
A Trace-based Framework for Analyzing and Synthesizing
Educational Progressions

Erik Andersen1, Sumit Gulwani2, and Zoran Popović1

1Center for Game Science
Computer Science & Engineering

University of Washington
{eland,zoran}@cs.washington.edu

2Microsoft Research
Redmond, WA

sumitg@microsoft.com

A key challenge in teaching a procedural skill is finding an ef-
fective progression of example problems that the learner can
solve in order to internalize the procedure. In many learning
domains, generation of such problems is typically done by
hand and there are few tools to help automate this process.
We reduce this effort by borrowing ideas from test input gen-
eration in software engineering. We show how we can use
execution traces as a framework for abstracting the character-
istics of a given procedure and defining a partial ordering that
reflects the relative difficulty of two traces. We also show how
we can use this framework to analyze the completeness of
expert-designed progressions and fill in holes. Furthermore,
we demonstrate how our framework can automatically syn-
thesize new problems by generating large sets of problems for
elementary and middle school mathematics and synthesizing
hundreds of levels for a popular algebra-learning game. We
present the results of a user study with this game confirming
that our partial ordering can predict user evaluation of proce-
dural difficulty better than baseline methods.

Author Keywords
education; problem generation; execution traces; games

ACM Classification Keywords
H.5.0 Information interfaces and presentation: General

INTRODUCTION
One of the most important domains of human learning is pro-
cedural task learning, which spans a wide range of human ac-
tivities. Humans learn to execute procedures that range from
a simple list of actions, such as a cooking recipe, to more
complex procedures involving loops and conditionals, such
as prime factorization, long division, and solving systems of
equations. The standard human practice of learning such pro-
cedures is by solving a sequence of training problems. This
sequence of problems allows a learner to develop an inter-
nal model of the procedural algorithm over time, so that ul-
timately it can be applied correctly to all possible inputs for
that procedure.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

Procedural learning has been studied in HCI as part of soft-
ware learnability [13, 23, 26]. Many study designs evaluate
application usability by measuring whether a user can suc-
cessfully execute a target procedure in that application. HCI
researchers frequently wish to evaluate the degree to which
a user interface design facilitates the learning of such proce-
dures.

A fundamental problem of teaching procedural tasks in both
HCI and education is determining the optimal sequence of
training problems. Textbooks for elementary and middle
school mathematics typically start with problems that only
require a few steps to solve and grow to more complex multi-
step problems that vary based on the input. These progres-
sions often vary widely and many of them are likely subop-
timal. The quality of a training sequence depends on many
factors, such as the structure of the target procedure, cogni-
tive processes that lead to the creation of procedural models
in the mind, level of engagement towards the task, learner
background, and learning preferences.

There are a number of guiding principles for learning pro-
gressions. Reigeluth and Stein’s Elaboration Theory [24] ar-
gues that the simplest version of a task should be taught first,
followed by progressively more complex tasks that elaborate
on the original task. Csikszentmihalyi’s theory of flow [7]
suggests that we can keep the learner in a state of maximal
engagement by continually increasing difficulty to match the
learner’s increasing skill. By considering Vygotsky’s zone
of proximal development [33], we can avoid overloading the
learner by introducing so many concepts at the same time that
the learner cannot create a consistent internal representation.
Nevertheless, many important details of optimal progression
design are not covered by general principles. It has been es-
timated that 200-300 hours of expert development are neces-
sary to produce one hour of content for intelligent tutors [2],
of which problem ordering is a key part.

In this paper, we create a framework for reasoning about the
space of possible progressions as defined by the procedural
task itself. Our goal is to create a representation of the space
of progressions using only a specification of the algorithmic
procedure, defined directly as a computer program. We pro-
pose categorizing a procedural task based on features of the
program trace obtained by executing the procedure on that
task. We show how this trace-based measure can be used to
measure the quality of a progression and compare the relative
difficulty of two problems.

The use of a trace-based framework for characterizing proce-
dural tasks allows us to borrow well-established techniques
from the software engineering community related to software
testing. In particular, it allows us to use test input generation
tools [31] for generating problems that have certain trace fea-
tures. It also allows us to use notions of procedure coverage
[34] to evaluate the comprehensiveness of a certain progres-
sion. Furthermore, we are able to borrow techniques from
the sequence comparison literature to compare two different
problems, in particular n-gram models [35].

We demonstrate our method by analyzing the space of pro-
gressions for two different domains. One domain is early
math procedures, such as addition, adding fractions, and com-
paring integers. The other domain is a well-known interactive
math puzzle game. We show how we can generate large sets
of practice problems for these procedures. We also show how
our framework can be used to analyze and compare expert-
designed progressions in terms of thoroughness and aggres-
siveness. Determining which kinds of progressions are more
effective is beyond the scope of this paper. Our goal is to au-
tomatically discover the coverage achieved by a progression,
and generate additional problems to supplement the areas that
it covers sparsely.

To assess our partial ordering measures of problem difficulty,
we conducted a pilot user study in which we generated several
levels for an algebra-learning game and asked participants to
compare these levels to those in the expert-designed progres-
sion. We found that our model was better able to predict par-
ticipant responses than other baseline metrics.

We believe that our framework contributes to HCI by us-
ing procedure analysis to reason about the space of possi-
ble problems and how they relate to learning. We believe
that this will reduce the effort required to create such prob-
lem sets. We intend to comprehensively study variations in
progressions using our framework, and we hope that other
researchers can use the same formalism to discover general
principles of problem progressions for procedural tasks.

RELATED WORK

Usability and Learnability in HCI
Effective learning progressions are important not just for
school-based learning; they are a key cornerstone of usabil-
ity and learnability within user applications. Many modern
user applications have advanced features, and learning these
procedures constitutes a major effort on the part of the user.
Therefore designers have focused their energy on trying to re-
duce this effort. For example, Dong et al. created a series of
minigames to teach users advanced image manipulation tasks
in Adobe Photoshop [9]. Grabler et al. created a system that
allows a user to program a tutorial for image-manipulation
tasks through demonstration in GIMP and Adobe Photoshop
[12]. We extend these efforts by proposing a basic theory of
increasing procedural complexity that may someday reduce
the effort of creating such tutorials and games. We envision
a methodology in which designers specify a procedure and
receive an automatically generated set of tasks that are orga-
nized into a progression.

