(u`(i, N) − 1, us(i, N) + 1).

With this choice,

(x1|x0 = i, π)

= (xf − u`(i, N) + ws
0, x

q − u`(i, N) + wφ
0 , x` + u`(i, N) − w`

0, x
s + us(i, N) − ws

0),

(x1|x0 = j, π′) = (x1|x0 = i, π)

= (xf − u`(i, N) + ws
0, x

q − u`(i, N) + wφ
0 , x` + u`(i, N) − w`

0, x
s + us(i, N) − ws

0).
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Therefore if we choose π′(x, k) = π(x, k) ∀ k = 1, . . . , N − 1 we get

Hπ′, N(xf − 1, xq − 1, x` + 1, xs − 1) = Hπ, N(xf , xq, x`, xs).

Otherwise if u`(i, N) = u` = 0, we can choose π′ such that the controllable

inputs for state j are

(0, us(i, N)).

With this choice,

(x1|x0 = i, π) = (xf + ws
0, x

q + wφ
0 , x` − w`

0, x
s + us(i, N) − ws

0),

(x1|x0 = j, π′) = (xf − 1 + ws
0, x

q − 1 + wφ
0 , x` + 1 − w`

0, x
s − 1 + us(i, N) − ws

0).

At this point we can use the same argument used before to show that

Hπ′, N(xf − 1, xq − 1, x` + 1, xs − 1) > Hπ, N(xf , xq, x`, xs). In fact if we

put

(i`π′) = (xf − 1, xq − 1 + wφ
0 , x` + 1 − 1, xs − 1 + us),

(isπ′) = (xf − 1 + 1, xq − 1 + wφ
0 , x` + 1, xs − 1 + us − 1),

(iNπ′) = (xf − 1, xq − 1 + wφ
0 , x` + 1, xs − 1 + us),

and

(i`π) = (xf , xq + wφ
0 , x` − 1, xs + us),

(isπ) = (xf + 1, xq + wφ
0 , x`, xs + us − 1),

(iNπ ) = (xf , xq + wφ
0 , x`, xs + us),

we can use exactly the same argument.

A very similar argument can be developed to show that for every admis-

sible policy π, there exists π′ such that Hπ′, N(xf − 1, xq − 1, x` + 1, xs) ≥
Hπ, N(xf , xq, x`, xs). If we put i = (xf , xq, x`, xs), let π(i, N) = (u`(i, N), us(i, N))

be the controllable inputs chosen by the policy π.

u`(i, N) ≤ uL(i) = min (xq, xf , xD − x` − xs),

us(i, N) ≤ uS(i) = min (xF − xs − xf , xD − x` − xs − u`(i, N)).
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Let’s call j = (xf − 1, xq − 1, x` + 1, xs), then

uL(j) = min (xq − 1, xf − 1, xD − x` − xs − 1) = uL(i) − 1.

Now if u`(i, N) = u` 6= 0 then u`(i, N) − 1 is an admissible control for state

j. In that case

uS(j) = min (xF − xs − xf + 1, xD − x` − xs − u`(i, N)) ≥ uS(i).

Therefore we can choose π′ such that the controllable inputs for state j are

(u`(i, N) − 1, us(i, N)).

With this choice,

(x1|x0 = i, π) = (xf−u`(i, N)+ws
0, x

q−u`(i, N)+wφ
0 , x`+u`(i, N)−w`

0, x
s+us(i, N)−ws

0),

(x1|x0 = j, π′) = (x1|x0 = i, π)

(xf − u`(i, N) + ws
0, x

q − u`(i, N) + wφ
0 , x` + u`(i, N) − w`

0, x
s + us(i, N) − ws

0).

Therefore if we choose π′(x, k) = π(x, k) ∀ k = 1, . . . , N − 1 we get

Hπ′, N(xf − 1, xq − 1, x` + 1, xs − 1) = Hπ, N(xf , xq, x`, xs).

The case u`(i, N) = 0 is solved by putting the controllable inputs for state j

(0, us(i, N))

and the using the same argument developed for the previous case.

