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Abstract: The ability to maintain belief relationship among entities in autonomic networks
is considered a major challenge. In this work we tackle the problem by casting it into the
framework of Estimation Theory as an inference problem on a Markov Random Field. A fully
distributed algorithm based on message passing techniques is then proposed, where messages are
not considered as abstract intermediate results of a computation, but as real messages exchanged

by the nodes in the network.

With this case study we therefore demonstrate that Markov Random Field theory used in
combination with Message Passing algorithms constitutes a powerful theoretical framework for
the development of algorithms for information distribution and fusion.
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1. INTRODUCTION

Interest in the development of decentralized self-managing
and self-configuring networks, broadly referred to as auto-
nomic networks, is surging both from a research and an in-
dustrial perspective. This new research field, aimed both at
increasing robustness and at reducing the need of human
intervention in the management and the deployment effort,
is drawing ideas from several existing disciplines, including
network management, artificial intelligence, control and
game theory.

The lack of a pre-defined and fixed infrastructure with
a centralized control and the highly dynamic nature of
autonomic systems pose a number of new challenges ahead.
Security in particular represents a critical issue, thus it
is not surprising that a major effort of the networking
community is currently devoted at defining and intro-
ducing security services into these new communication
architectures. As pointed out in Selcuk et al. (2004); Blaze
et al. (1996); Abdul-Rahman and Hailes (1998), the most
important security challenge within the autonomic net-
work paradigm is that of establishing the trustworthiness
status of the nodes in the network. In fact since the
overall performance of an autonomic network depends on
the collaborations that take place among self-managing
entities, it is fundamental to develop suitable models for
establishing and maintaining trust relationships between
them. As proposed in Sun et al. (2006), in this context we
will broadly interpret trust as a belief relationship, where
an entity is confident that another one will operate fairly,
or as it is designed.

Since trust relationships are essential to predict the future
behavior of other entities, a trust management system
greatly influences both the specification of security poli-
cies and the effectiveness of the decision-making of most
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other protocols. In fact with a trust management system
potential damage caused by malfunctioning or even mali-
cious entities can be greatly reduced, mainly because most
entities will avoid interacting with them, or at least they
will do it in a cautious way.

The lack of infrastructure and of any authoritative en-
tity in the network enforces the use of reputation-based
systems, where trust is established by protocols that try
to evaluate the previous behavior of the entities. In a
setting where nodes have no prior knowledge of each other,
trust information is obtained solely through continual self-
monitoring and evaluation of past interactions. The indi-
vidual knowledge gathered in this way is then distributed
throughout the network and processed in a distributed
manner.

Despite the growing importance of this problem, most
state of the art trust management systems, such as those
proposed in Selcuk et al. (2004); Theodorakopoulos and
Baras (2004); Sun and Yang (2007); Abdul-Rahman and
Hailes (1998); Michiardi and Molva (2002); Venkatraman
et al. (2000); Buchegger (2002), are still mostly at an
empirical level. As it is pointed out in Sun et al. (2006) and
in Langheinrich (2003), most of the work on trust man-
agement in the literature is essentially based on heuristics
and on simulation as evaluation method. The validation
of the proposed systems is often an overlooked aspect,
where not all solutions are actually verified and almost
none are implemented and tested in a real environment. In
this context, theoretical analysis is extremely rare and the
comparison between different methods is therefore difficult
to accomplish, mainly because of the great simulative
effort that would be required. Solutions are often hard to
compare even on a simulative basis, since they often rely on
different hypothesis and are aimed at different application
scenarios.



Given the importance of a theoretical framework, the aim
of this work is to provide a deeper understanding of the
problem through a more mathematically sound approach.
In particular for the sake of tractability we will focus on a
non adversarial setting where all entities collaborate in the
identification of malfunctioning nodes, with no malicious
entities acting to disrupt the process. A practical example
of such a setting is a Wireless Sensor Network where faulty
sensors need to be recognized as unreliable by the entities
they are interacting with and a malfunctioning node that
is providing inaccurate measurements can perform a self-
diagnosis only by querying its neighbors about the quality
of its own measurements.

In the following sections we tackle the problem by casting
it into the framework of Estimation Theory, as an inference
problem on a Markov Random Field. A fully distributed
algorithm based on message passing techniques is then
proposed, where messages are not considered as abstract
intermediate results of a computation, but as real messages
exchanged by the nodes in the network.

