Scaling Gaussian Process Regression with Derivatives

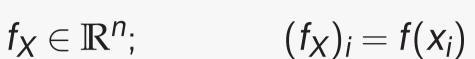
Kun Dong¹ David Eriksson¹ Eric Hans Lee² David Bindel² Andrew Gordon Wilson³

Applied Math¹, CS², ORIE³

Gaussian Processes (GPs)

- Multivariate normals are distributions over vectors.
- ► Gaussian processes are distributions over functions with a mean field $\mu: \mathbb{R}^d \to \mathbb{R}$ and a covariance kernel $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$.
- $ightharpoonup f \sim GP(\mu, k)$ means for any $X = (x_1, \dots, x_n), x_i \in \mathbb{R}^d$:

 $f_X \sim N(\mu_X, K_{XX})$ where



 $(\mu_X)_i = \mu(x_i)$ $\mu_X \in \mathbb{R}^n$;

 $K_{XX} \in \mathbb{R}^{n \times n}$; $(K_{XX})_{ij} = k(x_i, x_j)$

We write K_{XX} as K when unambiguous.

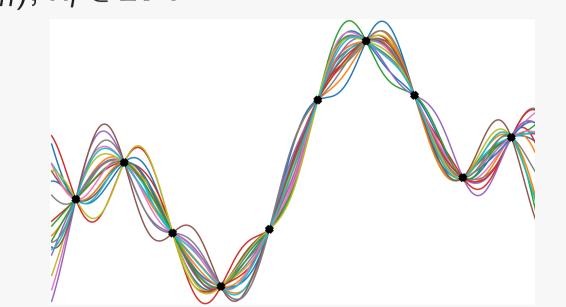


Figure: GP posterior

GP Regression with Derivatives

► Function values and derivatives can be modeled by a multi-output GP:

 $\begin{bmatrix} f_X \\ \partial_X f_X \end{bmatrix} \sim \mathcal{N}(\mu_X^{\nabla}, K_{XX}^{\nabla}), \quad \mu^{\nabla}(x) = \begin{bmatrix} \mu(x) \\ \partial_X \mu(x) \end{bmatrix}, \quad k^{\nabla}(x, x') = \begin{bmatrix} k(x, x') & \partial_{x'} k(x, x')^T \\ \partial_X k(x, x') & \partial_X^2 k(x, x') \end{bmatrix}.$

- ▶ With derivatives, we get a larger kernel matrix $K_{XX}^{\nabla} \in \mathbb{R}^{n(d+1) \times n(d+1)}$.
- ► Gradient information significantly improves regression accuracy.

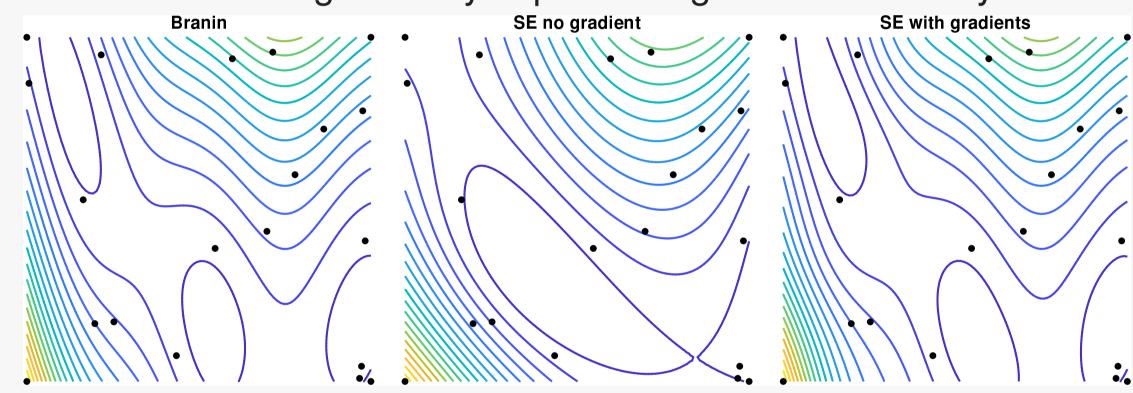


Figure: Branin function approximated by GPs with SE kernel.