It remains to prove that

H∗
N(xf , xq, x` − 1, xs) + N > H∗

N(xf + 1, xq, x`, xs − 1).

If we put i = (xf + 1, xq, x`, xs − 1), let π∗(i, N) = (u`(i, N), us(i, N)) =

(uL(i), us(i, N)) = (u`, us) be the controllable inputs chosen by the optimal
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control policy π∗.

uL(i) = min (xq, xf + 1, xD − x` − xs + 1),

us(i, N) ≤ uS(i) = min (xF − xs − xf , xD − x` − xs − uL(i) + 1).

Let’s call j = (xf , xq, x` − 1, xs); then

uL(j) = min (xq, xf , xD − x` − xs + 1).

There are two possible cases: uL(j) = uL(i) and uL(j) = uL(i) − 1 and we

will consider them separately.

If uL(j) = uL(i) then (uL(i), us(i, N)) is an admissible set of controls for

state j. In fact

uS(j) = min (xF − xs − xf , xD − x` − xs − uL(i) + 1) = uS(i).

We define a control policy π′ such that the controllable inputs in j are exactly

(uL(i), us(i, N)). With this choice,

(x1|x0 = i, π∗) =

(xf + 1 − u`(i, N) + ws
0, x

q − u`(i, N) + wφ
0 , x` + u`(i,N) − w`

0, x
s − 1 + us(i,N) − ws

0),

while

(x1|x0 = j, π′) =

(xf − u`(i,N) + ws
0, x

q − u`(i,N) + wφ
0 , x` − 1 + u`(i,N) − w`

0, x
s + us(i,N) − ws

0).

By the means of Bellman equation:

Hπ∗, N(i) = Ewφ
0
[(Hπ∗, N−1(i

`
π) + (N − 1))P [ws

0 = 0, w`
0 = 1] +

Hπ∗, N−1(i
s
π)P [ws

0 = 1, w`
0 = 0] + Hπ∗, N−1(i

N
π )P [ws

0 = 0, w`
0 = 0]],

where

(i`π) = (xf + 1 − u`, xq − u` + wφ
0 , x` + u` − 1, xs − 1 + us),

(isπ) = (xf + 1 − u` + 1, xq − u` + wφ
0 , x` + u`, xs − 1 + us − 1),

(iNπ ) = (xf + 1 − u`, xq − u` + wφ
0 , x` + u`, xs − 1 + us).
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Regarding π′

Hπ′, N(j) = Ewφ
0
[(Hπ′, N−1(j

`
π′) + (N − 1))P [ws

0 = 0, w`
0 = 1] +

Hπ′, N−1(j
s
π′)P [ws

0 = 1, w`
0 = 0] + Hπ′, N−1(j

N
π′ )P [ws

0 = 0, w`
0 = 0]],

where in this case

(j`
π′) = (xf − u`, xq − u` + wφ

0 , x` + u` − 1 − 1, xs + us),

(js
π′) = (xf − u` + 1, xq − u` + wφ

0 , x` + u` − 1, xs + us − 1),

(jN
π′ ) = (xf − u`, xq − u` + wφ

0 , x` + u` − 1, xs + us).

We can also write

Hπ′, N(j) + N = Ewφ
0
[(Hπ′, N−1(j

`
π′) + (N − 1) + N)P [ws

0 = 0, w`
0 = 1] +

(Hπ′, N−1(j
s
π′) + N)P [ws

0 = 1, w`
0 = 0] + (Hπ′, N−1(j

N
π′ ) + N)P [ws

0 = 0, w`
0 = 0]].

If we put π′(x, k) = π∗(x, k) ∀ k ≤ N −1, then for the inductive hypothesis

Hπ′, N−1(j
N
π′ ) + (N − 1) = Hπ∗, N−1(j

N
π′ ) + (N − 1) ≥ Hπ∗, N−1(i

N
π ).