2. THE TRUST ESTIMATION PROBLEM
FORMULATION

The model we use to describe how trust information is
obtained through the evaluation of previous interactions
between entities, first proposed in Ermon et al. (2009),
represents the starting point for the extensions presented
in the following sections.

In our model, we consider a network consisting of N nodes,
represented by a directed graph G = (V, E), with |[V| =N
and where edges connect entities that can communicate
and therefore are assumed to be interacting.

A bit variable T; € {—1,1}, representing a real trust-
worthiness status, is associated to each node i¢. We can
therefore describe the trust status of the entire network
with a real trust vector T € {—1,1}"V, adopting the
convention

T — 1 if node i is trustworthy
] —1 otherwise

The complete real trust vector T is unknown to the entities
in the network, nonetheless it is in many cases useful to
estimate it to improve the reliability and the performance
of the network, as it is outlined in the introduction.

Even if T is unknown, nodes in the network can gather
some evidence about it on the basis of the history of
their previous interactions with their neighbors. In fact
in this model we assume that the future behavior is
statistically correlated with the past one, as well as with
the real trustworthiness status of the nodes. In particular
we assume that 7T is time invariant and it is related to
an opinion matriz C € RY*N_a collection of random
variables c;;, representing respectively the opinion that
node ¢ has on node j based on their previous interactions.
We therefore assume that the following equation holds

C=fTw), we (1)
where Q is a sample space and f(-) represents the way
in which opinions among nodes are formed. Given the

constraint that opinions are formed on the basis of the
previous interactions with other nodes, we assume that

ci; is significant only if 7 and j are neighbors, and we set
it to 0 otherwise. The outlined framework is very general
and, with slight modifications, can be easily applied to
many cases of practical interest, such as Wireless Sensor
Networks and MANETS, by choosing a suitable function

f.

In the following sections we will show how to design
an algorithm that estimates T given the evidence of
the opinions ¢;;, with the remarkable property that it
works in a distributed way, so that in each iteration
only local information is used, without the need of any
central coordination. The optimality of the algorithm is
also guaranteed at least for certain network topologies.

2.1 The Gaussian case

For reasons of mathematical tractability, in the rest of the
paper we will mainly consider the following particular case
of equation (1):
o — TiTj + Wij if (’L,]) ekl (2)
Y10 if (i,j) ¢ E
where w;; ~ N(0,0?) is a Gaussian random variable that

captures the uncertainty that affects the way in which
opinions are formed.

It is easy to see that there is a symmetry in the behavior
of the nodes, because T;T; = 1 both for a pair 7,5 of
trustworthy nodes and for a pair of untrustworthy nodes.
One possible interpretation is that untrustworthy nodes
act in a similar way, since they tend to have good opinions
of other nodes that should not be trusted.

The trust estimation problem consists in finding a trust
vector T € {—1,1}N that is a good estimate of the
unknown real trust vector T, given the evidence of an
opinion matriz. The most natural approach is to search
for the configuration that is more likely to have generated
a certain observed opinion matriz C, or in other words the
trust configuration with the highest a posteriori probabil-
ity, given C.
The likelihood LH(S;C) of any configuration S given an
opinion matriz C is by definition:
LH(T;C) :=p(T|C)
where p(T|C) is the probability of T conditioned that
C = C. We can easily define the maximum likelihood
estimator g : RNV — {1 1}V as
¢(C) := argmax LH(T; C)
T

Observe that the Bayes rule yields
p(CT)p(T)

p(C)
where p(T') is the a priori probability of the discrete
random variable T € {—1,1}" while p(C) and p(C|T)
are the density and conditional density of the continuous
random variable C' € RV>*¥_ This shows that

9(C) = arg mTaxp(UIT)p(T)

p(T|C) =

because p(C) does not depend on 7.

For the Gaussian model described in (2), assuming inde-
pendence, we have that p(C|T) = 0 if C has a nonzero



entry in position (i,7) ¢ FE. If instead C has nonzero
entries only in (4,5) € E, then

1 _ (Gz‘j*TiTﬁQ

p(CIT) = H

= g(C)e Loiper T
where ¢(C) is a normalization constant independent of T'.

