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Abstract

Reasoning in a context where both probabilistic and det@stic dependencies
are present at the same time is a challenging task with maaiywerld appli-
cations. Classic inference methods like Gibbs Sampling Medsage Passing
algorithms tend to give poor results in the presence of detastic constraints,
while purely logical reasoning techniques are not designegbrobabilistic de-
pendencies.

In this paper we show how to reduce many inference problerttgatof comput-
ing the so-called density of states of a weighted Booleamdita for an appropri-
ate energy function, where the density of states is definedfaaction that for
each energy levell gives the number of configurations with that energy.

We propose a novel Markov Chain Monte Carlo algorithm to cotaghe den-
sity of states that is based on flat histogram methods andatigtaovercomes the
ergodicity problems associated with deterministic caists. Our experiments
show that this method often converges quickly to a very atewsolution and can
outperform general purpose techniques such as Gibbs sayrgolid specialized
methods such as MC-SAT in a marginal computation task.

1 Introduction

Reasoning in a context where both probabilistic and detestic dependencies are present at the
same time is a challenging task with many real-world apfibes. Markov Chain Monte Carlo
(MCMC) methods provide a general framework for sampling arababilistic inference from com-
plex probability distributions, as captured, for examjatea graphical model representation. How-
ever, in the presence of a set of hard constraints (i.e.rdetistic dependencies), it often becomes
difficult to even reach states that satisfy all such depecidsrin the the Markov Chain.

We will consider a novel MCMC sampling strategy, inspiredtbg Wang-Landau method ([1]),
which is a so-calledlat histogramsampling strategy from statistical physics. Given a coratanal
space and an energy function (for instance, that desctiled®g-likelihood of each configuration),
aflat histogrammethod is a sampling strategy based on an Adaptive MarkoinGhat converges
to a steady state where it samples uniformly from sets of gordtions with equal energy. This
form of sampling will spend approximately the same amountirok in areas with low density
configurations (usually, low energy states) and in high dgmseas of the search space. Such a
sampling strategy generally leads to a much broader coserfitie state space compared to more
traditional MCMC approaches, such as Metropolis-Hastimg&ibbs. In particular, it solves the
problems caused by near-deterministic dependenciesgtbatly slow down inference by creating
low probability regions that are difficult to traverse (anewetually breaking down the ergodicity
in the limit of deterministic dependencies). Another adage of this method is that we obtain



the full density of states distribution. This representsch description of the state space and we
will show that upon defining the right energy function, thensiéy of states can be used to infer
complex statistical properties of the probability distion, such as marginals for all possible levels
of softness of the constraints.

Building on [2], we will consider a modification of the Wangshdau method that incorporates a
random-walk style component to focus the Markov Chain marieldy on areas where all hard
constraints are satisfied. By enforcing a detailed balanodition, we maintain uniform sampling
across the different energy levels and the consistencyeafttthod. We will provide empirical data
to show the practical effectiveness of our method by compaitiin a marginal computation task
with general purpose techniques such as Gibbs samplingpaeibsized methods such as MC-SAT

[3].

2 Probabilistic model

The focus of this paper is on complex probability distribats defined over a set pbssible worlds
represented by a set &f Boolean predicates (or propositional variableg). . . , . The probabil-

ity is specified through combinatorial features or conatsaihat are represented as (CNF) formulas
over the Boolean variables. Such constraints can be ditiveror soft The former are called hard
because aworld € {0, 1} has probability) unless it satisfies all of them. If it does, its probability

is given by
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whereC is the set of soft constraints;; is the weight corresponding to thieh soft constraint and
xi(xz) = 1 if and only if 2 violates thei-th constraint. Asw; — oo, a softconstraint effectively
becomes &ard constraint.

This factored representation is closely related to a gegbinnodel where we use weighted Boolean
formulas to specify clique potentials [4]. This is a natdramework to combine purely logical and
probabilistic inference and in many cases it allows for aem@tural way to encode the probabilistic
dependencies of the system, compared for example to condlitprobability tables. An example
of such a setup is a grounded Markov Logic Network (see [3,tBBt can be applied to study a
variety of problems such as link prediction, collectivesslfication, entity resolution, social network
analysis and many others.

3 Density of states: problem definition

In statistical physics, given a system and an energy fundiip), the density of stateDOS)n(-)
is the functionn : [0,...,m] — N that maps energy levels to the number of configurations or
microstates with that energy level:

E— |{oc€{0,1}Y : E(c) = F}|.