There has also been work in HCI on sociocultural bases for
learning. For example, Rieman [25] examined how humans
learn to perform procedural tasks through exploratory learn-
ing. Linehan et al. [19] provide a series of guidelines for de-
signing effective educational games. Andersen et al. showed
that video game tutorials are only effective when the game
is too complex for players to learn through experimentation
[5] and that changing a progression by introducing secondary
game objectives can negatively impact engagement and reten-
tion [3, 4]. We attempt to supplement such perspectives with
pragmatic approaches to designing learning systems.

Education and Intelligent Tutors
McArthur et al. [21] automatically generate algebra problems
as part of an intelligent tutor for algebra. They first collect
and annotate problems by what skills they use, such as isolat-
ing positive terms, and multiplying both sides of an equation
by −1. They then indicate relationships between these skills,
such as that one is a prerequisite for another, or that one is
a generalization of another. Since each of these skills is es-
sentially a production rule, they specify a grammar for how
these rules can transform a problem state into another prob-
lem state, and use random values to generate problems. Slee-
man [28] used a similar approach of specifying a grammar
for algebra problems and used this to generate new problems.
We expand on this work by using the idea of procedure traces
to automate the identification of relationships between prob-
lems and generalize it to a larger class of problem domains.
We also show how these ideas allow us not only to generate
problems and progressions but also to evaluate existing pro-
gressions.

Li et al. studied problem orderings by examining them with
a machine learning agent called SimStudent. They found
that interleaved problem orderings led to faster learning than
blocked orderings [18]. We extend this work by creating a
framework in which interleaved or blocked problem progres-
sions can be created for any procedural task. VanLehn [32]
has extensively studied student acquisition of the subtraction
procedure and analyzed the bugs that children display while
learning this procedure. We focus on a larger domain of pro-
cedural tasks and show how these procedures can be used to
generate practice problems.

Gulwani [14, 15] has applied techniques from formal meth-
ods, and in particular program synthesis, to various aspects
of intelligent tutoring systems including solution generation
[16], problem generation [27], automated grading, and con-
tent entry. In this work, we use test input generation tech-
niques from formal methods for problem generation.

Problem Generation
There have been two approaches to generating problems for
procedural mathematical content. In one approach, flexibil-
ity is provided for instantiating parameters of a problem with
random constants [17]. In contrast, for our domain of mid-
dle school procedural problems, the choice of the constants
makes all the difference in the difficulty level of a problem.

In another approach, certain features of the problem domain
are provided as hard-coded options and users are able to

choose among these options and generate problems. For in-
stance, in the domain of quadratic equations, some interesting
features could be whether the equation is “simple factorable”,
“difficult factorable, where the leading coefficient is not 1”,
or “requires use of general quadratic formula”. Another in-
teresting feature can be whether or not it has imaginary solu-
tions. Several math worksheet generator websites are based
on this approach. The Microsoft Math-Worksheet Genera-
tor goes a step ahead and automatically infers such features
from a problem instance [22]. Each domain has its own set
of features that needs to be defined separately. Our system
can infer such features from a problem instance to generate
similar problems. However, more significantly, a procedural
description of the problem domain leads to automatic defi-
nition of such features. Furthermore, our system considers
more complicated features, such as n-grams, that relate to a
sequence of decisions required to solve a problem as opposed
to a single decision.

Recently, there has been some progress in generating prob-
lems in non-procedural mathematical domains. Singh et al.
[27] proposed a semi-automatic template-based approach to
problem generation for the domain of high-school algebra
proof problems. The teacher semi-automatically generalizes
a given seed problem into an abstract template. However, not
all instantiations of those templates are valid proof problems.
The underlying system performs a brute-force enumeration
over all possible instantiations and uses novel results from
randomized algebraic identity testing [16] to filter those in-
stantiations that yield valid problems. They can generate im-
pressive and non-trivial problems; however, there is no guar-
antee of the difficulty level associated with each problem.

Cerny et. al. [6] also proposed a template-based approach to
problem generation for the domain of automata theory prob-
lems. A given seed problem is abstracted into a template,
and most instantiations, if not all, are actually correct prob-
lems. The system then uses a sophisticated solution genera-
tion technology based on novel results in automata theory to
compute the solutions for various instantiations and then par-
titions the problems into different equivalence classes based
on some user-defined similarity metric. However, no attempt
is made to compare the problems across different equivalence
classes or different seed problems.

Procedural Content Generation in Games
Smith et al. used answer-set programming to generate levels
for the educational puzzle game Refraction (Center for Game
Science 2010) that adhered to prespecified constraints written
in first-order logic [29]. Similar approaches have also been
used to generate levels for platform games [30]. In the major-
ity of existing approaches, designers must explicitly specify
constraints that the generated content must reflect, for exam-
ple, “the tree needs to be near the rock and the river needs to
be near the tree”. There has been much less work in guiding
the generation based on a description of what the player needs
to do. Dormans generated levels for puzzle-platform games
[10] through grammars that could build a “mission” for the
desired tasks the player needed to perform. We expand on
these methodologies by generating not only levels but also

level progressions directly from a procedure that solves those
levels. Although previous work has typically considered level
solvers and level generators to be separate entities, our frame-
work unifies them.

A TRACE-BASED FRAMEWORK
We present a trace-based framework for characterizing prac-
tice problems and estimating their relative difficulty level. For
example, consider the standard addition algorithm for adding
any number of positive integers:

Algorithm 1 Addition: Given as input a sequence of se-
quences of digits ni = [niq , ..., ni0], add them:

1: procedure ADD(n1, ..., nm)
2: a← 0
3: maxLen← max(len(n1), ..., len(nm))
4: for i← 0,maxLen− 1 do . Loop over digits (D)
5: k ← 0
6: for all nj do . Loop over inputs (N)
7: if len(nj) > i then
8: k ← k + nj [i] . If digit exists (A)
9: end if

10: end for
11: if c[i] 6= null then
12: k ← k + c[i] . If carry exists (C)
13: end if
14: if len(k) = 2 then
15: c[i+ 1]← k[1] . If we need to carry (O)
16: end if
17: a[i]← k[0]
18: end for
19: if c[maxLen] = 1 then
20: a[maxLen]← c[maxLen] . If final carry (F)
21: end if
22: return a
23: end procedure

We believe that one of the best categorizations of the diffi-
culty of a particular addition problem is the pathway or the
trace that the procedure takes while solving that problem.
A quick analysis of addition problems in any textbook will
likely show many such traces. We use sequences of letters
to indicate traces; these letters are output when the program
executes commented lines in the above procedure.