Therefore maximizing p(C|T') is equivalent to maximize
U(T;C) := 3 jyer LiTjcij, so that

argmax p(C|T) = argmax U(T; C)
T T

Suppose that the a priori probability distribution is
Bernoulli-distributed with parameter p, namely

p:=P(T;=1)
Then, assuming independence, we obtain that
p(T) = e 2T (3)

where v normalizes to a probability distribution and
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Putting all together we obtain

LH(T;C) = q(C)e™ Letwmer iy A Y, T

— g(C)e7= Lipes TTe 20" 3, T)

We conclude that the following proposition holds:

Proposition 1. The likelihood LH(T'; C) of a configuration
T is proportional to a monotonic increasing function of

H(T) =Y TTic; -1 T; (4)
(i,4)eE 7

where 7 = \o?2.

We can therefore compute a maximum likelihood estimate
of the real trust vector T by setting

2
—2=_-72 _P
i o 2 0g<1_p

and by maximizing (4) over all possible configurations 7.
3. STATISTICAL PHYSICS INTERPRETATION

3.1 The Ising Model

Equation (4) is very important because it represents the
energy or Hamiltonian of a configuration S in an Ising
Model (see Sherrington and Kirkpatrick (1975) for a de-
tailed analysis of the model) in the presence of an external
magnetic field of strength n that breaks the symmetry of
the system. As the physical interpretation of the system
confirms, when the a priori probability distribution of T is
symmetrical, that is p = 0.5, the magnetic field disappears
and the system becomes completely symmetrical.

Systems described by an Hamiltonian such as 4, where
each variable T} represents the direction of a spin vari-
able, are more generally known in the statistical physics

literature as Spin Glasses. Since the ¢;; are modeled as
random variables, systems in this class exhibit randomly
distributed ferromagnetic and anti ferromagnetic interac-
tions between spins, depending on the sign of the coupling
coefficient c¢;;. They represent the first studied class of
systems with frustrated behavior, where the presence of
conflicting interactions forbids simultaneous minimization
of the interaction energies and hence the existence of a
trivial global ground state.

The original problem of maximum likelihood estimation
is easily reduced through proposition 1 to the problem
of finding the maxima of (4). This optimization problem
has been proved to be NP-Complete for generic graphs
in Cipra (2000), and hence an exhaustive search for
global maxima is widely believed to be computationally
intractable.

An interesting approach to tackle the problem that we
propose here is to embed the topology of the communi-
cation network directly into a graphical model so that
we can make use of the classic message passing inference
algorithms. The striking feature is that these techniques
involve a set of messages that travel on the graphical
model, that thanks to our symmetry with the communica-
tion network we can interpret as real messages exchanged
by the entities in the network, thus naturally defining a
protocol in which entities operate in a decentralized and
fully distributed way.

3.2 Pairwise Random Markov Field

In addition to the Spin Glass interpretation, proposition 1
enables us to interpret the model in a more general setting
as a Pairwise Random Markov Field.

A Markov Random Field (MRF) is a graphical model that
captures the statistical dependence of several random vari-
ables x1,...,zy by the means of a graph, where each node
is associated to a random variable and edges represent
probabilistic dependency relationships. In particular in a
Pairwise Markov Random Field the following factorization
property is assumed to hold:

1
plzt =plz1,... 2} = 5 1T iz [T sz (5)
(4.9) i
and it is said to be pairwise because the overall probability
distribution p{z} is factored into two-variable dependen-
cies 9;;(x;, ;) relative to edges (4,j) in the graphical
model.

The model described in section 2, as well as the general
Ising model, is indeed a particular case of a Pairwise
Markov Random Field. In fact we can define a graphical
model by taking the undirected version of the communica-
tion graph G = (V, E) and associating the random variable
x; = T;|C with alphabet {1,—1} to each node. The fac-
torization property defined by equation 5 is satisfied by
choosing

lnq/zij(:z:i,a:j) = %Jiiﬁcj = Jijxizj (6)
(notice that the graph of the graphical model is assumed
to be undirected) and

In¢i(z;) = —Aw; (7)



so that when {a} = {T|C'} we have that

H(T)

1
p{x} = Ee 2 ’

where the Hamiltonian H(-) is the same of equation 4.
4. MESSAGE PASSING ALGORITHMS
4.1 Estimating Marginals with Belief Propagation

After casting the model into the MRF framework, the first
problem we address is that of computing marginals, or
beliefs, defined as the a posteriori probabilities p{T;|C}
of a single random variable T;|C. In physical terms, the
problem is analogous to computing local magnetization
vectors

M; = p{T; = 1|C} — p{Ti = -1|C} = 1 = 2p{T; = —1|C}
in the corresponding Ising model.