In our context, we are interested in computing the numberoskible worlds (or configurations)
that satisfy certain properties that are specified usingppnopriate energy function, whose specific
definition depends on the statistical properties we wantfer.i For instance, we might define the
energyof a configurationE (o) to be the number of constraints that are unsatisfied Ifthis is
known as the density of states for unweighted boolean famf#]). Other possibilities include the
sum of the weights of the violatezbft constraints, or the number of unsatisfiegrd constraints,
or a combination of them, or any easy to compute function afrdiguration. We formally define
the specific form of the energy functions needed to computegimels and for weight learning
below. However, the MCMC algorithm we use to compute the itjered states does not make
any assumption about what the energy is actually represgniit least in principle, the only thing
we need is a partitioning of the state space, where the engfggt an indexing over the subsets
that compose the partition. In particular, as opposed Mitiomal sampling techniques such as
Metropolis, the value of the energy does not guide the sdarahy way. For this reason, we think
our approach will find many other applications to a varietinéérence and learning tasks.



4 The flat histogram method

Building on [2], we propose a Markov Chain Monte Carlo methmdompute the density of states
based on the flat histogram idea that is inspired by recerdloements of statistical physics [1]
to avoid Metropolis sampling. The central idea of this melth® that if we perform a random
walk in the configuration spac, 1}*V such that the probability of visiting a given energy le¥l
is inversely proportional to the density of stated”), then a flatvisit histogramis generated for
the energy distribution of the states visited. Suppose Vieela random walk with the following

transition probability
, n(E)

Po—or = mMiN {17 TL(E/) } (1)
of going from a configuratiom with energyFE to a configuratiors’ with energyE’. The detailed
balance equatio?(o)pr— g = P(c')pr g is satisfied wherP(o) « 1/n(FE). This leads to a
flat histogram of the energies of the states visited becB(#8 = >, 5, )_p I’(c) = const.

Since the density of states is unknown a priori, and comgutiis precisely the goal of the algo-
rithm, it is not possible to construct a random walk with sigion probability (1). However it is
possible to start from an initial guess of the DOS and keep@ghg the current estimatg-) in a
systematic way to produce a flat energy histogram and simediasly make the density of states
converge to the true valug(E).
MCMC- FLATSAT(¢)

1 Startwith aguesg(E)=1forall £

2 Start with a modification factaf’ = Fj

3 repeat
4 repeat
5 Generate a new state and accept with prob. given by eq. (1)
6 Adjustg(E): g(E) =g(E) X F
7 Increase visit histograiff (F) «+ H(E) + 1
8 until until H is flat
9 ReduceFr
10 Reset the visit histografd
11 until F'is close enough to
12 Normalizey

13 return g as estimate of

The modification facto¥’ plays a critical role because it controls the trade-off leetvthe conver-

gence rate of the algorithm and its accuracy. Large initiies of " imply a substantial diffusion

rate and therefore fast convergence to a rather inaccushtgos. This rough initial estimate is
subsequently refined as the valuefotlecreases unt#’ =~ 1, at which point when a flat histogram
is produced;(F) has converged to the true densityF).

Due to statistical fluctuations, a perfectly flat histogracawrs with an extremely low probability.
Therefore in our implementation we use a flatness paraniatetr experiments it is set so that an
histogram is considered flat when all the values are bet@e#nand100% of the maximum value,
independently of”. The value ofF is reduced according to the schedéile— +/F, with an initial
value F, = 1.5; the impact of the schedule on the convergence rate is anrmegearch question.
By construction the DOS is obtained only up to constant factihe normalization of ensures that
> g 9(E) =2, whereN is the number of variables in the formula.

4.1 Focused Random Walk

There are many ways in which a new state can be generated.implest strategy is to generate a
new configuration by randomly flipping a variable, a methat th [2] is shown to be quite effective.
Notice however that the detailed balance equation stil$i@then using an acceptance probability

. g(E)Ta—>o" }
min§ 1, —F—— 2

{ Q(E/)Ta’%g @
instead of eq. (1), wherg,_, - is the probability of generating a configuratieshwhile in stateo.

Clearly we also need to ensure that whenéler,,, > 0, T,,_,, > 0 and that the connectivity of
the state space is preserved.



Given that we are mostly interested in the regions of the stphce where theard constraints are
satisfied (conventionally, low energy regionsgraedyapproach in generating new configurations
can significantly improve the convergence rate. An usefuriséic inspired by local search SAT
solvers to generate new states is the following: given atassignment, if it is a satisfying
assignment, flip a variable at random ®Bg,,» = 1/N when the Hamming distanek; (o, 0’') = 1,
zero otherwise). I is not a solution, then with probability a variable is chosen from a violated
clause and then flipped, and with probabilityp a variable is flipped at random. With this approach,
the probability is

1 ZCGCHEC Xe(o) 1 #violated clauses with variable
Toso=(1-pst+r—=F5 =10-p+p :
N > eco Xe(0) N violated clauses

wherec andg’ differ only on thei-th variable. This approach can greatly reduce the numbsteps
needed for the Markov Chain to reach low energy configurataomd solutions (that are frequently
lower density states), leading in our experiments to cajemee rates several times smaller than the
ones obtained with random flipping.