Moreover

Hπ′, N−1(j
N
π′ ) + (N) = Hπ∗, N−1(j

N
π′ ) + (N) ≥ Hπ∗, N−1(i

N
π ).

It’s also possible to see that P [ws
0 = 0, w`

0 = 0] = P [ws
0 = 0, w`

0 = 0].

Hence if

(Hπ′, N−1(j`
π′) + (N − 1) + N)P [ws

0 = 0, w`
0 = 1] + (Hπ′, N−1(js

π′) + N)P [ws
0 = 1, w`

0 = 0]

> (5.13)

(Hπ∗, N−1(i`π) + (N − 1))P [ws
0 = 0, w`

0 = 1] + Hπ∗, N−1(isπ)P [ws
0 = 1, w`

0 = 0],

then

Hπ′, N(j) + N > Hπ∗, N(i).

Considered that

(js
π′) = (i`π),
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the following inequality holds

(Hπ′, N−1(j
s
π′) + N) > (Hπ∗, N−1(i

`
π) + (N − 1)),

but also from the inductive hypothesis

(Hπ′, N−1(j
`
π′) + (N − 1) + N) > (Hπ′, N−1(j

s
π′) + N) >

(Hπ∗, N−1(i
`
π) + (N − 1)) > Hπ∗, N−1(i

s
π).

Therefore whichever are the probabilities P [ws
0 = 0, w`

0 = 1] and P [ws
0 =

1, w`
0 = 0], inequality (5.13) is satisfied.

Considered that by definition of the optimal control policy Hπ∗, N(j) ≥
Hπ′, N(j), we have that

Hπ∗, N(j) + N ≥ Hπ′, N(j) + N > Hπ∗, N(i),

which concludes this case of the proof.

If

min (xq, xf + 1, xD − x` − xs + 1) = xf + 1 = uL(i),

then uL(j) = uL(i)−1. In this case (uL(i)−1, us(i, N)+1) is an admissible set

of controls for state j. In fact if we assume xF is large enough (xF > 2(xD+1)

suffices), then

uS(j) = min (xF − xs − xf , xD − x` − xs − uL(i) + 2) =

xD − x` − xs − uL(i) + 2 = uS(i) + 1.

In our model, uL(j) = uL(i)−1 only if xf is small, hence if xF is large enough

uS is imposed by the maximum length xD of the disk’s queue, not by xF .

We define a control policy π′ such that the controllable inputs in j are exactly

(uL(i) − 1, us(i, N) + 1). With this choice,

(x1|x0 = i, π) = (ws
0, x

q − uL(i) + wφ
0 , x` + uL(i)−w`

0, x
s + us(i, N)− 1−ws

0),
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(x1|x0 = j, π′) =

(ws
0, x

q − uL(i) + 1 + wφ
0 , x` − 1 + uL(i) − 1 − w`

0, x
s + us(i, N) + 1 − ws

0).

By the means of Bellman equation:

Hπ∗, N(i) = Ewφ
0
[(Hπ∗, N−1(i

`
π) + (N − 1))P [ws

0 = 0, w`
0 = 1] +

Hπ∗, N−1(i
s
π)P [ws

0 = 1, w`
0 = 0] + Hπ∗, N−1(i

N
π )P [ws

0 = 0, w`
0 = 0]],

where

(i`π) = (0, xq − u` + wφ
0 , x` + u` − 1, xs − 1 + us),

(isπ) = (1, xq − u` + wφ
0 , x` + u`, xs − 1 + us − 1),

(iNπ ) = (0, xq − u` + wφ
0 , x` + u`, xs − 1 + us).

The values of the index H with π′ is

Hπ′, N(j) = Ewφ
0
[(Hπ′, N−1(j

`
π′) + (N − 1))P [ws

0 = 0, w`
0 = 1] +

Hπ′, N−1(j
s
π′)P [ws

0 = 1, w`
0 = 0] + Hπ′, N−1(j

N
π′ )P [ws

0 = 0, w`
0 = 0]],

where in this case

(j`
π′) = (0, xq + 1 − u` + wφ

0 , x` − 1 + u` − 1 − 1, xs + us + 1),

(js
π′) = (1, xq + 1 − u` + wφ

0 , x` − 1 + u` − 1, xs + us + 1 − 1),

(jN
π′ ) = (0, xq + 1 − u` + wφ

0 , x` − 1 + u` − 1, xs + us + 1).