This task can be efficiently accomplished using Belief
Propagation(BP), one of the best known algorithms for
performing inference on graphical models. This algorithm
has recently had a lot of attention in fields such as Al,
computer vision, control and even coding theory, where it
has been successfully used to decode turbocodes under the
name of the sum product algorithm.

A key aspect of the algorithm for the application scenario
proposed here is that it manages to distribute the global
computation of the marginals into smaller local compu-
tations, whose results travel on the graphical model in
the form of messages that are combined appropriately by
the recipients. Remarkably, instead of considering these
messages as abstract partial results of an algorithm, we can
think of them as real messages exchanged by the nodes in
the network, obtaining a powerful theoretical framework
for the distribution and fusion of information among the
nodes of a network.

According to BP, the nodes in the network try to reach an
agreement on what their probability distributions should
be by exchanging messages. Variables m;;(z;) are intro-
duced, where m;;(z;) represents a message sent from node
i to node j about what state node j should be into. The
message is a vector with as many components as the alpha-
bet of z;, and each component intuitively represents how
likely it is according to ¢ that node j is in the corresponding
state.

The belief b;(x;) = p{T; = z;|C} at a node 7 is obtained

as
bi(zi) = k(i) H mi(;)
JEN(9)
where k£ normalizes to a probability distribution. The
messages are updated according to the following rule

m;(x;) — Z bi(xi)Yij (i, v5) H
T keEN()\{j}
By using equations 7 and 6 the BP updating rules for our
model become

bi(x;) = ke H mji(z:)

JEN(3)

M (i)

and

mij(xy) — Y (e Mrelonn ]

i keN()\{j}
It is well known (for a proof see Pearl (1988)) that these
rules give exact beliefs if the pairwise Markov Random
Field is singly connected, that is if the underlying graph
is a tree so that there are no loops. However the algorithm
is well defined on any graph topology, even if there is no
guarantee on the convergence and on the quality of the
solution found.

M ()

4.2 Mazimum a posteriori likelihood estimation with the
Maz-product algorithm

The problem of computing a maximum a posteriori likeli-
hood estimate of the real trust vector T outlined in section
2 can be addressed with an algorithm very similar to Belief
Propagation. This algorithm, known as the max-product
algorithm, is once again a local message passing algorithm
that works by exchanging messages among nodes, so that
at every iteration, each node sends a message to each of
its neighbors and receives one from each of them. The
messages are defined as follows:

mij () — max | ij (s, 25)¢i (i) | ED)

' KEN()\ {7}
while the max marginals p; are computed according to the
following equation

pi(zi) = ¢i(w;) H myi(;)
JEN(3)
By using equations 7 and 6 the updating rules for the max
product algorithm become

mij(z;) < max eliatis g A H mii (i) (8)
¢ keN(i)\{j}
e L
JEN(3)

Each component of the vector p;(x;) represents the prob-
ability of the most likely trust assignment to the entire
network, when the trust status of node i is forced to be x;.
When the graph G is a tree, it is known that the algorithm
is guaranteed to converge to a unique fixed point, such that
it is possible to obtain the global most likely (a posteriori)

configuration T, that is defined component-wise by

T’i = arg max p; (;).
5

Unfortunately a tree shaped communication network is
not a common scenario, but exactly as Belief Propagation
the max product algorithm is well defined on any graph
topology. However, when applied to a network with loops,
it might not converge, and even when it does, there is
no guarantee on the quality of the results obtained. Even
if one can indeed find pathological examples of graphical
models in which message passing algorithms fail, they have
been successfully used on loopy graphical models in many
applications arisen in coding theory, computer vision and
medical diagnosis. In particular in Murphy et al. (1999)
it is shown empirically that loopy Belief Propagation does
converge to good approximations of the marginals in a



wide range of real world inference problems. Moreover in
the simulative analysis presented in the next section we
never experienced convergence problems, even in the case
of a complete graph that intuitively represents a worst case
scenario from the point of view of the presence of loops.

5. ANALYSIS

From a qualitative point of view, we can start the analy-
sis by noticing that we cannot expect any topology-
independent result. For example, in a network made by
isolated vertices, we cannot do any better than just using
the a priori knowledge. We will therefore need to fix a
topology to be able to show some meaningful results.

Since we know that loops are a cause of trouble for
message passing algorithms, we will focus our attention
on a complete communication graph. Even if it is not
representative of the topology of any interesting real
world network, it should intuitively be close to a worst
case scenario. Moreover most analytical results from Spin
glasses theory are derived for this topology, and making
use of them it is possible to show the following result:

Proposition 2. If n #0
h(T)

lim E

N—o0

=0

where A
1= argmaxgeqqy, 1y~ H(S)
and . .
hT) = [{i: T, # T}
is the number of incorrect estimates given by 7'.