5 Inference and learning with the density of states

Many inference tasks can be solved by defining an appropeia¢egy function (equivalently, a
partitioning of the state space) and by computing the dgosgitates associated with it. For instance,
a fundamental inference task is that of computing the pritibakthat a property encoded by a
formula F; holds, given that we observe some evidence encoded by arfiothrila Fs:

P(Fl AN F2) B ZIGXFlr‘]F2 P(l‘)
P Suexy, P@)

where X, is the set of worlds wheré&;; holds. We define a tuple-valued energy functiiic) in
the following way:

P(F1|Fy) =

(1,> w;xi(0)) if o satisfiesFy but notFy

20 { (0,> wixi(o)) if o satisfiest’ A I
g) =
(2,0) if o does not satisfy,

Let ¢(-) be the density of states associated with Then

- 35 9(0, B) exp(—E)
P(Fy|F2) = > 2(9(0,E) + g(1,E)) exp(—E)

As a particular case, whel, = x; we obtain the marginal of theth variable Notice that a finer
grained patrtitioning (for instance, distinguishing howny&ard constraints are violated) can speed
up the convergence because it provides guidance to thehspaycedure, even if it is extracting
more information.

5.1 Weight learning

The richer information provided by the entire density otesacan be used to solve inference and
learning tasks that go beyond the capabilities of convaatisampling techniques [6]. Suppose we
have a set of soft constrainfs C C all with the same weighty; that we want to learn from data
(for instance, these constraints might all be groundingb@fame first order formula in a Markov
Logic Network). The gradient of the log-likelihood with pesct to the weights is

3ii log Py (X = z) = m;(z) — ;mi(x’)Pw(X =21') (3)

wherem; is the number of false groundings of the constra#its the datar and P, is the proba-
bility distribution with a vector of weighta. Let's define a partitioning of the state space (using an
appropriate energy function) and a corresponding degsatyfollows

g(B,k) = {z € {0,1}" : m(z) =k, BT < ijmj(a:) < (E+1)71}
i
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Figure 1: Correlation plots for the variable marginals aswreights increase. All constraints are
soft. All methods are effective when the weights are smaliH 1, upper left picture). Pure Gibbs
sampling begins to fail when the weights increase= 5, upper right). ThédOS method provides
the most accurate estimate when= 10, bottom picture.

for some small enough step sizeThe second part of equation (3) can be rewritten as

Z: m; (x/)Pw (X = x/) ~ Z XE: kg(E7 k‘)%e_w"ke_ET

k

whereZ ~ Y, 3", g(E, k)e ke~ E7 (the approximation might be caused by the discretization
with step sizer). This means that once we have computed the dep&ily k), we can compute the
i-th component of the gradient of the log-likelihood essalytiat no cost. Moreover we can do it
for all values ofw;, which means that we can try to solve fﬁ; log Py(X =x) =0.

6 Experimental results

In [2] we demonstrated the effectivenessMZMC- FI at Sat to compute the density of states of
boolean formulas, both in terms of accuracy and efficiencgreHve explore its application to
inference tasks, in particular for the computation of maatg. We compare the Focused Random
Walk method POS) with Gibbs sampling with and without Walksat initializei (G bbs+W5 and

G bbs) and a specialized methddC- SAT [3]. We use the implementations found in the Alchemy
system [6], and all the methods are run for the same amouimef t

6.1 All soft constraints

We start with an unweighted instance (spin glass) from a M8XF Competition, and we add the
same weightv to all the constraints (even though they are identical, ghanthe weights affects
the marginals) . The instance hzisvariables so we can get ground truth by direct enumeration. |
figure 1 we compare the results as the weights become largardrrelation plot, where in the ideal
case the estimated marginals would lie on the diagonal. Whd@®OS method is effective in all
the weight ranges, Gibbs sampling breaks down when thereamtst become almost deterministic.
Moreover, the estimate obtained with theS method is more accurate than the one obtained with
MC- SAT.
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Figure 2: Errors of the estimated marginals for 118 variables of the logistic instance with hard
and soft constraints.

6.2 Hard and soft constraints

We start with a planning instance witi0 variables generated with SAT-Plan, with1 hard con-
straints used to encode valid plans. Then we add some rarafoooastraints, encoding e.g. prefer-
ences of the planner. As an effect of the soft constraintigl pkans (solutions to all hard constraints)
have different probabilities. As we can see figure 2, Giblgdizg breaks down with deterministic
constraints, and the estimate obtained with@@S method is the most accurate one.

7 Conclusion

By designing a suitable partitioning of the state spaced#msity of states can be used to solve many
inference and learning problems, such as marginal compnotahd weight learning. We introduced
MCMC- Fl at Sat , a Markov Chain Monte Carlo technique based on the flat hiatognethod with

a random walk style component to estimate the density cdstatBoolean formulas with hard and
soft constraints. We demonstrated the effectiveness sfapproach on the marginal computation
problem, where it outperforms current state of the art nigth&iven the generality of this method,
we expect to see many other applications both to learningrdacence problems.
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