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Abstract

Self-organized collaborative applications in terrains with no infrastructure support for untethered communi-

cation are long known to be feasible only with the mobile ad-hoc networking (MANET) technology. Supporting

collaboration however requires a solution to the consensus problem, using which collaborating users with differ-

ent initial opinions can decide identically. Efficient consensus solutions require efficient broadcast support. This

paper presents four crash-tolerant broadcast protocols which are designed (i) to provide the maximum broadcast

coverage that can ever be guaranteed, and (ii) to suit a wide range of MANET types: from a connected MANET (no

partitions) to intermittently disconnected one (partitions occurring rarely and healing swiftly) to an intermittently

connected one (partitions taking longer to heal and re-appearing swiftly). The resulting design challenges are

addressed systematically, beginning with formulating a MANET liveness property and deriving two foundational

results that would guide the protocol design. The protocols’ performance is then studied through simulations for a

range of node speeds and network densities. The one with the least overhead among them is used to host a known,

randomized consensus protocol as a broadcast application. The consensus overhead and the latency are found to

be surprisingly small even when each node has distinct initial opinion. The underlying reason is attributed to the

specific characteristics of MANETs and the features of the broadcast protocol.
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1 Introduction

Ad-hoc Networking is perhaps the only technology available for a group of mobile wireless users to engage

on a collaborative task in terrains which can offer no fixed infrastructure support for untethered communication.

Supporting collaboration in such mobile ad-hoc networks (MANETs) however is not an easy task, and one of the

difficult problems to enable the mobile and wireless users, called from now on thenodesfor short, to agree on the

same course of action even if the action-plans thought of initially by them can be different.

For example, a new node may request to join the collaboration process, and the collaborating nodes may have

different opinions as to whether or not the join request be accepted, and if accepted, what should be thestatus

accorded to the new node within the group. The status may be a rank order, an IP address (chosen to be unique

[16]), wireless channels allocated exclusively to the joiner for transmission (to avoid channel interference [17]),

and so forth. Despite any differences in their opinions over the join request, the nodes must decide identically.

It is well-known [18] that such decision problems encountered in distributed computing can be solved as vari-

ations of the generic problem known as theconsensusproblem [9]. So, a consensus module that is evaluated to

be efficient in diverse MANET environments (e.g., from sparse to dense), is a vital tool for supporting a variety

of distributed applications. The aim of our work is to build this tool for hosting distributed MANET applications.

More specifically, the contributions are two fold: we will (i) design a family of broadcast protocols which are ap-

propriate to a diverse range of MANET characteristics, and study their performance; and, (ii ) use the most efficient

of the family to support a consensus protocol and demonstrate the performance of the latter.

Consensus problem has been extensively studied under theasynchronouscommunication model wherein the

message transfer delay between any pair of operative nodes at any given instance is finite but cannot be bounded

with certainty. A MANET, with its arbitrary topological changes due mainly to application-driven node mobilities,

conforms to this model,providedthat any partition that disconnects operative nodes is not permanent. We assume

that a group of collaborating nodes can be partitioned and that partitions heal eventually, i.e., after some arbitrary

amount of time. Therefore, an attempt to transfer a message between two operative nodes can take an arbitrary

amount of time to succeed, if the nodes were initially not connected (either directly or transitively).

The assumption that the partitions heal eventually, is realistic since collaboration has a sense of purpose which

typically requires that the users strive to be in touch with one another; further, our system model (in Section 2)

admits node crashes and treats them as events that cannot be accurately detected [10]; so, if there is a user who

wanders astray and becomes permanently disconnected from others, his node can be regarded to have crashed.
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(The partition-centric approach [7, 6, 16] does not force permanent partitions to be considered in terms of node

crashes, but is not pursued here for reasons stated in Section 6.)

When MANETs are modeled as asynchronous communication networks, the vast amount of literature on fixed-

network consensus protocols ([12] presents a consensus ’tour’) can offer valuable guidance to achieving our aim.

