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Abstract

Reasoning in a context where both probabilistic and deterministic dependencies
are present at the same time is a challenging task with many real-world appli-
cations. Classic inference methods like Gibbs Sampling andMessage Passing
algorithms tend to give poor results in the presence of deterministic constraints,
while purely logical reasoning techniques are not designedfor probabilistic de-
pendencies.
In this paper we show how to reduce many inference problems tothat of comput-
ing the so-called density of states of a weighted Boolean formula for an appropri-
ate energy function, where the density of states is defined asa function that for
each energy levelE gives the number of configurations with that energy.
We propose a novel Markov Chain Monte Carlo algorithm to compute the den-
sity of states that is based on flat histogram methods and naturally overcomes the
ergodicity problems associated with deterministic constraints. Our experiments
show that this method often converges quickly to a very accurate solution and can
outperform general purpose techniques such as Gibbs sampling and specialized
methods such as MC-SAT in a marginal computation task.

1 Introduction

Reasoning in a context where both probabilistic and deterministic dependencies are present at the
same time is a challenging task with many real-world applications. Markov Chain Monte Carlo
(MCMC) methods provide a general framework for sampling andprobabilistic inference from com-
plex probability distributions, as captured, for example,in a graphical model representation. How-
ever, in the presence of a set of hard constraints (i.e., deterministic dependencies), it often becomes
difficult to even reach states that satisfy all such dependencies in the the Markov Chain.

We will consider a novel MCMC sampling strategy, inspired bythe Wang-Landau method ([1]),
which is a so-calledflat histogramsampling strategy from statistical physics. Given a combinatorial
space and an energy function (for instance, that describes the log-likelihood of each configuration),
a flat histogrammethod is a sampling strategy based on an Adaptive Markov Chain that converges
to a steady state where it samples uniformly from sets of configurations with equal energy. This
form of sampling will spend approximately the same amount oftime in areas with low density
configurations (usually, low energy states) and in high density areas of the search space. Such a
sampling strategy generally leads to a much broader coverage of the state space compared to more
traditional MCMC approaches, such as Metropolis-Hastingsor Gibbs. In particular, it solves the
problems caused by near-deterministic dependencies, thatgreatly slow down inference by creating
low probability regions that are difficult to traverse (and eventually breaking down the ergodicity
in the limit of deterministic dependencies). Another advantage of this method is that we obtain
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the full density of states distribution. This represents a rich description of the state space and we
will show that upon defining the right energy function, the density of states can be used to infer
complex statistical properties of the probability distribution, such as marginals for all possible levels
of softness of the constraints.

Building on [2], we will consider a modification of the Wang-Landau method that incorporates a
random-walk style component to focus the Markov Chain more quickly on areas where all hard
constraints are satisfied. By enforcing a detailed balance condition, we maintain uniform sampling
across the different energy levels and the consistency of the method. We will provide empirical data
to show the practical effectiveness of our method by comparing it in a marginal computation task
with general purpose techniques such as Gibbs sampling and specialized methods such as MC-SAT
[3].

2 Probabilistic model

The focus of this paper is on complex probability distributions defined over a set ofpossible worlds
represented by a set ofN Boolean predicates (or propositional variables)x1, . . . , xN . The probabil-
ity is specified through combinatorial features or constraints that are represented as (CNF) formulas
over the Boolean variables. Such constraints can be eitherhard or soft. The former are called hard
because a worldx ∈ {0, 1}N has probability0 unless it satisfies all of them. If it does, its probability
is given by

P (x) = exp

(

−
∑

i∈C

wiχi(x)

)

whereC is the set of soft constraints,wi is the weight corresponding to thei-th softconstraint and
χi(x) = 1 if and only if x violates thei-th constraint. Aswi → ∞, a soft constraint effectively
becomes ahard constraint.

This factored representation is closely related to a graphical model where we use weighted Boolean
formulas to specify clique potentials [4]. This is a naturalframework to combine purely logical and
probabilistic inference and in many cases it allows for a more natural way to encode the probabilistic
dependencies of the system, compared for example to conditional probability tables. An example
of such a setup is a grounded Markov Logic Network (see [3, 5]), that can be applied to study a
variety of problems such as link prediction, collective classification, entity resolution, social network
analysis and many others.

3 Density of states: problem definition

In statistical physics, given a system and an energy function E(·), thedensity of states(DOS)n(·)
is the functionn : [0, . . . ,m] → N that maps energy levels to the number of configurations or
microstates with that energy level:

E 7→ |{σ ∈ {0, 1}N : E(σ) = E}|.