A proof of proposition 2 can be found in Ermon et al.
(2009), and it essentially descends from a non-trivial spin
glass theory result that guarantees the convergence of the
sequence

3
N 2K {Se?ll,a—)i}N Z wijSz‘Sj:|

as N tends to infinity when the couplings w;; are Gaussian
distributed. In the context of estimation theory, propo-
sition 2 essentially states that the maximum likelihood
estimator is non-biased in the limit of large NV, regardless
of which method is used to actually compute it.

5.1 Simulative Analysis

From a simulative point of view, we are interested in
measuring what is the fraction of nodes that the max-
product algorithm is not able to correctly identify, in
expectation. If S* is the configuration returned by the max
product algorithm, we are interested in the average error

rate HS* T||
E |02~ 2t
o

where the expectation is taken over all levels of random-
ness. The first experiment is performed by simulating the
environment described by the Gaussian model presented
in section 2.1, for various values of N and o2. The estima-
tion algorithm used is the max product algorithm, where
messages are initialized as constant functions and O(N?)
messages are exchanged in total.

Performance of the algorithm with Gaussian opinion errors and p=0.7
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Fig. 1. Performance of the algorithm with a complete
communication graph of N nodes for several values
of N. The a priori probability p that a node is
trustworthy is 0.7.

As we can note in figure 1, the algorithm does actually
converge even in presence of loops, and moreover a number
of exchanged messages polynomial in the size of the
network suffices to reach a fixed point.

As one might expect, the performance of the algorithm
decreases as does the quality of the a posteriori information
(measured by a larger variance o2 on the opinions). As
we can see from the case N = 25, when the a posteriori
information is too noisy, the error rate becomes higher
than the one obtained by the optimal estimator that is
based solely on the a priori information Sg,:

g _ [0 ifp>05
ap —[1,...,1] otherwise ’
that clearly shows an average error rate of (1 — p).

Moreover the simulation data show that the error rate
decreases as N grows, thus confirming proposition 2.

To test the robustness of the algorithm we consider another
reasonable model for (1), where the errors are Bernoulli
distributed. In particular we assume that if (,j) € E then

- _ | TT; with probability 1 — p,
Cij = —T;T; with probability pe

In this model when a node is trustworthy (7; = 1), ¢;; = T
with probability 1 — p., while the contrary holds when
T; = —1. Thus the parameter p. is an error probability,
representing how likely it is for a trustworthy node to
misjudge a neighbor.

(10)

The results obtained with various error probabilities pe
and various number of nodes N are shown in figure 2. The
trust estimation algorithm uses a value of

0% = E[(ci; — TiT})*] = 4pe (11)
and it shows a low error rate at least until p. approaches
0.4. The results are comparable with those obtained with
model (2), when the variance of the error on the opinions
is the same according to equation (11). However when
pe > 0.5, on average there are more wrong opinions than
correct ones, and the algorithm is outperformed by the one



Performance of the algorithm with Bernoulli distributed errors and p=0.7
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Fig. 2. Performance of the algorithm with a complete
communication graph of N nodes for several values
of N and opinions generated according to model (10).
The a priori probability p that a node is trustworthy
is 0.7.

based solely on the a priori information. The average error
rate shows a sharp phase transition phenomenon around
pe = 0.4, that is typical of spin glasses systems. In the
extreme and somewhat unrealistic situation where p, >
0.5, it is possible to take advantage of the symmetry of
the problem by considering —C' as the opinion matriz, thus
obtaining the same accuracy as with an error probability
of 1 — p. and a curve symmetric with respect to p. = 0.5.

6. CONCLUSIONS

The new paradigm of autonomic networks poses new
challenges ahead, due to its self-managing, self-configuring
and highly dynamic nature. Among all of them, in this
paper we focused on the trust management system, that
is arguably one of the most interesting ones.

In this work we presented a mathematically sound frame-
work for trust evaluation based on Markov Random Field
theory, and we proposed the use of a fully distributed
algorithm based on message passing techniques. This al-
gorithm is completely based on local interactions between
nodes and can be implemented without any need for cen-
tral coordination and demonstrates that Markov Random
Field theory used in combination with Message Passing al-
gorithms constitutes a powerful theoretical framework for
the development of algorithms for information distribution
and fusion.
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