We first note that the randomized protocols are more decentralized than their failure-detector (e.g.,♦w [3]) based

counterparts that take a (rotating) coordinator based approach. Since decentralization is appropriate for MANET

environments, we would prefer randomized protocols, bearing in mind that a decentralized (or symmetric) con-

sensus protocol requires each node to broadcast to every other node and the underlying broadcast protocol needs

to be bandwidth-efficient. We also note that at least a majority of nodes must beconsultedbefore a consensus

protocol can decide; so, the overhead and latency for consensus will be small if the underlying broadcast protocol

can achieve high coverage with small latencies. All these observations indicate that efficient consensus requires

efficient broadcast support.

To provide an efficient broadcast support, we design and performance-study four protocols, and select the best

for studying the performance of a randomized consensus protocol [8]. The design will make use of the fact

that the nodes can be uniquely ranked using consensus; this allows the broadcast protocols to represent message

dissemination status as a boolean vector and to offer maximum coverage with small bandwidth overhead.

A novelty of our work is that our broadcast protocols are designed to suit a wide range of MANET types: from

aconnectedMANET (no partitions) to anintermittently disconnectedone (partitions occurring rarely and healing

swiftly) to intermittently connectedones (partitions taking longer to heal and re-appearing swiftly). Specifically,

the protocols will be primarily designed for the last type, and then adopted to the two former types by incorporating

simple techniques (e.g., ack suppression) commonly used in networking protocols for improving efficiency. So,

our design approach will be different from the traditional approach (e.g., [11]) of maintaining a routing structure

for message dissemination, and the reasons for this essential difference are succinctly presented below.

Suppose that the route between (source) nodes and (destination) noded is found to be via an intermediary

nodei; that is, the route is made up of twocontemporaneouswireless links or direct-connections namely: between

s and i, and betweeni andd. When the MANET is only intermittently connected, these links may not exist

simultaneously and a multi-hop route connectings andd may not be formed or may not be identified if formed

only for a brief period. Therefore, the protocol design should not rely on the possible existence or identification of

multi-hop routes betweens andd, but rather make effective use of 1-hop,direct-connectionswhich various node
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pairs experience at different timing instances.

Suppose, for example, that when nodei enters the radio range ofd, it had already lost the connection it had

with s; that is, the link betweens andi and that betweeni andd come into existence not simultaneously but one

after the other. Consequently, message dissemination must involve nodei retaininga messagem it received from

s for a while, andtransmittingit at appropriate moments so thatd could receivem if the link betweeni andd is

formed within the retention period. This approach has been used in [4, 14, 15] when MANETs are expected to be

intermittently connected. We will take this approach but our design will differ in two important aspects: (a) how a

node decides when to stop retaining a givenm, and (b) guaranteeing the maximum attainable coverage form.

The design challenges that ensue are addressed in a systematic manner: we first derive some foundational

results that will guide the design process and also influence the guarantees offered by the protocols. For example,

we observe that a protocol that is designed to tolerate at mostf node crashes, cannot guarantee that all operative

nodes receive a broadcastm when less thanf nodes have actually crashed, unless nodes retainm for an unbounded

amount of time (for possible re-transmission). Since nodes are wireless devices with natural constraints on memory

and battery usage, the retention period cannot be unbounded. Thus, it is possible that an operative node receives a

broadcastm or decides in a consensus run, with another operative node being totally unaware of that broadcast or

the consensus run. This is different to the fixed-network broadcast and consensus protocols which ensure identical

outcome forall operative nodes.

The paper is organized as follows: Section 2 presents the system model, assumptions, and the network liveness

property. Section 3 describes the rationale for our design approach and identifies two results that influence the

protocol design; the properties of broadcast and consensus protocols for MANETs are also formulated. Section 4

is devoted to the description of broadcast and consensus protocols. Simulation results are presented in Section 5;

the consensus performance is surprisingly faster and the reason seems to be due to the features of MANETs and

the broadcast protocol. Section 6 concludes the paper, with an examination of the literature.

2 System Model

We consider a groupG of mobile nodes collaborating towards a common goal in a terrain that has no fixed

infrastructure for supporting communication between nodes. The nodes can however communicate using the

omnidirectional wireless transmission functionality of a CSMA/CA-like MAC layer protocol (e.g. IEEE 802.11b).