In our context, we are interested in computing the number of possible worlds (or configurations)
that satisfy certain properties that are specified using an appropriate energy function, whose specific
definition depends on the statistical properties we want to infer. For instance, we might define the
energyof a configurationE(σ) to be the number of constraints that are unsatisfied byσ (this is
known as the density of states for unweighted boolean formulas [2]). Other possibilities include the
sum of the weights of the violatedsoft constraints, or the number of unsatisfiedhard constraints,
or a combination of them, or any easy to compute function of a configuration. We formally define
the specific form of the energy functions needed to compute marginals and for weight learning
below. However, the MCMC algorithm we use to compute the density of states does not make
any assumption about what the energy is actually representing. At least in principle, the only thing
we need is a partitioning of the state space, where the energyis just an indexing over the subsets
that compose the partition. In particular, as opposed to traditional sampling techniques such as
Metropolis, the value of the energy does not guide the searchin any way. For this reason, we think
our approach will find many other applications to a variety ofinference and learning tasks.
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4 The flat histogram method

Building on [2], we propose a Markov Chain Monte Carlo methodto compute the density of states
based on the flat histogram idea that is inspired by recent developments of statistical physics [1]
to avoid Metropolis sampling. The central idea of this method is that if we perform a random
walk in the configuration space{0, 1}N such that the probability of visiting a given energy levelE
is inversely proportional to the density of statesn(E), then a flatvisit histogramis generated for
the energy distribution of the states visited. Suppose we define a random walk with the following
transition probability

pσ→σ′ = min

{

1,
n(E)

n(E′)

}

(1)

of going from a configurationσ with energyE to a configurationσ′ with energyE′. The detailed
balance equationP (σ)pE→E′ = P (σ′)pE′→E is satisfied whenP (σ) ∝ 1/n(E). This leads to a
flat histogram of the energies of the states visited becauseP (E) =

∑

σ:E(σ)=E P (σ) = const.

Since the density of states is unknown a priori, and computing it is precisely the goal of the algo-
rithm, it is not possible to construct a random walk with transition probability (1). However it is
possible to start from an initial guess of the DOS and keep changing the current estimateg(·) in a
systematic way to produce a flat energy histogram and simultaneously make the density of states
converge to the true valuen(E).
MCMC-FLATSAT(φ)

1 Start with a guessg(E) = 1 for all E
2 Start with a modification factorF = F0

3 repeat
4 repeat
5 Generate a new state and accept with prob. given by eq. (1)
6 Adjustg(E) : g(E) = g(E)× F
7 Increase visit histogramH(E)← H(E) + 1
8 until until H is flat
9 ReduceF

10 Reset the visit histogramH
11 until F is close enough to1
12 Normalizeg
13 return g as estimate ofn

The modification factorF plays a critical role because it controls the trade-off between the conver-
gence rate of the algorithm and its accuracy. Large initial values ofF imply a substantial diffusion
rate and therefore fast convergence to a rather inaccurate solution. This rough initial estimate is
subsequently refined as the value ofF decreases untilF ≈ 1, at which point when a flat histogram
is producedg(E) has converged to the true densityn(E).

Due to statistical fluctuations, a perfectly flat histogram occurs with an extremely low probability.
Therefore in our implementation we use a flatness parameter;in our experiments it is set so that an
histogram is considered flat when all the values are between90% and100% of the maximum value,
independently ofF . The value ofF is reduced according to the scheduleF ←

√
F , with an initial

valueF0 = 1.5; the impact of the schedule on the convergence rate is an openresearch question.
By construction the DOS is obtained only up to constant factors: the normalization ofg ensures that
∑

E g(E) = 2N , whereN is the number of variables in the formula.

4.1 Focused Random Walk

There are many ways in which a new state can be generated. The simplest strategy is to generate a
new configuration by randomly flipping a variable, a method that in [2] is shown to be quite effective.
Notice however that the detailed balance equation still holds when using an acceptance probability

min

{

1,
g(E)Tσ→σ′

g(E′)Tσ′→σ

}

(2)

instead of eq. (1), whereTσ→σ′ is the probability of generating a configurationσ′ while in stateσ.
Clearly we also need to ensure that wheneverTσ→σ′ > 0, Tσ′→σ > 0 and that the connectivity of
the state space is preserved.
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Given that we are mostly interested in the regions of the state space where thehard constraints are
satisfied (conventionally, low energy regions), agreedyapproach in generating new configurations
can significantly improve the convergence rate. An useful heuristic inspired by local search SAT
solvers to generate new states is the following: given a truth assignmentσ, if it is a satisfying
assignment, flip a variable at random (soTσ→σ′ = 1/N when the Hamming distancedH(σ, σ′) = 1,
zero otherwise). Ifσ is not a solution, then with probabilityp a variable is chosen from a violated
clause and then flipped, and with probability1−p a variable is flipped at random. With this approach,
the probability is

Tσ→σ′ = (1− p)
1

N
+ p

∑

c∈C|i∈c χc(σ)
∑

c∈C χc(σ)
= (1− p)

1

N
+ p

#violated clauses with variablei
violated clauses

whereσ andσ′ differ only on thei-th variable. This approach can greatly reduce the number ofsteps
needed for the Markov Chain to reach low energy configurations and solutions (that are frequently
lower density states), leading in our experiments to convergence rates several times smaller than the
ones obtained with random flipping.