We can also write

Hπ′, N(j) + N = Ewφ
0
[(Hπ′, N−1(j

`
π′) + (N − 1) + N)P [ws

0 = 0, w`
0 = 1] +

(Hπ′, N−1(j
s
π′) + N)P [ws

0 = 1, w`
0 = 0] + (Hπ′, N−1(j

N
π′ ) + N)P [ws

0 = 0, w`
0 = 0]].

We choose π′(x, k) = π∗(x, k) ∀ k ≤ N − 1. For the inductive hypothesis

Hπ′, N−1(j
N
π′ ) + (N − 1) = Hπ∗, N−1(j

N
π′ ) + (N − 1) ≥ Hπ∗, N−1(i

N
π ),

hence it obviously follows

Hπ′, N−1(j
N
π′ ) + (N) = Hπ∗, N−1(j

N
π′ ) + (N) ≥ Hπ∗, N−1(i

N
π ).
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It’s also possible to see that P [ws
0 = 0, w`

0 = 0] = P [ws
0 = 0, w`

0 = 0].

Now if

(Hπ′, N−1(j`
π′) + (N − 1) + N)P [ws

0 = 0, w`
0 = 1] + (Hπ′, N−1(js

π′) + N)P [ws
0 = 1, w`

0 = 0]

> (5.14)

(Hπ∗, N−1(i`π) + (N − 1))P [ws
0 = 0, w`

0 = 1] + Hπ∗, N−1(isπ)P [ws
0 = 1, w`

0 = 0],

then

Hπ′, N(j) + N > Hπ∗, N(i).

Now let’s consider the two states js
π′ and i`π. We want to show that Hπ∗, N−1(j

s
π′) ≥

Hπ∗, N−1(i
`
π).

π∗(i`π, N − 1) = (uL(i`π), us) = (0, us),

while

π∗(js
π′ , N − 1) = (uL(js

π′), us) = (1, us)

since a store has been performed (so there is at least one slot free in the disk

queue) and xq + 1 − u` + wφ
0 ≥ 1. Since xF > 2(xD + 1) ,

uS(js
π′) ≥ uS(i`π) − 1

because uS is imposed by the maximum length xD of the disk queue (in fact

xf is small). As a consequence,

π′′(js
π′ , N − 1) = (uL(js

π′), us) = (1, us − 1)

is a valid policy. It’s easy to see that with this choice

Hπ′′, N−1(j
s
π′) = Hπ∗, N−1(i

`
π),

Hπ∗, N−1(j
s
π′) ≥ Hπ′′, N−1(j

s
π′) = Hπ∗, N−1(i

`
π),

hence

(Hπ′, N−1(j
s
π′) + N) > (Hπ∗, N−1(i

`
π) + (N − 1))
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but also from the inductive hypothesis

(Hπ′, N−1(j
`
π′) + (N − 1) + N) > (Hπ′, N−1(j

s
π′) + N) >

(Hπ∗, N−1(i
`
π) + (N − 1)) > Hπ∗, N−1(i

s
π).

Therefore whichever are the probabilities P [ws
0 = 0, w`

0 = 1] and P [ws
0 =

1, w`
0 = 0], inequality (5.14) is satisfied. Considered that by definition of the

optimal control policy Hπ∗, N(j) ≥ Hπ′, N(j), it follows that

Hπ∗, N(j) + N ≥ Hπ′, N(j) + N > Hπ∗, N(i),

which concludes this case of the proof.

The last property to prove is

H∗
N(0, xq + 1, x` − 2, xs + 1) + N ≥ H∗

N(0, xq, x`, xs − 1).