Thus, the information exchange is limited strictly to ad-hoc networking.
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A new node can joinG and a collaborating node can leaveG only after the nodes ofG have approved the

join/departure requests. Thus, the number,n, of nodes involved in collaboration at any given time can vary. A

node can crash (i.e., cease to be operative) at any moment. When a collaborating node crashes, it effectively makes

an unapproved departure fromG and its absence is not assumed to be detectable with certainty [10]. The number

of nodes that can crash while engaged in collaboration does not exceed a known boundf > 0. That is,G contains

at leastn− f operative nodes at any time and we assumen � f .

Direct Connectivity. Consider two operative nodes that are in wireless range of each other. Acongestion-and

collision-resilient(CCR) channel is said to exist between them, if at least one of a few consecutive attempts made

by each node to send a packet to the other, is successful. (These attempts are typically made at the MAC layer.)

Let δ be the maximum delay which a packet can experience to be received over aCCRchannel.

Two operative nodes are said to bedirectly connectedat any given moment, if aCCRchannel exists between

them forB or more time starting from that moment, whereB � δ is an application-specified parameter. The

intuition here is that two nodes being in each other’s wireless range can be of any use to an application, only if

that gives raise to aCCRchannel that lasts for at leastB time. (The applications that are of interest to us will be

broadcast protocols.)

2.1 MANET Liveness Property

We assume that the ad-hoc network formed by the operative nodes ofG satisfies a liveness property that does

not allow any partition to become permanent. For the sake of exposition, we will assume that there are no requests

for joins/departures. LetO be the set of all nodes ofG that are operative at timet. LetP be any non-empty and

proper sub-set ofO, andP be its complementary set inO; that is,P contains those nodes that are operative at

t but not inP. Since we will be concerned about operative nodes ofP andP being possibly disconnected and

eventually re-connected, let us assume thatP andP each have some node(s) that never crash.

If no node inP ever has direct connectivity with any node inP, thenP andP are said to be permanently par-

titioned (from the perspective of application that has specifiedB). The liveness property disallows it by requiring

that direct connectivity must emerge between some nodes ofP andP within some arbitrary amount of time (I)

aftert. More precisely, at least one node inP must directly connect with some node(s) inP at least once during

[t, t + I], whereI ≥ B is finite but unknown.

Remark 1. By letting I be unknown, little is assumed to be known about network density, node mobility
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patterns and node speeds. (Network density is the number of nodes within a disc of radius equal to nodes’ radio

range.) For example, when the network density is small or when nodes move at very high speeds relative to each

other, a CCR channel lasting continuously for at leastB time, will take longer to emerge, i.e.,I tends to be large.

If the density is high and nodes move at low or medium speeds, direct connectivity between nodes ofP andP is

likely to emerge quickly, if it does not exist already; i.e.,I tends to be small.

Remark 2. I = ∞ andI = B represent extreme cases of interest. The former implies that direct connectivity

between nodes ofP andP may take for ever to emerge.I = B means that new direct connectivity between nodes

of P andP emerges att, or existing direct connectivity prolongs beyondt for a furtherB time or more, or both.

Network Liveness Property rules out permanent partitioning ofanyP defined atany instancet during the

collaboration process that is assumed to be initiated att0. It is stated formally as:

∀P, ∀t ≥ t0, ∃I, B ≤ I 6= ∞: ∃ i ∈ P, j ∈ P: nodesi andj have direct connectivity during [t, t + I].

3 Design Approach and Protocol Specifications

A MANET remains a connected network throughout the collaboration, if the liveness property is satisfied for

I = B: for any givenP, some operative node inP is beginning or continuing to have direct connectivity with

some operative node inP at everyt ≥ t0 (see also Remark 2 above). That is, some nodes ofP andP are in direct

connectivity at any given moment, and this holds despite node mobility.

As I becomes larger (compared toB), the MANET becomes intermittently disconnected and then intermittently

connected (see also Remark 1 above). SinceI is unknown, broadcast protocols need to be designed to account

for the possibility thatI � B. As observed in Section 1, a multi-hop route between a node pair requires the

simultaneous existence of its constituent 1-hop links, which is less likely whenI � B. Therefore, in conformance

with the earlier works in intermittently connected MANETs [4, 14, 15], our protocols will require that a node

which has receivedm retainm for a whileand transmit it atappropriatemoments so thatm gets disseminated.