Valid inputs to this problem have two or more input num-
bers and these numbers can have any number of digits. The
simplest possible trace under these constraints is the trace
corresponding to one-digit number plus a one-digit number
where the sum is less than 10: “DNANA”. In this trace, the
carry branch “C” does not execute because there is no exist-
ing carry, the “O” overflow branch does not execute because
there is no overflow, and there is no final carry so the final
carry branch “F” also does not execute. The digit existence
branch must execute because otherwise the addend would be
invalid.

The following table shows several problems and their traces:

Problem Trace
1 + 1 DNANA
11 + 1 DNANADNAN
1 + 11 DNANADNNA
11 + 11 DNANADNANA
9 + 1 DNANAOF
19 + 1 DNANAODNANC
1 + 2 + 3 DNANANA
1 + 2 + 3 + 7 DNANANANAOF
333 + 444 DNANADNANADNANA

Characterizing problems by their execution traces has several
implications. It allows us to measure the program coverage of
a problem, which can be used to evaluate the comprehensive-
ness of a progression. It allows us to compare problems, a no-
tion more formally captured in the next section, based on how
the procedure executes. It does not take into account differ-
ences in perceived difficulty that may arise from differences
in the input values. For example, students may be much more
comfortable with adding 1+1 than 5+4, and our model will
not take this into account. However, such differences are gen-
erally domain-specific and cannot be identified without gath-
ering data. Our model can easily grow to accommodate such
distinctions. If a teacher or designer wants to distinguish two
classes of inputs, he or she can add a conditional branch to
the program that will separate these two classes.

PARTIAL ORDERINGS OVER TRACES
In order to assemble practice problems into progressions that
begin simply and grow more difficult, we define a method-
ology for comparing two different problems. To do this, we
define partial orderings over problems based on features of
their corresponding traces. We can use this partial order rela-
tionship to compare two problems and determine if they are
similar in difficulty, if one problem is more difficult than the
other, or if no determination can be made using our model.
Once we have such a partial ordering, we can identify sim-
pler or more complex variations of a particular problem, and
we can use it to sequence multiple problems together into a
progression.

There are many possible ways to define a partial ordering over
execution traces. Here, we define two partial orderings that
we have found useful in analyzing and synthesizing progres-
sions.

Path-based Partial Ordering
We use the following trace features to define our first partial
order over traces:

• the number of times a certain loop in the procedure was
executed

• whether or not the non-skip branch of a certain exceptional
conditional was executed; we define a conditional to be
exceptional if one of its branches contains no instructions
and is equivalent to “skip”.

We now use the following recursive definition to define a par-
tial ordering:

Definition 1a: A trace T1 that contains loops is as least as
complex as trace T2 if for every loop L in the procedure, the
trace T1 has at least as many iterations of loop L as in trace
T2, and for each subtrace T ′2 in T2 that corresponds to an
iteration of loop L, there exists a subtrace T ′1 in T1 that is at
least as complex as T ′2.

We also define the following base case:

Definition 1b: A non-loopy trace T1 is at least as complex as
trace T2 if for every exceptional condition in the procedure, if
the non-skip branch of the exceptional condition was executed
in T2, then it was also executed in T1.

We now give some examples of trace comparisons based on
the above-defined partial order.

Example 1: Loops that execute longer are more complex. If
we compare the traces “DNANA” and “DNANANA”, corre-
sponding to the problems 1+2 and 1+2+3, respectively, the
only difference is that the inner “N” loop executed one more
time. Therefore, “DNANANA” subsumes “DNANA”.

Example 2: A conditional branch that executes some state-
ments is more complex than a conditional branch that
executes no statements. If we compare “DNANA” and
“DNANAOF”, corresponding to the problems 1 + 2 and
9+1, respectively, “DNANAOF” contains all of the “work” of
“DNANA”, plus the additional step that there is an overflow
and the 1 must be carried over to the next digit. Therefore,
“DNANAOF” also subsumes “DNANA”.

Example 3: Since loops can contain conditionals and other
loops, each iteration of a loop that execute multiple times
may vary in complexity. Our partial order also allows us to
compare such traces. For example, consider the two traces
“DNANADNANA” and “DNANADNAN”, corresponding to
the problems 11+ 11 and 11+ 1, respectively. In both cases,
the outer “D” loop executes twice. The first iteration of this
loop is the same but the second iteration is different. The
second iteration for “DNANADNANA” executes a final “A”
statement in an exceptional condition that “DNANADNAN”
skips. Therefore “DNANADNANA” subsumes “DNANAD-
NAN”.

The notion of partial order also allows us to take a given
trace and build more complex variants. For example, consider
again the trace “DNANA” from the above addition example.
There are three obvious ways in which this trace can expand.
The first is by flipping conditional branches that executed no
statements so that they do execute statements. One such trace
is “DNANAOF”, corresponding to problems in which there
is a carry such as 1 + 9. Another possible expansion is to
increase the number of iterations of the “N” loop by 1, yield-
ing the trace “DNANANA” that corresponds to problems with
three one-digit numbers and no carries like 1+2+3. Another
way to expand the problem is to increase the “D” loop by one
iteration, perhaps yielding the trace “DNANADNANA” cor-
responding to two-digit addition problems with no carries like
12 + 34.