Kernel Learning with Derivatives

 \triangleright Kernel depends on hyperparameters θ , which are trained by maximizing the log-likelihood:

 $\mathscr{L}(\theta|y^{\nabla}) = \mathscr{L}_{y^{\nabla}} + \mathscr{L}_{|K^{\nabla}|} - \frac{n(d+1)}{2}\log(2\pi),$

where (assuming $K^
abla c = (y^
abla - \mu_X^
abla)$

$$egin{aligned} \mathscr{L}_{y^{
abla}} &= -rac{1}{2}(y^{
abla} - \mu^{
abla})^T c, & rac{\partial \mathscr{L}_{y^{
abla}}}{\partial heta_i} &= rac{1}{2}c^T \left(rac{\partial K^{
abla}}{\partial heta_i}
ight) c, \ & rac{\partial \mathscr{L}_{|K^{
abla}|}}{\partial heta_i} &= -rac{1}{2} ext{tr} \left(K^{
abla-1} rac{\partial K^{
abla}}{\partial heta_i}
ight). \end{aligned}$$

- \blacktriangleright Naive approach computes the Cholesky factorization of K^{\vee} .
- Challenges:
- \triangleright Direct methods lead to $O(n^3d^3)$ training and O(nd) prediction.
- $\triangleright K^{\nabla}$ is far more ill-conditioned than K.

Main Ideas

- ► Apply structured kernel interpolation to enable fast MVMs for K^V.
- ► Combine iterative methods and stochastic estimators to avoid direct computation, with preconditioning to improve convergence.
- ► Use active subspace learning to overcome curse of dimensionality.

D-SKI: Structured Kernel Interpolation with Derivatives

► Differentiate the interpolation weights to guarantee positive-semidefiniteness

 $k(x,x') \approx \sum w_i(x)k(x_i,x') \rightarrow \nabla k(x,x') \approx \sum \nabla w_i(x)k(x_i,x').$

► Use local quintic interpolation to get a sparse weight matrix and grid-structured kernel

 $\mathcal{K}^
ablapprox W^
abla \mathcal{K}_{UU}W^
abla^T = egin{bmatrix} W \ \partial W \end{bmatrix} \mathcal{K}_{UU} egin{bmatrix} W \ \partial W \end{bmatrix}^T.$

▶ Due to sparsity of $W, \partial W$ and fast MVMs with K_{UU} via FFTs, overall MVM complexity is $O(nd6^d + m \log m)$.

D-SKIP: Structure Kernel Interpolation for Products with Derivatives

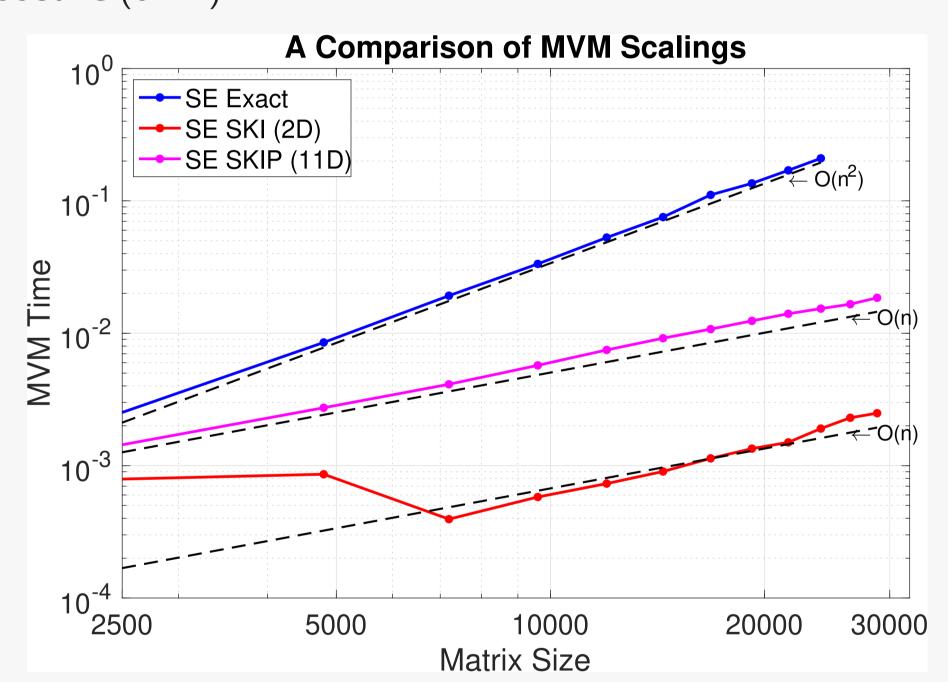
► SKIP yields the following approximations for separable kernels:

 $K \approx (W_1 K_1 W_1^T) \odot (W_2 K_2 W_2^T) \odot \ldots \odot (W_d K_d W_d^T),$

► We differentiate and iteratively apply the Lanczos decomposition to obtain:

 $K^{\nabla} \approx (Q_1 T_1 Q_1^T) \odot (Q_2 T_2 Q_2^T).$

- ► For an effective kernel rank of *r* at each step,
- ▷ Construction cost: $O(d^2(n+m\log m+r^3n\log d))$.
- \triangleright MVM cost: $O(dr^2n)$.