Two design issues that arise thereof are: when a node that has receivedm, should (i) transmitm and (ii) stop

retaining/transmittingm. These issues are addressed together with the goal of attaining the maximum possible

coveragefor m, where coverage (denoted asc) refers to the number of operative nodes (other than the broadcaster)

that receivem at least once.

The three core protocols designed here address the issue (i) by combining the timer and the event driven ap-

proaches in varying degrees, where an event can be receiving a control packet or deducing the presence of another
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node in the neighborhood for the first time sincem was received. To address (ii), the protocols are designed to

have thestorage subsidence property(SSP) defined below.

Let m be broadcast at timetb. A broadcast protocol satisfies thestorage subsidence property(SSP) only if

there is a finite timete (te > tb) after which nodes that receivedm are not required to retainm for propagation.

That is, all (broadcast-related) transmissions ofm end byte.

3.1 Foundational Results

The requirement of the SSP distinguishes our protocols from the fixed-network, asynchronous protocols which

do not have it explicitly imposed on them as a design objective. This, together with theI of the liveness property

being unknown, gives rise to two important results. The first helps identify the basic dissemination strategy that

ought to be employed when nodes have no access to any neighborhood information, and the second the maximum

guaranteeable coverage when nodes can crash and crashes are not accurately detectable.

Let us first note that the well-known flooding scheme has the SSP: the broadcaster transmitsm once, soon

afterm is ready for transmission; any other node that receivesm, transmitsm after a random delay; soon after

performing the single, mandatory transmission, nodes can discardm. If the network is sparse (i.e.,I � B),

transmissions ofm are less likely to be received by nodes that have not yet receivedm; so, the flooding scheme

can provide poor coverage, and evenc = 0 if no node receivesm. This means that whenI � B is likely, the

nodes may have to transmitm more than onceto achieve high coverage, and this inferrence is generalized as:

Proposition 1. Suppose that nodes never crash (each node is operative) and have no knowledge about imme-

diate neighborhood. A broadcast protocol that has the SSP cannot guaranteec ≥ 1, unless every node withm

transmitsm at least once everyτ time,τ < (B + δ), until it decides not to retainm.

The proof can be seen in the Appendix. The first proposition thus identifiesτ -periodic transmissions as essential

to achieve higherc. The second proposition establishes the upper bound that can be guaranteed onc to be (n−f−1)

when crashes of at mostf nodes are assumed. (Detailed correctness arguments are given in the Appendix.) This

means that a broadcast protocol terminating its propagation efforts once (n − f − 1) nodes are known to have

receivedm, is a justified design option if the protocol is to have the SSP.

Proposition 2. Any crash-tolerant broadcast protocol that has the SSP, cannot guarantee that more than (n −

f − 1) nodes receive a given broadcast, even if more than (n− f ) nodes, including the broadcaster, do not crash.
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3.2 Broadcast Protocol Specification

For a broadcastm initiated at timetb ≥ t0, the following guarantees are offered despite at mostf , 0 < f � n,

nodes crashing before the broadcast completes:

1. Delivery: at least (n − f − 1) nodes receivem within some bounded time aftertb, if the broadcaster does

not crash (i.e., remains operative), or if the broadcaster crashes and an operative node receivesm; and,

2. Termination : if a node that receivesm remains operative, it discardsm (Storage Subsidence) and stops

transmitting any packet concerning the broadcast ofm (Bandwidth Subsidence) at some time aftertb.

A broadcast protocol ensures that at least (n−f−1) nodes receive an operative node’sm, and this lower bound

reflects the maximum guaranteed coverage identified in proposition 2. It is possible that the broadcaster crashes

before completing the protocol and a few nodes, if any, that receivem also crash likewise. In that case, no delivery

guarantees can be given; however, if an operative node receivesm, then at leastn− f − 1 nodes receivem.