DNANAOF

DNANADNAN

DNANANANAOF

DNANANADNNNA

DNANANAOF

12 34 56 79 105 7 9

10

26

27

29

OAOA

OS

OA

OSOS

14

28

24 56 7

8 912 1415

1617

2021

24 2526

27

Figure 1. We can use our trace-based framework to compare progressions. The Singapore Math Sprints books organize worksheets into pairs of
“A” worksheets and “B” worksheets, stating that the B side is “intended for more advanced students”. The above figures compare the “A” and “B”
progressions for two different problem domains. In both figures, the green solid arrows correspond to the “A” progression, and the blue dashed arrows
correspond to the “B” progression. Self-edges are removed for clarity. The left side shows a worksheet pair for addition, corresponding to Algorithm
1. The right figure shows a different worksheet pair for fraction computation, corresponding to Algorithm 2. In both cases, we see that the “advanced”
progression spends less time in the easier regions and quickly moves into longer pathways that require additional steps. In the case of addition, the “B”
problems have more addends, and in the case of fraction computation, the “B” problems have more input fractions.

N-gram-based Partial Ordering
We now define a second partial ordering by utilizing n-grams
[35]. This method defines a family of partial orderings de-
pending on the value of positive integer n. n-gram mod-
els have been used extensively in natural language process-
ing and search engines, where the meaning of a word can be
uniquely defined by just looking at a small context around it
in the parent sentence. In the case of procedural execution
traces, the intuition is that students can only remember a cer-
tain amount of context, and it is most useful to test students
on their ability to execute small sequences of algorithmic de-
cisions within a larger execution trace.

The n-gram abstraction of a trace also provides a nice con-
tinuum between the standard notions of statement coverage,
which corresponds to a uni-gram model, and path coverage,
which corresponds to ∞-gram model in the software engi-
neering literature [34].

Definition 2: Let n be any positive integer. We say that a
trace T1 is at least as complex as trace T2 if every n-gram of
trace T2 is also present in trace T1.

ANALYSIS OF PROGRESSIONS
In order to test the ability of our framework to analyze pro-
gressions, we gathered problems from three different work-
books for elementary and middle school mathematics:

• Math Sprints series from Singapore Math Inc.1. These
books include many worksheets that are intended to be
completed in rapid one-minute sessions. They tend to in-
volve lots of repetition and not too much difficulty.

• JUMP Math curriculum2. This Canadian curriculum was
able to raise at-grade-level performance from 12% to 60%
in a study in Lambeth, England [1].

• Skill Sharpeners: Math3 by Evan-Moor Educational Pub-
lishers.

1http://www.singaporemath.com/Math_Sprints_s/
184.htm
2http://jumpmath1.org/
3http://www.evan-moor.com/Product.aspx?
SeriesID=122

Evaluating Progressions
We can use our framework to explore interesting patterns in
a progression. We first define an algorithm for performing
multiple addition and subtraction operations on fractions:

Algorithm 2 Fraction Computation: Given as input a set
of fractions f1, ..., fn and a set of + and − operations
o1, ..., on−1, execute these operations:

1: procedure FCOMPUTE(f1, ..., fn, o1, ..., on−1)
2: if ∃fi, fj : fi.d 6= fj .d then
3: lcm← max(d ∈ fi.d) . Denom. diff. (D)
4: while ∃fi : lcm mod fi.d 6= 0 do
5: lcm← lcm+max(d ∈ fi.d) . (M)
6: end while
7: for all fi do
8: s← lcm÷ fi.d
9: fi.n← fi.n ∗ s

10: fi.d← fi.d ∗ s
11: end for
12: end if
13: n← 0
14: for all oi do . For each operation (O)
15: if oi = + then
16: n← n+ fi+1.n . Add (A)
17: else if oi = − then
18: n← n− fi+1.n . Subtract (S)
19: end if
20: end for
21: end procedure

Figure 1 shows progressions from the Singapore Math Sprints
workbooks for Algorithms 1 and 2. These worksheets are or-
ganized into pairs of “A” and “B” worksheets. The instruc-
tions state that the “A” progression is intended for weaker
students and the “B” progression is intended for stronger stu-
dents. For most of these pairs, the two worksheets cover the
same set of concepts. However, we can see that the “A” pro-
gressions spend more time moving back and forth between
simple traces and the “B” progressions move into more com-
plicated traces that subsume the early traces.

http://www.singaporemath.com/Math_Sprints_s/184.htm
http://www.singaporemath.com/Math_Sprints_s/184.htm
http://jumpmath1.org/
http://www.evan-moor.com/Product.aspx?SeriesID=122
http://www.evan-moor.com/Product.aspx?SeriesID=122

Figure 2 shows a larger-scale analysis of progressions from
all of these books. For each progression that we chose to an-
alyze in each book, we first categorized all of the problems
by trace. We can see that for most of these problem types,
the number of traces is much less than the number of prob-
lems. However, there are differences between progressions;
for example, the Singapore Sprints progression for addition
has many more unique traces than the Skill Sharpeners pro-
gression.

Making progressions more systematic
We can use our framework to identify pathways a progression
does not cover and suggest problems to fill that gap, if desired.
We first define an algorithm for comparing two integers:

Algorithm 3 Integer Comparison: Given as input two se-
quences of digits a = [a0, ..., am] and b = [b0, ..., bn], de-
termine if a > b, a < b, or a = b:

1: procedure COMPARE(a, b)
2: if len(a) > len(b) then
3: return more . More digits (H)
4: else if len(a) < len(b) then
5: return less . Fewer digits (L)
6: end if
7: for i← 0, len(a)− 1 do . For each digit (D)
8: if ai > bi then
9: return more . Digit is larger (G)

10: else if ai < bi then
11: return less . Digit is smaller (S)
12: end if
13: end for
14: return equal . Equal (E)
15: end procedure

Figure 3 compares the Skill Sharpeners and JUMP Math pro-
gressions for Algorithm 3. Since there are too many nodes
in the JUMP Math progression to visualize here, only the
first third of the progression is shown. We can see that there
is a considerable difference in how these progressions pro-
ceed. The JUMP Math progression, indicated in green, goes
more quickly into more complex traces. The Skill Sharpeners
progression spends more time going back and forth between
simple problems, and never reaches some of the longer traces.
We can also see that the first third of the JUMP Math progres-
sion omits a class of problems indicated by the traces “H” and
“L”. The JUMP progression eventually includes a problem in
the “L” class but not until late in the progression. These traces
correspond to problems in which a number is greater than an-
other number because the number of digits is larger. Whether
or not this omission is desirable is up to the educator; how-
ever, this example shows how a procedural analysis can find
holes in progressions.