Let’s call i = (0, xq, x`, xs − 1) and j = (0, xq + 1, x` − 2, xs + 1). The two

states have the same set of admissible controls: in fact uL(i) = uL(j) = 0

and, considered that xf = 0 and xF > 2(xD + 1) we have again that the

limitation on uS(i) is imposed by the queue of requests seen by the disk I/O

subsystem.

If π∗(i, N) = (0, us) then (0, us) is a valid set of controls also for state j.

With this choice,

(x1|x0 = i, π) = (ws
0, x

q + wφ
0 , x` − w`

0, x
s + us − 1 − ws

0),

(x1|x0 = j, π′) = (ws
0, x

q + 1 + wφ
0 , x` − 2 − w`

0, x
s + us + 1 − ws

0).

By the means of Bellman equation:

Hπ∗, N(i) = Ewφ
0
[(Hπ∗, N−1(i

`
π) + (N − 1))P [ws

0 = 0, w`
0 = 1] +

Hπ∗, N−1(i
s
π)P [ws

0 = 1, w`
0 = 0] + Hπ∗, N−1(i

N
π )P [ws

0 = 0, w`
0 = 0]],
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where

(i`π) = (0, xq + wφ
0 , x` − 1, xs − 1 + us),

(isπ) = (1, xq + wφ
0 , x`, xs − 1 + us − 1),

(iNπ ) = (0, xq + wφ
0 , x`, xs − 1 + us).

The value of Hπ′, N(j) is

Hπ′, N(j) = Ewφ
0
[(Hπ′, N−1(j

`
π′) + (N − 1))P [ws

0 = 0, w`
0 = 1] +

Hπ′, N−1(j
s
π′)P [ws

0 = 1, w`
0 = 0] + Hπ′, N−1(j

N
π′ )P [ws

0 = 0, w`
0 = 0]],

where in this case

(j`
π′) = (0, xq + 1 + wφ

0 , x` − 3, xs + us + 1),

(js
π′) = (1, xq + 1 + wφ

0 , x` − 2, xs + us + 1 − 1),

(jN
π′ ) = (0, xq + 1 + wφ

0 , x` − 2, xs + us + 1).

We can also write

Hπ′, N(j) + N = Ewφ
0
[(Hπ′, N−1(j

`
π′) + (N − 1) + N)P [ws

0 = 0, w`
0 = 1] +

(Hπ′, N−1(j
s
π′) + N)P [ws

0 = 1, w`
0 = 0] + (Hπ′, N−1(j

N
π′ ) + N)P [ws

0 = 0, w`
0 = 0]].

It’s also possible to see that P [ws
0 = 0, w`

0 = 0] = P [ws
0 = 0, w`

0 = 0].

We choose π′(x, k) = π∗(x, k) ∀ k ≤ N − 1. For the inductive hypothesis

Hπ′, N−1(j
N
π′ ) + (N − 1) = Hπ∗, N−1(j

N
π′ ) + (N − 1) ≥ Hπ∗, N−1(i

N
π ),

hence it obviously follows

Hπ′, N−1(j
N
π′ ) + (N) = Hπ∗, N−1(j

N
π′ ) + (N) ≥ Hπ∗, N−1(i

N
π ).

Now let’s consider the two states

(js
π′) = (1, xq + 1 − u` + wφ

0 , x` − 1 + u` − 1, xs + us + 1 − 1),

(i`π) = (0, xq − u` + wφ
0 , x` + u` − 1, xs − 1 + us).

We want to show that Hπ∗, N−1(j
s
π′) ≥ Hπ∗, N−1(i

`
π). For what we have just

said,

π∗(i`π, N − 1) = (uL(i`π), us) = (0, us)
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while

π∗(js
π′ , N − 1) = (uL(js

π′), us) = (1, us).

In a way identical to the previously considered case, it is possible to define a

policy π′′ such that

Hπ′′, N−1(j
s
π′) = Hπ∗, N−1(i

`
π),

Hπ∗, N−1(j
s
π′) ≥ Hπ′′, N−1(j

s
π′) = Hπ∗, N−1(i

`
π).