3.3 Consensus Protocol Specification

A consensus protocol enables nodes to reach a common decision. It guarantees the following when (1) nodes

of G can make potentially different initial proposals orvalues, (2) at mostf nodes can (undetectably) crash before

or during the protocol execution, and (3)n > 2f :

Termination. With probability 1, at leastn− f nodes ofG irreversibly decide on a value.

Validity If a node decides onv, thenv is proposed initially by some node.

Agreement No two nodes that decide, decide differently.

In wired networks, when the SSP-like requirements are not rigorously enforced, an operative node’s message is

typically ensured to reach every other operative one through selective transmissions followed up by acknowledge-

ments. So, traditional consensus protocols guarantee thatall operative nodes decide. In a crash-prone MANET,

as pointed out in proposition 2, a broadcast can be guaranteed to reach onlyn− f nodes if subsidence properties

have also to be upheld withI being unknown. Hence, the termination guarantee is weaker for MANETs. This has

two implications.
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First, at mostf of the decided nodes could crash if no node has crashed before the consensus execution started.

So, in the worst case, onlyn− 2f operative nodes have the consensus outcome. Sincen > 2f , n− 2f ≥ 1.

Second, suppose that nodei decided during a consensus run and that it now intends to leaveG; since, it may

currently be theonlyoperative node to have the consensus outcome, it must broadcast the outcome before it departs

G so that there are some operative nodes inG that know the outcome. However, the following (worst-case) scenario

is possible: no node inG has crashed wheni intends to leave, onlyn − f nodes (includingi) decided during the

consensus run, only the nodes that decided receivei’s broadcast,i leavesG and thenf of the remaining (n−f−1)

decided nodes crash. Ifn = 2f + 1 wheni left G, then there will be no operative node inG which knows the

consensus outcome despitei’s broadcast. Therefore, nodei should (be allowed to) leaveG only if n > 2f + 1.

4 A Family of Broadcast Protocols

We first present three core protocols:proactive disseminationprotocol (PDP), reactive disseminationprotocol

(RDP), and a hybrid version called theproactive knowledge and reactive message(PKRM) protocol. TheRDP

assumes that the nodes know their immediate neighbors. Of the three, the PKRM appears to possess the best

features of the other two and avoid the worse aspects of each. (This is also confirmed by simulations.) Hence, it is

optimized and the resulting protocol is termed as theoptimized PKRMand denoted also as PKRMo.

For the sake of exposition, we will assume thatG is made up ofn nodes, each with a unique sequence number

in [0 . . . (n − 1)]. (See also the discussions in Section 6.) Each nodei knowsn and its sequence numberi; it

maintains a boolean vectorKi(m) of n bits for m. Ki(m)[j] = 1 means that nodei knows (for sure) that nodej

hasm, Ki(m)[j] = 0 if nodei does not know if nodej hasm or not. Thus,Ki(m), more precisely, the 1-bits in

it, indicate theknowledgeof nodei on the propagation ofm. Note thatKi(m)[j] = 1 indicates certainty of nodei

concerning nodej andm. Since a node cannot ’undo’ receivingm, this certainty remains valid for ever.

Realization: WhenKi(m) contains(n − f) or more1 bits, nodei realizesthatm needs to be propagated no

longer, or nodei is simply said to haverealizedm. A realizedm can be discarded. For each protocol, an operative

node that hasm, realizesm at some time afterm is broadcast attb.

4.1 Proactive Dissemination Protocol (PDP)

In the PDP, nodes that havem transmitm once everyβ seconds. (The broadcaster ofm hasm at the time of

broadcast,tb.) β is a fixed parameter and2(β + δ) ≤ B. This ensures that when two operative nodes experi-
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ence direct connectivity, they can, withinB seconds, exchange information and also each other’s response to the

information exchanged. (Recall thatB � δ.) The protocol described below has six steps and the correctness

arguments are presented in the Appendix.

Step 1. The broadcaster initializesK(m) as a vector of zeros and then sets its own bit to 1; it transmitsm with

its K(m) as a message fieldm.K and with a uniquem.id.