We can use the n-gram model presented in the partial order-
ing section to look for missing traces even more deeply. Fig-
ure 4 shows an analysis of the n-grams for four progressions
for different problems. We compute all of the trace n-grams
for each level for each progression, and identify missing n-
grams by comparing them to a complete progression. Note

L

DDS

DS

DDDG

DDG

HDDDS

DG

1

2

3

4

5

6

7 89

10

11

12

1314

15

1617

18

1920

1

2

3

4 5 6

7

8

9

10

11

12

13

14 15

1617

18

19

20

21

22

23

Figure 3. Filling in holes in progressions. This figure compares two pro-
gressions for integer comparison (Algorithm 3). “H” corresponds to the
trace that gets executed when the first number has more digits than the
other and is therefore greater. “L” corresponds to the trace that gets
executed when the first number has fewer digits. “D” signifies that the
number of digits is the same and that the execution path moves down
the digits from left to right. “G” signifies that the digit under examina-
tion was smaller and “S” means that the digit under examination was
bigger. Therefore, “DG” means that the first number is greater than the
second because the first digit was greater. The blue dashed arrows indi-
cate the Skill Sharpeners: Math progression and the green solid arrows
indicate the JUMP Math progression. The JUMP Math progression
quickly reaches more difficult problems than the Skill Sharpeners pro-
gression. The Skill Sharpeners progression never reaches traces longer
than “DDG” and “DDS”. It also omits problems in which the first num-
ber is greater or less than the second number because the number of
digits is different. We can “repair” such holes by borrowing problems
from other progressions or generating them automatically.

that not all combinations of all letters are possible. For exam-
ple, the integer comparison trace “H” cannot combine with
any other letters because the program returns immediately af-
ter that statement.

SYNTHESIS OF PROGRESSIONS
We employ four different strategies for generating and gather-
ing problems: (i) conducting brute force enumeration over in-
puts, (ii) using test input generation tools to explore the space
of execution paths, (iii) using test input generation tools to
generate problems that lead to the execution of a desired path
by writing a straight-line program with assertions correspond-
ing to that path, and (iv) collecting problems from textbooks.

Large-scale exploration of execution paths
Manual software testing, in general, and test input genera-
tion, in particular, are labor-intensive processes. The need

Problem Book # problems # unique traces % generated

Addition Skill Sharpeners: Math 584 17 88%
Singapore Math Sprints 576 48 64%

Fraction Computation
Skill Sharpeners: Math 66 13 100%
Singapore Math Sprints 248 15 100%
JUMP Math 131 11 95%

Fraction Reduction Skill Sharpeners: Math 66 13 100%
JUMP Math 56 11 100%

Integer Comparison Skill Sharpeners: Math 24 6 100%
JUMP Math 88 12 100%

Figure 2. Summary of textbook progression analysis. We analyzed progressions from three textbooks for four different problem domains. We parti-
tioned problems into groups based on their execution trace. The final column shows how many of these traces we were able to generate using Pex, a test
input generation tool.

Problem Book n-gm. % Cov. Missing Traces

Frac. Comp.

JUMP

1 100%
2 100%
3 93% SOA

4 65%
MOAO, OSOA, MOSO,
DOSO, SOSO, AOSO,
SOAO

S.S.

1 100%
2 75% OA, OS

3 50% DMO, OAO, AOA,
OSO, SOA, AOS, SOS

4 30%

DMOS, DMOA, MOAO,
OAOA, OSOA, MOSO,
DOAO, AOAO, OSOS,
DOSO, SOSO, AOSO
SOAO

Int. Comp.

JUMP

1 80% H
2 100%
3 100%
4 100%
5 100%
6 100%

S.S.

1 100%
2 100%
3 67% DDD
4 0% DDDG, DDDS, DDDD

5 0% DDDDG, DDDDS,
DDDDD

6 0% DDDDDG, DDDDDS,
DDDDDD

Figure 4. We can use the n-gram model to evaluate progressions. This
table shows an analysis of progressions from JUMP Math and Skill
Sharpeners (abbreviated as S.S.) for both fraction computation (Algo-
rithm 2) and integer comparison (Algorithm 3). The table lists what
percentage of the feasible n-grams, for various values of n, were cov-
ered by all problems together in the progression. The table also lists the
missing n-grams. Integer comparison traces involving “E” are omitted
because the goal of the exercise was to determine which number is larger.

to reduce the cost of software testing and maintenance has
led to development of automated tools for generating test in-
puts that achieve a high level of coverage. Pex [31] is one
such tool that automatically produces a small test suite with
high code coverage for a .NET program. It performs path-
bounded model-checking by repeatedly executing the pro-
gram and solving constraint systems to obtain inputs that will
steer the program along different execution paths, following
the idea of dynamic symbolic execution [11]. Pex uses the
theorem prover and constraint solver Z3 [8] to reason about
the feasibility of execution paths, and to obtain ground mod-
els for constraint systems.

We applied Pex to generate problems for several elementary
school mathematics procedures, shown in Figure 5. For each
of these problems, we let Pex run for a certain length of time
that we varied depending on how many paths we wanted to
generate for a particular problem. We then analyzed the ex-
ecution pathways of each of the problems that Pex generated
and partitioned them by trace.

Generating problems to exercise a specific pathway
Pex’s goal is to achieve high code coverage. While this allows
Pex to generate a large variety of pathways quickly and effi-
ciently, it also creates the possibility that it may not find cer-
tain pathways because its goal is statement coverage, not path
coverage. However, we can still use Pex to generate problems
for a specific trace by converting the procedure to a straight-
line procedure. Essentially, we take the desired path and in-
strument the procedure with assertions that will constrain the
execution of the procedure along that particular path.

Using this method on Algorithm 2, we were able to generate
an input problem that creates the trace “DAAA” in 40 seconds
and “DMMMMMMS” in 35 seconds.