5 Inference and learning with the density of states

Many inference tasks can be solved by defining an appropriateenergy function (equivalently, a
partitioning of the state space) and by computing the density of states associated with it. For instance,
a fundamental inference task is that of computing the probability that a property encoded by a
formulaF1 holds, given that we observe some evidence encoded by another formulaF2:

P (F1|F2) =
P (F1 ∧ F2)

P (F2)
=

∑

x∈XF1∩F2

P (x)
∑

x∈XF2

P (x)

whereXFi
is the set of worlds whereFi holds. We define a tuple-valued energy functionE′(σ) in

the following way:

E′(σ) =

{

(0,
∑

wiχi(σ)) if σ satisfiesF1 ∧ F2

(1,
∑

wiχi(σ)) if σ satisfiesF2 but notF1

(2, 0) if σ does not satisfyF2

Let g(·) be the density of states associated withE′. Then

P (F1|F2) =

∑

E g(0, E) exp(−E)
∑

E(g(0, E) + g(1, E)) exp(−E)

As a particular case, whenF1 = xi we obtain the marginal of thei-th variable. Notice that a finer
grained partitioning (for instance, distinguishing how many hard constraints are violated) can speed
up the convergence because it provides guidance to the search procedure, even if it is extracting
more information.

5.1 Weight learning

The richer information provided by the entire density of states can be used to solve inference and
learning tasks that go beyond the capabilities of conventional sampling techniques [6]. Suppose we
have a set of soft constraintsSi ⊆ C all with the same weightwi that we want to learn from data
(for instance, these constraints might all be groundings ofthe same first order formula in a Markov
Logic Network). The gradient of the log-likelihood with respect to the weights is

∂

∂wi

logPw(X = x) = mi(x)−
∑

x′

mi(x
′)Pw(X = x′) (3)

wheremi is the number of false groundings of the constraintsSi in the datax andPw is the proba-
bility distribution with a vector of weightsw. Let’s define a partitioning of the state space (using an
appropriate energy function) and a corresponding densityg as follows

g(E, k) = |{x ∈ {0, 1}N : mi(x) = k,Eτ ≤
∑

j 6=i

wjmj(x) < (E + 1)τ}|
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Figure 1: Correlation plots for the variable marginals as the weights increase. All constraints are
soft. All methods are effective when the weights are small (w = 1, upper left picture). Pure Gibbs
sampling begins to fail when the weights increase (w = 5, upper right). TheDOS method provides
the most accurate estimate whenw = 10, bottom picture.

for some small enough step sizeτ . The second part of equation (3) can be rewritten as
∑

x′

mi(x
′)Pw(X = x′) ≈

∑

k

∑

E

kg(E, k)
1

Z
e−wike−Eτ

whereZ ≈ ∑k

∑

E g(E, k)e−wike−Eτ (the approximation might be caused by the discretization
with step sizeτ ). This means that once we have computed the densityg(E, k), we can compute the
i-th component of the gradient of the log-likelihood essentially at no cost. Moreover we can do it
for all values ofwi, which means that we can try to solve for∂

∂wi

logPw(X = x) = 0.

6 Experimental results

In [2] we demonstrated the effectiveness ofMCMC-FlatSat to compute the density of states of
boolean formulas, both in terms of accuracy and efficiency. Here we explore its application to
inference tasks, in particular for the computation of marginals. We compare the Focused Random
Walk method (DOS) with Gibbs sampling with and without Walksat initialization (Gibbs+WS and
Gibbs) and a specialized methodMC-SAT [3]. We use the implementations found in the Alchemy
system [6], and all the methods are run for the same amount of time.

6.1 All soft constraints

We start with an unweighted instance (spin glass) from a MAX-SAT Competition, and we add the
same weightw to all the constraints (even though they are identical, changing the weights affects
the marginals) . The instance has27 variables so we can get ground truth by direct enumeration. In
figure 1 we compare the results as the weights become larger ina correlation plot, where in the ideal
case the estimated marginals would lie on the diagonal. WhiletheDOS method is effective in all
the weight ranges, Gibbs sampling breaks down when the constraints become almost deterministic.
Moreover, the estimate obtained with theDOS method is more accurate than the one obtained with
MC-SAT.
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Figure 2: Errors of the estimated marginals for the110 variables of the logistic instance with hard
and soft constraints.

6.2 Hard and soft constraints

We start with a planning instance with110 variables generated with SAT-Plan, with461 hard con-
straints used to encode valid plans. Then we add some random soft constraints, encoding e.g. prefer-
ences of the planner. As an effect of the soft constraints, valid plans (solutions to all hard constraints)
have different probabilities. As we can see figure 2, Gibbs sampling breaks down with deterministic
constraints, and the estimate obtained with theDOS method is the most accurate one.

7 Conclusion

By designing a suitable partitioning of the state space, thedensity of states can be used to solve many
inference and learning problems, such as marginal computation and weight learning. We introduced
MCMC-FlatSat, a Markov Chain Monte Carlo technique based on the flat histogram method with
a random walk style component to estimate the density of states of Boolean formulas with hard and
soft constraints. We demonstrated the effectiveness of this approach on the marginal computation
problem, where it outperforms current state of the art methods. Given the generality of this method,
we expect to see many other applications both to learning andinference problems.
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