Step 2. When nodei receivesm for the first time, it initializesK(m) to the receivedm.K and sets its own bit

in K(m) to 1. After waiting for a random time interval distributed uniformly in (0, β), it transmitsm with m.K

being a copy of itsK(m).

Step 3. A node that transmittedm once, will thereafter check once everyβ seconds whether a transmission is

needed for the propagation and realization ofm:

if the node has not realizedm: it transmitsm (with m.K set to itsK(m));

if the node has realizedm: if it has receivedm in the pastβ seconds, it transmits aninfectiouspacketreal-

ize(m) that contains onlym.id; otherwise, it does nothing.

Step 4. When a node that has unrealizedm receivesm, it updates itsK(m) as per the contents of the received

m.K: if K(m)[j] = 0 andm.K[j] = 1, thenK(m)[j] is set to 1. If the node has (n − f ) or more1-bits in its

K(m) or receivesrealize(m), it realizesm (i.e., gets infected).

Step 5. Whenrealize(m) is received afterm is realized, the received packet is ignored.

Step 6. When a node that has not receivedm even once, receivesrealize(m), it ignores the received packet.

4.2 Reactive Dissemination Protocol (RDP)

Each nodei has information (Neighi) on immediate neighborhood, expressed in terms of nodes’ sequence

numbers. Let {Ki(m)} denote the set of nodes whose bits are 1 inKi(m). Nodei propagatesm if it has m and

only if (Neighi − {Ki(m)}) is not empty, which is evaluated once everyβ seconds.

When nodes that havem, thus transmitm only on theneed to propagatebasis, it is possible that (n−f ) or more

nodes have receivedm but nodes withm cannot realizem. Consider, for example, a MANET of 3 nodes (n= 3)

arranged in a straight line, with each node having only its immediate neighbor(s) in itsNeigh. When the middle

node broadcastsm, each of its two neighbors (the end nodes) receivesm and formsK(m) with two 1 bits (see

step 2 of the PDP). Since each end node has only the broadcaster in itsNeigh, it will find Neigh−{K(m)} = {}

and choose not to transmitm. If f = 1, the broadcaster, which cannot know (for sure) whether its neighbors have
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received the broadcast, cannot realizem even though all three have receivedm.

It is thus obvious that RDP requires additional data structures and control packets than PDP. Nodes maintain

two more (boolean) vectors: knowledge on the propagation knowledge ofm (KK(m)) and knowledge on the

realization ofm (KR(m)). If nodei knows that nodej has the sameK(m) as itself, thenKKi(m)[j] is set to 1;

otherwise,KKi(m)[j] will retain the initialized value of 0. Similarly, if nodei knows that nodej knows of the

realization ofm, thenKRi(m)[j] is set to 1; otherwise,KRi(m)[j] will retain the initialized value of 0.

Note that, unlike inKi(m) andKRi(m), the number of1s in KKi(m) can decrease, becauseKKi(m) will

be re-set every timeKi(m) changes. Similarly, whileKKi(m)[j] = 1, nodej may have added more 1s to its

K(m) without nodei being aware of this addition. Therefore, the only certainty that nodei can derive from

KKi(m)[j] = 1 is that nodej had the sameK(m) as itself at some (past) time in an execution.

Packets of the following types are also used:K_pkt(m) containsm.id and the transmitting node’s knowledge

K(m) andKK(m); realize(m) containsm.id and the transmitting node’sKR(m); andrealize_ack(m) is trans-

mitted in response to receivingrealize(m). Finally, β is fixed to be (as in the PDP)2(β + δ) ≤ B. The protocol

steps are:

Step 1. The broadcaster initializesK(m), KK(m) andKR(m) as a vector of zeros and then sets its own bit

in the former two vectors to 1; it transmitsm with its K(m) as a message fieldm.K and with a uniquem.id.

Step 2. When nodei receivesm for the first time, it initializesK(m) to the receivedm.K and sets its own bit

to 1; it initializesKK(m) andKR(m) as a vector of zeros; it sets its own bit inKK(m) to 1. After waiting for a

random time interval distributed uniformly in (0, β), it transmitsm with m.K being a copy of itsK(m).