EVALUATION OF OUR SYNTHESIS TECHNIQUES
Textbook problems
Figure 5 shows how we were able to generate large numbers
of unique traces with Pex for several math topics. This ta-
ble indicates how long we let Pex run and how many unique
traces it produced. Figure 2 shows what percentage of the set
of traces found in the textbooks we were able to generate. It
is not 100% for all problems, but we can use the straight-line
program method to generate the missing buckets. These re-
sults show that using test input generation tools is sufficient
for generating problems in this domain.

An Algebra-based Learning Game
In order to validate our framework on a different procedural
task domain, we conducted a user study by using Pex to gen-
erate several levels for a video game.

DragonBox (WeWantToKnow 2012), shown in Figure 6, is a
video game that became the most purchased game in Norway
on the Apple App Store [20]. It features game mechanics that
involve solving algebra equations. The game does not appear
to be an algebra lesson, but the player cannot succeed with-
out learning algebraic simplification and variable isolation.
These topics are learned through the level progression. Drag-
onBox represents algebraic expression trees visually as a set

Problem Time # unique traces Constraints
Addition 64 min 1433 # digits ≤ 4, # addends ≤ 6
Fraction Computation 16 min 72 # fractions ≤ 4, numerator ≤ 20, denominator ≤ 20, operations ∈ addition, subtraction
Fraction Reduction 2 min 29 numerator ≤ 50, denominator ≤ 50, numerator ≤ denominator
Integer Comparison 2 min 26 # digits ≤ 8
Subtraction 2 min 157 # digits ≤ 6, difference ≥ 0
Prime Factorization 2 min 70 number ≤ 100000

Figure 5. We used Pex to generate many practice problems for these mathematical procedures. In each exploration, we let Pex run for the indicated
length of time and it produced the indicated number of unique traces for that problem. Pex can clearly generate many interesting inputs by directly
exploring traces through the procedure. Figure 2 shows the percentage of each textbook progression that this exploration was able to cover.

Figure 6. A level of DragonBox. The goal is to simplify an algebraic
equation by isolating the variable, indicated by a box. Each half of the
screen represents a side of the equation. The green spiral represents a
zero and the two fish cards represent 5 and−5. The bug card represents
10. The player can solve this level by executing the following three rules:
+0→ ∅, a+ (−a)→ 0, and +0→ ∅. c©WeWantToKnow

of cards that represent numbers and variables. On each level,
the screen is divided into two halves that represent the two
sides of an equation. By dragging cards around, the player
can add, multiply, or divide both sides of the equation by a
number or a variable, and perform algebraic simplifications.
The goal for each level is to isolate the DragonBox card,
which represents an unknown variable.

Level Synthesis
DragonBox levels are essentially expression trees that repre-
sent algebraic equations. Leaf nodes can be a variable “x” or
an integer. Integers can have multiple forms. They can either
be an animal card with a unique picture, a number, or a con-
stant like “a” or “c”. Since these forms are essentially equiv-
alent, we only focused on generating integer values and ren-
dered all of these values with an animal card. Internal nodes
can be either addition, multiplication, or division. The Drag-
onBox interface imposes an ordering on these operations: ad-
dition cannot appear below multiplication or division, and di-
vision cannot appear below multiplication.

The procedure we wrote to solve DragonBox levels is de-
scribed in Algorithm 4 in the Appendix. This algorithm is
sufficient to solve all of the levels of the expert progression
except for three at the end, which require a more complex
algorithm that we leave for future work.

Because there are a huge number of possible expression trees
for both the left and right-hand sides of the equation, we used

Pex to rapidly explore pathways and generate a good cov-
erage of test levels. Pex ran for two hours and generated
781 unique levels. These levels corresponded to 152 unique
traces. These traces covered roughly 45% of the original pro-
gression traces, but represented a large number of unique and
interesting levels.

Synthesis User Study
In order to evaluate the synthesized levels and determine
whether or not they were equivalent to the expert-designed
levels, we conducted a user study. Twenty participants were
recruited through an internal email list at the University of
Washington that is read by faculty, staff, and students.

Each participant played 30 levels of DragonBox. These levels
were organized into fifteen pairs, each consisting of one auto-
matically generated level and one expert-designed level from
the original progression. After playing the two levels in the
pair, each participant was asked to judge the difficulty of the
first level compared to the second level. Five options were
given: “much easier”, “slightly easier”, “about the same”,
”slightly harder”, and “much harder”. Participants played the
pairs in a random order and the order of levels within each
pair was also randomized.

We organized the levels such that five of the pairs contained
levels that our model considered to be equivalent. For these
pairs, the traces were exactly the same. In four of the level
pairs, the trace of the original level subsumed the trace of the
generated level according to our path-based partial ordering,
and therefore our model considered the original level to be
more difficult. In another three level pairs, the trace of the
generated level subsumed the trace of the original level, and
the original level was considered to be easier. For the final
three pairs, we picked a generated level and an original level
with the same trace length but different actions, indicating
different conditional branching in the trace. As a result, our
model specified no partial ordering for these pairs. Within
each category, we tried to pick pairs so that the set would
have a range of trace lengths and actions (like “add a to both
sides”). For the “easier” and “harder” categories, the more
difficult trace included one to three more actions than the eas-
ier trace.

Partial ordering was better than random by factor of 3
We first tried to determine whether our partial ordering could
predict whether the level pairs were equal in difficulty or not.
We found that the percentage of participants who considered
a level pair to be equal increased from 25% when our model
predicted that the pair was unequal to 62% when our model

predicted that the pair was equal. This was statistically sig-
nificant, χ2(1, 241) = 33.97, p < 0.0001. This indicates that
our model reflects some human intution about level equality.

We then compared the root-mean-square error of our model’s
predictions with that of other baselines. We first grouped the
“slightly harder” and “much harder” responses together, giv-
ing them a value of 1, and we did the same for “slightly eas-
ier” and “much easier” giving those responses a value of −1.
We assigned a value of 0 to an equal response. We then mea-
sured the average response for each level, and computed the
root-mean-square error of our model’s predictions for each
level. The root-mean-square error of our model overall was
0.35, whereas the error for making random predictions each
time was 1.00, roughly three times as much.