Preconditioning

- ► (Partial) pivoted Cholesky factorization $K^{\nabla} \approx FF^{T}$ provides a cheap and effective preconditioner $M = \sigma^2 I + FF^T$.
- ► Sherman-Morrison-Woodbury formula for M^{-1} is unstable in practice.
- ► Instead, we use $M^{-1}f = \sigma^{-2}(f Q_1(Q_1^T f))$ where

 $\begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} R = \begin{bmatrix} F \\ \sigma I \end{bmatrix}$

ightharpoonup Crucial for the convergence of iterative solvers on K^{∇}

Dimensionality Reduction via Active Subspace Learning

- ► Many high-dimensional problems are low-dimensional in practice.
- ► The active subspace spans the dominant eigenvectors of the cov. matrix:

 $C = \int_{\Omega} \nabla f(x) \nabla f(x)^{\mathsf{T}} dx.$

► The function can be well approximated by a GP on the reduced space using the kernel $k(P^Tx, P^Tx')$, where P projects onto the active subspace.

Experiment: Reconstructing Implicit Surfaces from Normals

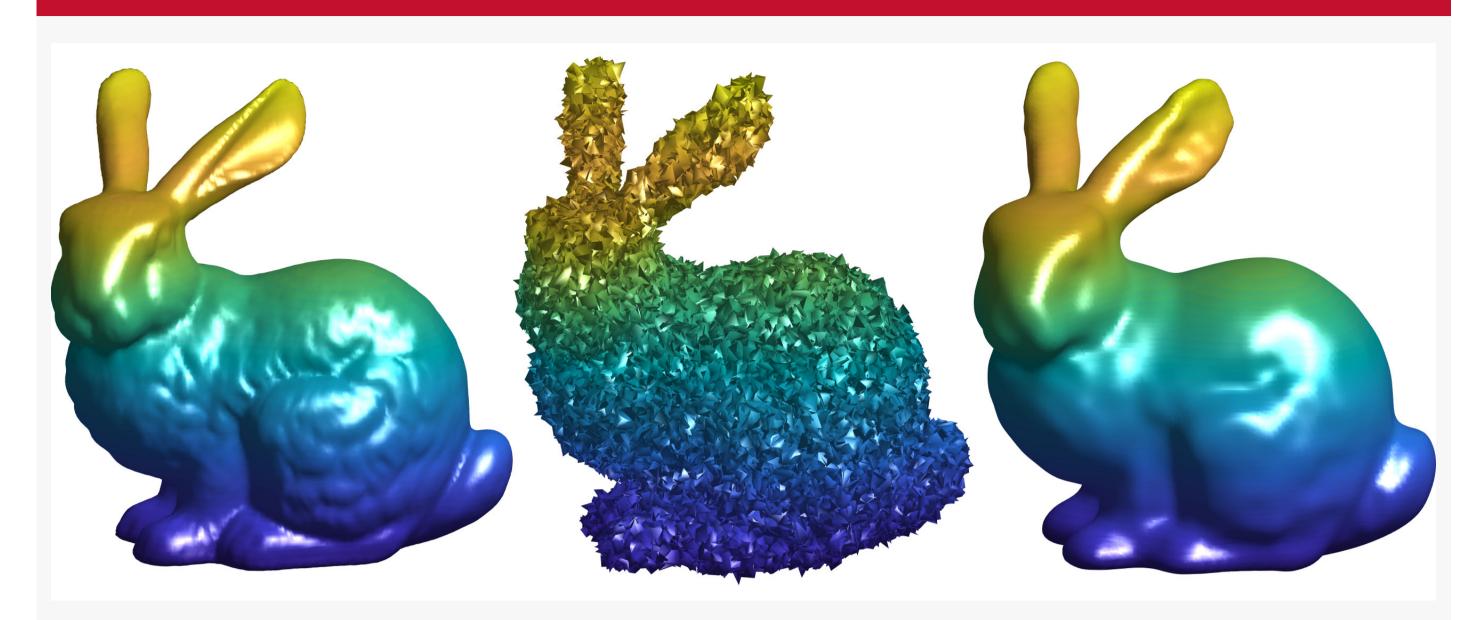


Figure: (Left) Original surface (Middle) Noisy surface (Right) SKI reconstruction from noisy surface