Step 3. A node that transmittedm once, will thereafter check once everyβ seconds whether a transmission is

needed, unless| {KR(m)} |= n:

node has not realizedm: If Neigh − {K(m)} 6= {} thenm (with m.K set to itsK(m)) is transmitted; if

Neigh − {K(m)} = {} andNeigh − {KK(m)} 6= {}, K_pkt(m.id) is transmitted. Nothing is transmitted if

Neigh− {K(m)} = {} andNeigh− {KK(m)} = {}.

node has realizedm: If Neigh− {KR(m)} 6= {} then arealize(m) (containing itsKR(m)) is transmitted;

Step 4. When a node that has an unrealizedm receivesm or K_pkt(m), it updates itsK(m) as per the contents

of the received and re-sets itsKK(m) appropriately; If| {K(m)} |≥ (n − f) or if it receives arealize(m) or a

realize_ack(m), it realizesm and updates itsKR(m) appropriately.

Step 5. A node that realizedm transmitsrealize(m) whenever it receivesm or K_pkt(m); it transmitsreal-
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ize_ack(m) whenever it receivesrealize(m).

Step 6. When a node that has not receivedm even once, receives arealize(m), it transmitsrealize_ack(m)

immediately and thereafter whenever it receivesm, K_pkt(m) or realize(m). (It executes no other protocol step.)

4.3 PKRM (Proactive Knowledge and Reactive Message) Protocol

This protocol combines the features of PDP and RDP, with noNeigh and fewer data structures and control

packets (as in PDP) and fewer transmissions ofm (as in RDP). In PKRM, unrealized nodes transmitK(m) (in a

K_pkt), notm as in PDP, once everyβ time. When node that does not havem, receivesK(m), it is prompted to

ransmitreq(m) packet and thereby requestm to be transmitted.

When a node that transmittedK(m) receives areq(m), it has effectively evaluated the predicateNeigh −

{K(m)} 6= {} of the RDP to be true and transmitsm. Thus, only on aneed to propagatebasis,m is transmitted.

PKRM uses the pro-active transmissions ofK(m) by unrealized nodes to inform (infect) the nodes of realization if

they have a realized neighbor around. This means that the additional knowledge vectors of the RDP are redundant.

Finally, as in the other two protocols,β is fixed to be2(β + δ) ≤ B. The protocols steps are as follows.

Steps 1 and 2. As in Steps 1 and 2 of the PDP.

Step 3. A node that transmittedm once, thereafter checks once everyβ seconds:

3(a) the node has not realizedm: If it has receivedreq(m) in the pastβ seconds, it transmitsm (with m.K

set to itsK(m)), else it transmitsK_pkt(m) (with noKK(m)).

3(b) the node has realizedm: If it has receivedm, K_pkt(m) or req(m) in the pastβ seconds, it transmits

realize(m) that contains onlym.id; otherwise, it does nothing.

Step 4. When a node that has unrealizedm, receivesm or K_pkt(m), it updates itsK(m) as per the contents

of the receivedm.K. If the node has (n− f ) or more 1-bits in itsK(m) or receivedrealize(m), it realizesm.

Step 5.When arealize(m) is received after the realization ofm, the received packet is ignored.

Step 6.When a node that has not receivedm even once, receives a

K_pkt(m): it transmitsreq(m) after a random time interval distributed uniformly in (0, β − 2δ), or

realize(m): it ignores the received packet.

4.4 Optimized PKRM Protocol

The PKRM protocol is optimized towards execution efficiency, minimizing collisions and bandwidth reduction.
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Event driven execution. After m is realized, a thread carries out the instructions of step 3 and step 5 in response

to receiving a PKRM related packet. Consequently, no periodic inspection of the messages is necessary and the

thread goes dormant once the transmissions of PKRM related packets form end.

Staggering the proactive disseminations. Whenm remains unrealized, the protocol checks the messages re-

ceived in the recent past, not everyβ seconds (as in step 3), but after everyβ̂ seconds, wherêβ is an independent

random duration distributed uniformly in (0,β).