We can therefore conclude our proof by using again the inductive hypothesis

(Hπ′, N−1(j
`
π′) + (N − 1) + N) > (Hπ′, N−1(j

s
π′) + N) >

(Hπ∗, N−1(i
`
π) + (N − 1)) > Hπ∗, N−1(i

s
π).

Therefore whichever are the probabilities P [ws
0 = 0, w`

0 = 1] and P [ws
0 =

1, w`
0 = 0], we are able to compare Hπ′, N(j) with Hπ∗, N(i). Considered that

by definition of the optimal control policy Hπ∗, N(j) ≥ Hπ′, N(j), we have

that

Hπ∗, N(j) + N ≥ Hπ′, N(j) + N > Hπ∗, N(i)

which concludes the proof.

In conclusion we have proved that if it is possible, it is always convenient to

forward load operations to the disk subsystem as soon as possible. Even if

the proof developed in the present section does not define the optimal policy

completely, it provides some insights regarding store operations that will be

discussed in the following section.

5.4 Considerations on the store policy

Although the proof presented in section 5.3 did not prove anything about

the choice of us
opt(x, k) (that is on the structure of the optimal policy regard-

ing store operations), it provided some useful insights about it.
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As we have seen in the previous section, one of the effects of increasing us is

that it changes the probability distribution of the events related to the disk,

namely

• event A, the disk performs a load operation

• event B, the disk performs a store operation

• event C, the disk performs no operation at all

In detail the probability of event B is increased, while those of events A and C

are decreased. As we have seen in the proof, event A is always more desirable

than event B, and it is possible to prove that event B is always better or equal

than event C (it is pretty obvious). Since event B is not the best nor the

worst event, it is not clear when the probability shift induced by increasing

us is convenient, but it is presumable that it is so only when there are few

I/O operations in queue. To be more precise, let’s begin considering the case

us = 0. When there are few requests in the disk I/O queue(y = x` + xs + u`

is small), event C (which is always the worst) has an high probability equal

to 1 − b(x` + xs + u`). To understand quantitatively what is the effect of

increasing us we note that the probabilities of events C and A as functions

of us are respectively

P (C, us) = 1 − b(y + us)

and

P (A, us) = α b(y + us)/(y + us).

As we have just said, they are both decreasing functions of us, but when y is

small P (C, us) decreases faster than P (A, us), making the probability shift

more likely to be convenient.

Obviously it also depends on how much event B is better than event C. For

example, at the second last step they are exactly equivalent (having freed a

frame for the last step is useless), hence the shift is never convenient. As a
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general rule, the shift becomes less and less convenient as we get closer to

the end of the control horizon.

This fact emphasizes the difficulty of tackling the time-dependent problem,

because in this case the optimal store control law does actually depend on

the time argument. In this context, finding a time-dependent closed form

control law appears extremely hard, thus we should probably concentrate on

stationary control policies.

Considered that the optimal control policy for the control horizon T is in the

form:

π∗ = {µk, k ∈ T},

where

µk(x) = (u`
opt(x, k), us

opt(x, k)) k ∈ T = [0, . . . , N − 1],

at least in principle the optimal stationary policy can be obtained by the

following formula

µs(x) = lim
N→∞

µ0(x) = lim
N→∞

(uL(x), us
opt(x, 0)) = (uL(x), lim

N→∞
us

opt(x, 0)),

if the limit exists (which is not guaranteed). Even if the limit exists, this

solution is not feasible, considered that we are not even able to find the non-

stationary control law.

An alternative solution is to solve the average cost per step problem, hop-

ing to find a stationary optimal solution, which, again, is not guaranteed.

However in many cases of interest, as stated in [2], it is often the case. To

that end, section 5.5 is dedicated to explore some regularity properties of the

infinite horizon problem.