Just using the trace length is insufficient
We observed that a simpler metric, the trace length, makes
many of the same predictions as our path-based partial order-
ing. Therefore, to motivate the need for our more complex
partial ordering, we compared it with this simpler model. In
Algorithm 4, whenever our model predicts that level L1 is
harder than level L2, it is always the case that the trace of L1

has more statements than the trace of L2. Therefore, for this
particular procedure, a simpler model that just compares the
length of these traces makes similar predictions, and actually
makes the same predictions as our path-based partial ordering
in cases where one trace subsumes another.

However, our partial ordering does not make a prediction
when one trace does not clearly subsume the other, indicat-
ing where more data is needed. One such case is when two
traces have the same number of actions but the actions them-
selves are different. In this event, a trace-length metric would
predict that these levels are equal, although this is likely naı̈ve
because the actions themselves are different and those differ-
ences would likely cause a human to feel that the levels are
different.

To examine this, we calculated the error for the trace-length
metric on the three level pairs with the same trace length but
different actions. This error was 0.51, which is higher than
the 0.35 error that the path-based partial ordering achieved
on the rest of the problems. This suggests that looking at
trace length alone is not sufficient, and we need a model that
carefully examines the sequence of statements within a trace.

CONCLUSION
We have defined a trace-based framework for using execu-
tion traces to explore the space of problem progressions for
any procedural task that can be specified as a computer pro-
gram. We have shown how this trace-based framework can
categorize problems according to their traces, define partial
orderings that can compare two problems and assemble a set
of problems into a progression, and analyze the thoroughness
and depth of existing progressions.

Our framework has allowed us to borrow ideas from test input
generation in software engineering and apply them to prob-
lem generation. Test input generation tools can automatically
explore pathways through a procedure, systematically gener-
ate large sets of problems that correspond to various unique

pathways through this procedure, and generate problems that
follow a particular desired path. We applied the framework
to two domains: early mathematics education, and level gen-
eration for a interactive puzzle game. Our framework synthe-
sized hundreds of unique levels for a popular algebra puzzle
game and we conducted a user study to confirm that these
levels are similar to the expert-designed progression.

Although most of grade-school mathematics education is pro-
cedural in nature, some of it also involves conceptual ele-
ments that our framework does not fully address. Future work
will allow us to include some of these conceptual elements.

In the future, we plan to address student misconceptions and
errors. We believe that our framework can be extended to au-
tomatically identify likely errors, generate problems that can
isolate such errors, and possibly even preempt them by syn-
thesizing interventions in the form of animations or additional
problems. We also intend to collect learning data from mul-
tiple problem progressions and use machine learning to learn
features of these progressions that are predictive of success.

ACKNOWLEDGMENTS
The authors would like to thank the creators of DragonBox,
David Yamanoha for his help in implementing the Drag-
onBox user study, and Ryoko Nozawa for digitizing many
problems from the textbooks. This work was supported by
Bill and Melinda Gates Foundation grant OPP1031488, Of-
fice of Naval Research grant N00014-12-C-0158, Hewlett
Foundation grant 2012-8161, Adobe, and Intel.

REFERENCES
1. N. Aduba. JUMP Mathematics in Lambeth: Impact on KS2 National

Tests 2009. http://jumpmath1.org/research_reports,
Nov. 2009.

2. V. Aleven, B. M. McLaren, J. Sewall, and K. R. Koedinger. The
cognitive tutor authoring tools (CTAT): preliminary evaluation of
efficiency gains. In Proceedings of the 8th international conference on
Intelligent Tutoring Systems, ITS’06, pages 61–70, Berlin, Heidelberg,
2006. Springer-Verlag.

3. E. Andersen, Y.-E. Liu, R. Snider, R. Szeto, S. Cooper, and Z. Popović.
On the harmfulness of secondary game objectives. In FDG ’11:
Proceedings of the Sixth International Conference on the Foundations
of Digital Games, New York, NY, USA, 2011. ACM.

4. E. Andersen, Y.-E. Liu, R. Snider, R. Szeto, and Z. Popović. Placing a
value on aesthetics in online casual games. In CHI ’11: Proceedings of
the SIGCHI conference on Human factors in computing systems, New
York, NY, USA, 2011. ACM.

5. E. Andersen, E. O’Rourke, Y.-E. Liu, R. Snider, J. Lowdermilk,
D. Truong, S. Cooper, and Z. Popović. The impact of tutorials on
games of varying complexity. In CHI ’12: Proceedings of the SIGCHI
conference on Human factors in computing systems, New York, NY,
USA, 2012. ACM.

6. P. Cerny, S. Gulwani, T. Henzinger, A. Radhakrishna, and D. Zufferey.
Specification, verification and synthesis for automata problems.
Technical report, 2012.

7. M. Csikszentmihalyi. Flow: The Psychology of Optimal Experience.
Harper & Row Publishers, Inc., New York, NY, USA, 1990.

8. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
TACAS, pages 337–340, 2008.

9. T. Dong, M. Dontcheva, D. Joseph, K. Karahalios, M. Newman, and
M. Ackerman. Discovery-based games for learning software. In
Proceedings of the 2012 ACM annual conference on Human Factors in
Computing Systems, CHI ’12, pages 2083–2086, New York, NY, USA,
2012. ACM.

http://jumpmath1.org/research_reports

10. J. Dormans. Adventures in level design: generating missions and
spaces for action adventure games. In PCGames ’10: Proceedings of
the 2010 Workshop on Procedural Content Generation in Games, pages
1–8, New York, NY, USA, 2010. ACM.

11. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In PLDI, pages 213–223, 2005.

12. F. Grabler, M. Agrawala, W. Li, M. Dontcheva, and T. Igarashi.
Generating photo manipulation tutorials by demonstration. In ACM
SIGGRAPH 2009, New York, NY, USA, 2009. ACM.

13. T. Grossman, G. Fitzmaurice, and R. Attar. A survey of software
learnability: Metrics, methodologies and guidelines. In CHI ’09:
Proceedings of the 27th international conference on Human factors in
computing systems, New York, NY, USA, 2009. ACM.