- ► The Stanford bunny is a data set of 25000 points and associated normals.
- ► We heavily pollute the data points and normals with noise, and accurately recover the underlying implicit surface from the noisy data.
- ► We use SKI with an induced grid of size 30 in each dimension.

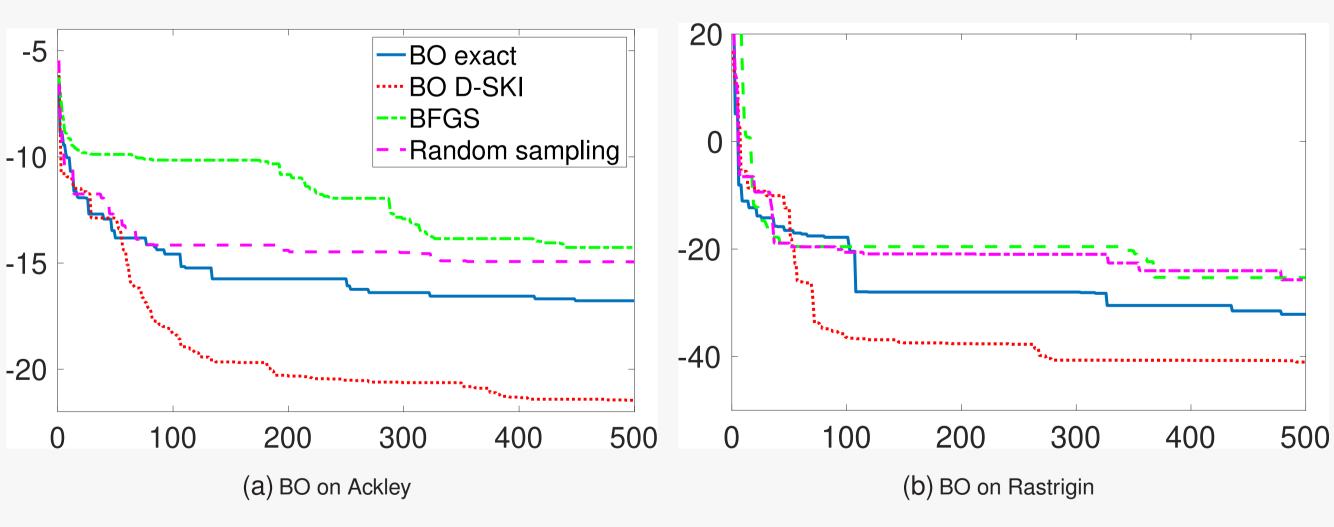
Bayesian Optimization with Derivatives and Active Subspace Learning

while Budget not exhausted do

Calculate active subspace projection $P \in \mathbb{R}^{D \times d}$ using sampled gradients Optimize acquisition function, $u_{n+1} = \arg \max \mathscr{A}(u)$ with $x_{n+1} = Pu_{n+1}$ Sample point x_{n+1} , value f_{n+1} , and gradient ∇f_{n+1} Update data $\mathcal{D}_{i+1} = \mathcal{D}_i \cup \{x_{n+1}, f_{n+1}, \nabla f_{n+1}\}$

Update hyperparameters of GP with gradient defined by kernel $k(P^Tx, P^Tx')$

- ▶ We test on 5D Ackley embedded in $[-10, 15]^{50}$ and 5D Rastrigin in $[-4, 5]^{50}$.
- ► We pick a 2D active subspace at each iteration, using the D-SKI kernel and expected improvement acquisition function in this lower-dimensional space.



Discussion

- Gradient information is valuable for GP regression, but scalability is a problem.
- Our methods make computation of GP with derivatives scalable through fast MVMs, preconditioning, and dimensionality reduction.
- Our approach builds upon structured interpolation, but extends to any differentiable MVM.
- ► BO with derivatives unifies global optimization and gradient-based local optimization.
- ► Implementation available at:

https://github.com/ericlee0803/GP_Derivatives.