Even if we are not able to solve the problem mathematically, some further

considerations can be made, in order to complete the heuristic reasoning

previously developed.
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In a stationary condition, when there is an infinite number of steps toward

the end of the control horizon, the comparison between events A, B and C

can be carried out without worrying about the time dependence. In other

words, the comparison depends only on the current state, not on the number

of steps left in the control horizon.

In this case a target policy

us(x) = max{Tg(x) − x` − xs − uL(x), 0} (5.15)

is likely to be a good choice, if the target Tg(x) is properly chosen. In this

way the number of loads is imposed as u` = uL, then, if there are less requests

than Tg(x) in the disk queue, stores are added to reach the target value Tg(x).

Of course, Tg(x) also represents a threshold on the length of the disk queue

under which the probability shift is convenient. It is certainly a function of

the state x, and it is likely to be some decreasing function of xf . In fact when

there are few free frames left, a successful store operation is more desirable

because it draws away from the costly situation of an empty pool of free

frames. Moreover, to the end of designing a simple feedback control law, it

would be very interesting to understand if Tg(x) should depend on the entire

state x or only on the xf component.

The obstacle that does not allow us to formalize the previous considerations

into a rigorous proof is that us does not simply change the probability dis-

tribution of the events A, B, C but also influences the next reached state by

incrementing xs. In practice this means that once a store is added to the

disk queue , it cannot be removed by the means of controllable inputs (us is

supposed to be non-negative). If we assume to let the OS remove requests

from the I/O queue once they are inserted (which is not so unrealistic), then

a target policy could be proved to be optimal. Otherwise, it is not so easy to

understand which is the effect of inserting requests than cannot be removed.

However, perhaps it is possible to compensate this problem with a lower

target (in respect to the one calculated when us can be negative). This



82 Properties of the optimal control policy

conjecture is confirmed by simulative results stated in [3], where target poli-

cies are reported to be semi-optimal in comparison with the solution found

through dynamic programming.

5.5 The infinite horizon problem

In this section we will study the regularity properties of the infinite hori-

zon problem, with reference to the case with a finite number of states. In

other words we will consider a setting where the cardinality of the set S de-

fined by equation 2.2 of the admissible states is finite, a property that holds

if and only if xQ is finite.

In the outlined setting, we will prove that the average cost per step Jπ(i)

associated with the optimal control law π∗ defined as follows:

Jπ∗(i) = lim sup
N→∞

1

N
Jπ∗, N(i)

is independent upon the initial state i.

We’ll make use of the following Theorem, whose proof can be found in [1],

Chapter 4:

Theorem 1 If for every two states i and j there exists a stationary policy

π (depending on i and j) such that, for some k,

P [xk = j|x0 = i, π] > 0,

then the optimal average cost per stage is the same value λ for all initial

states i.

To prove the existence of π, we first consider a subset Q ⊂ S of the admissible

state space S defined as follows:

Q = {(xf , xq, x`, xs) ∈ Z4|0 < xf , 0 < xq < xQ, 0 < x`, 0 < xs

xf + xs < xF , x` + xs < xD, }.
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Considered the definition of the set S of the admissible states, it is easy to

see that they are both polyhedrons (defined by a set of linear inequalities).

Moreover, Q is actually the polyhedron S without the external “shell”. It’s

also possible to think Q as the set of states in which it is possible to issue a

load or a store operation and there’s already both a store and a load operation

request in the disk subsystem queue.

In fact for every x ∈ Q

uL(x) = min(xq, xf , xD − x` − xs) ≥ 1

and

uS(x) = min(xD − x` − xs − u`, xF − xf − xs),

hence the following controls are admissible for every x ∈ Q

A : (u`(x), us(x)) = (1, 0),

B : (u`(x), us(x)) = (0, 1),

C : (u`(x), us(x)) = (0, 0).