14. S. Gulwani. Synthesis from examples. WAMBSE (Workshop on
Advances in Model-Based Software Engineering) Special Issue, Infosys
Labs Briefings, 10(2), 2012. Invited talk paper.

15. S. Gulwani. Synthesis from examples: Interaction models and
algorithms. 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 2012. Invited talk paper.

16. S. Gulwani, V. A. Korthikanti, and A. Tiwari. Synthesizing geometry
constructions. In PLDI, pages 50–61, 2011.

17. N. Jurkovic. Diagnosing and correcting student’s misconceptions in an
educational computer algebra system. In ISSAC, pages 195–200, 2001.

18. N. Li, W. W. Cohen, and K. R. Koedinger. Problem order implications
for learning transfer. In ITS, pages 185–194, 2012.

19. C. Linehan, B. Kirman, S. Lawson, and G. Chan. Practical, appropriate,
empirically-validated guidelines for designing educational games. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, pages 1979–1988, New York, NY, USA,
2011. ACM.

20. J. Liu. Dragonbox: Algebra beats angry birds. Wired, June 2012.

21. D. McArthur, C. Stasz, J. Hotta, O. Peter, and C. Burdorf.
Skill-oriented task sequencing in an intelligent tutor for basic algebra.
Instructional Science, 7(4):281–307, 1988.

22. Microsoft. Math Worksheet Generator.
http://www.educationlabs.com/projects/
MathWorksheetGenerator/Pages/default.aspx.

23. J. Nielsen. Usability Engineering. Morgan Kaufmann, San Francisco,
CA, USA, 1993.

24. C. M. Reigeluth and F. S. Stein. The elaboration theory of instruction.
In Instructional Design Theories and Models: An Overview of their
Current States, Hillsdale, NJ, 1983. Lawrence Erlbaum.

25. J. Rieman. A field study of exploratory learning strategies. ACM Trans.
Comput.-Hum. Interact., 3(3):189–218, Sept. 1996.

26. B. Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1986.

27. R. Singh, S. Gulwani, and S. Rajamani. Automatically generating
algebra problems. In AAAI, 2012.

28. D. H. Sleeman. A rule-based task generation system. In Proceedings of
the 7th international joint conference on Artificial intelligence - Volume
2, IJCAI’81, pages 882–887, San Francisco, CA, USA, 1981. Morgan
Kaufmann Publishers Inc.

29. A. M. Smith, E. Andersen, M. Mateas, and Z. Popović. A case study of
expressively constrainable level design automation tools for a puzzle
game. In FDG ’12: Proceedings of the Seventh International
Conference on the Foundations of Digital Games, New York, NY, USA,
2012. ACM.

30. G. Smith, M. Treanor, J. Whitehead, and M. Mateas. Rhythm-based
level generation for 2D platformers. In Proceedings of the 4th
International Conference on Foundations of Digital Games, FDG ’09,
pages 175–182, New York, NY, USA, 2009. ACM.

31. N. Tillmann and J. de Halleux. Pex-white box test generation for .NET.
In TAP, pages 134–153, 2008.

32. K. VanLehn. Mind Bugs: The Origins of Procedural Misconceptions.
MIT Press, Cambridge, MA, USA, 1991.

33. L. S. Vygotsky. Mind in Society: The Development of Higher
Psychological Processes. Harvard University Press, November 1980 /
1930.

34. Wikipedia. Code coverage.
http://en.wikipedia.org/wiki/Code_coverage.

35. Wikipedia. N-gram models.
http://en.wikipedia.org/wiki/N-gram.

APPENDIX

Algorithm 4 Dragon Box
1: procedure DRAGONBOX(left, right)
2: simplify(left, right)
3: if x ∈ denom(left) ∨ x ∈ denom(right) then
4: multiply(left, right, x)
5: simplify(left, right)
6: end if
7: if x ∈ num(left) then
8: variableSide← left
9: otherSide← right

10: else
11: variableSide← right
12: otherSide← left
13: end if
14: while variableSide 6= x do
15: isolate(variableSide, otherSide)
16: simplify(otherSide, variableSide)
17: end while
18: end procedure
19: procedure SIMPLIFY(node)
20: if node = + ∧ child = 0 then
21: child← null . Remove +0
22: else if node = + ∧ a ∈ child1 ∧ −a ∈ child2 then
23: child1 ← 0 . Remove a+ (−a)
24: child2 ← null
25: else if node = × ∧ child = 1 then
26: child← null . Remove ×1
27: else if node = ÷ ∧ a ∈ child1 ∧ a ∈ child2 then
28: child1 ← 1 . Remove a÷ a
29: child2 ← null
30: end if
31: end procedure
32: procedure ISOLATE(varSide, otherSide)
33: varChild← varSide.child with variable
34: nonV arChild← other child
35: if varSide = + then
36: subtract(varSide, otherSide, nonV arChild)
37: else if varSide = × then
38: divide(varSide, otherSide, nonV arChild)
39: else if varSide = ÷ then
40: multiply(varSide, otherSide, nonV arChild)
41: end if
42: end procedure

http://www.educationlabs.com/projects/MathWorksheetGenerator/Pages/default.aspx
http://www.educationlabs.com/projects/MathWorksheetGenerator/Pages/default.aspx
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/N-gram

	Introduction
	Related Work
	Usability and Learnability in HCI
	Education and Intelligent Tutors
	Problem Generation
	Procedural Content Generation in Games

	A Trace-based Framework
	Partial Orderings Over Traces
	Path-based Partial Ordering
	N-gram-based Partial Ordering

	Analysis Of Progressions
	Evaluating Progressions
	Making progressions more systematic

	Synthesis Of Progressions
	Large-scale exploration of execution paths
	Generating problems to exercise a specific pathway

	Evaluation of Our Synthesis Techniques
	Textbook problems
	An Algebra-based Learning Game
	Level Synthesis
	Synthesis User Study
	Partial ordering was better than random by factor of 3
	Just using the trace length is insufficient

	Conclusion
	Acknowledgments
	REFERENCES