Since the disk could complete either a load operation, a store one or nothing,

the following states are reachable from state x with probability greater than

zero:

xk+1 =


xf

k+1

xq
k+1

x`
k+1

xs
k+1

 = xk + ∆x(k) = x + ∆x(k),

with ∆x(k) that can assume the following values with probability greater

than zero depending on the control used:

A :


0

0

1

−1

 ,


−1

0

1

0

 ,


−1

−1

0

0


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B :


0

0

0

1

 ,


1

0

0

0



C :


0

0

−1

0

 ,


0

1

0

0

 .

By summing a maximum number of two of the previous ∆x vectors, it’s

possible to obtain ±ei, where ei is the i-th vector of the canonical R4 base.

This means that every state that is a neighbor of x in the lattice is reachable

from x in at most 2 steps. Since the polyhedron Q is clearly connected, this

means that every admissible state (including those belonging to the “shell”)

is reachable from a state x ∈ Q.

It remains to prove that given an initial state x ∈ S, x /∈ Q it is possible

to reach Q with probability greater than zero. Without discussing formally

the numerous possible cases, it’s intuitive that with the following choice of

controls:

Case Control policy adopted

uL(x) = 0 = uS(x) (u`(x), us(x)) = (0, 0)

uL(x) = 0, uS(x) 6= 0 (u`(x), us(x)) = (0, uS(x))

uL(x) 6= 0, uS(x) = 0 (u`(x), us(x)) = (uL(x), 0),

S is reached with probability greater than zero.

The result just found is interesting because it represents a good starting point

to prove that the optimal control policy is stationary. Such a result would be

quite useful with respect to the heuristic considerations developed in section

5.4.



Chapter 6

Conclusions and remarks

The most important result obtained in this work is indeed the character-

ization of the optimal load policy. Of course, it is not enough to actually

implement an optimal page I/O manager, but at least the complexity of the

problem is significantly reduced. Many efforts have been put toward the goal

of finding the optimal store policy, and even if we were not able to find the

solution, the proof proposed in section 5.3 is certainly a good starting point

to that end. However we should be aware that the optimal time dependent

solution may be complex and there is the possibility that it could not be

described in a simple closed form easy to grasp. Actually, even if the com-

plexity of the proof regarding the optimal control policy may be due to a

unfortunate formalization of the problem (as it is often the case with prob-

lems involving probability distributions), it could also be a clear sign that an

elegant closed form solution to the problem does not exist.

If that is the case, then there is no other solution than turn to a simula-

tive approach in which candidate policies are compared with the optimal

solution found through dynamic programming techniques. Clearly, while

this turnaround to the problem is feasible, a mathematically sound solution

would be more appreciated, mainly for the insights to the problem that it

would provide. However, even in the worst case in which there is a resort
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to simulations, the characterization provided in this work is of great interest

because now one can concentrate on a one-dimensional problem.

As a future direction, it would be interesting to find analytical expressions

for the total cost achieved by such candidate policies, in particular for the

promising target policy described by equation 5.15.

The solution to the problem with unlimited free frames, although resulting

from an application of well known techniques of the Queuing Theory, pro-

vided a useful lower bound to the fault service time, that is likely to be tight

in the cases of low fault rates (that is when store operations don’t delay sig-

nificantly the loads).

Finally the model proposed in [3] shows a good tradeoff between an un-

avoidable simplification of the reality and some non-linearities that make the

solution of the problem far from trivial.

In this context, the disk subsystem models developed are probably too com-

plicated to be used at this stage, but they retain a certain interest on their

own, besides their utilization into this particular context. In fact they focus

on an aspect that was given little or no attention at all in literature, and

they manage to predict very well the results obtained in simulations. Indeed

their major limit is the total lack of experimental validation that would be

certainly needed to provide a stronger scientific result. In that sense, a non

neglectable feature of real disks that should probably be taken into account

is their cache, that we haven’t considered at all. To that end, a good starting

point could be [9].

In conclusion, even if the work did not satisfy completely all our initial goals,

namely to find a closed form control law for the page I/O manager, the results

found are encouraging and induce us to continue the work towards designing

a page I/O manager that could lead to significant improvements to VMM

systems performance.
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