Suppressing the proactive disseminations. At the end of the randomly chosen timeout in steps 2 and 3(a), if

a transmission ofm is due, onlyK_pkt(m) is transmitted if two copies ofm were received during the timeout;

if a transmission ofK_pkt(m) is due, it is suppressed if twom.K with more or the same knowledge as local

K(m) were received during the timeout. This is done on the basis that the neighborhood is dense, and the planned

transmission would offer little additional information over what has been recently seen to have been disseminated.

4.5 A Consensus Protocol

We adopt the (fixed-network) protocol of [8] for the wireless context, run it as a broadcast ’application’ using

the optimized PKRM and study its performance. We here provide a brief sketch on the workings of the protocol

of [8].

The protocol operates inasynchronous roundswith each roundr ≥ 0 having two phases. Any node can

propose its initial ’value’ by broadcasting it and therebyinitiate a consensus execution. When a node that has

not yet proposed any, receives another node’s initial proposal, it can either accept the latter as its own or choose

its own value, and thenparticipate in the consensus run. Thus, each nodei has someinitial value (denoted as

Vi(0, 1)) to broadcast in round 0 phase 1.

In phase 1, nodei broadcasts its value for roundr (Vi(r, 1)) and waits to receive(d(n+1)/2e) values ofV (r, 1)

from distinct nodes including itself; if the received values are identical, it adapts that value as its value for phase_2

(Vi(r, 2)); else, it setsVi(r, 2) to a special value⊥ which no node will have as its initial valueV (0, 1). Since

(d(n + 1)/2e) is a majority inn, if nodesi andj choose non-⊥ value thenVi(r, 2) = Vj(r, 2).

In phase 2, nodei broadcastsVi(r, 2) and waits (again) to receive(d(n + 1)/2e) values ofV (r, 2); if the

received values ofV (r, 2) are identical, itirreversiblydecides on that value as the consensus outcome; otherwise,

it executes roundr + 1 after doing one of the following: if a non-⊥ valueV (r, 2) has been received,Vi(r + 1, 1)

is set to that value, else one of theV (0, 1) values it knows of is randomly chosen to beVi(r + 1, 1). The latter
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occurs when majority nodes had different initial values in roundr = 0 or all had broadcast⊥ asV (r, 1), r > 0.

If node i reaches consensus decision in phase 2 or receives the decision from another node (at any time), it

broadcasts the decision and stops the execution. (Expedited Decisions.) Similarly, if nodei receivesV (r′, 1 or 2)

or V (r′, 2)) while in waiting to receive enoughV (r, 1 or 2) or V (r′, 1)) values respectively,r′ > r, it adopts the

received value and starts executing the appropriate phase of roundr′. (Expedited Executions.)

5 Simulations

Table 1.

Simulation Parameters

Simulator SWANS v1.0.1 [1]
Number of nodes 50

Number of crashes 10 (20%)
Area size 1000m x 1000m

Mobility model Random Waypoint
Node speed [min, max] [1m/s, variable]

Pause time 0s
Broadcast generation rate 1/s

Total number of broadcasts 100
Broadcast message size 512bytes

Nodes’ buffer size 50 messages
Choice of broadcasters Random

Choice of consensus initiators Random
Fading model Rayleigh

Pathloss model Two-Ray

The protocols’ performance is studied through

simulations and the main parameters used are

shown in table 1. To remove the initial bias, each

simulation was run for 1000 seconds before the

nodes start broadcasting or initiating consensus.

Each simulation was run 10 times with different ran-

dom seeds and the average over these runs constitute

a point in all the graphs shown.

Nodes that crash were randomly chosen. A cho-

sen node crashes at an instance distributed uni-

formly between the time the first and the lastm were

broadcast. In consensus runs, it crashed at the be-

ginning of roundr and phaseph, chosen uniformly

in [0, 2] and [1, 2] respectively.

The parameters measured arelatencyandoverhead(bandwidth). Latency for a broadcast protocol is the time

elapsed betweenm being broadcast and the earliest instance when(n− f) nodes receivem; consensus latency is

the time elapsed between initiation and the first node deciding.

Broadcast overhead is thetotal bytestransmitted by a broadcast protocol per byte payload ofm per node; it

is measured as the ratio of the total bytes transmitted during an execution over (payload bytes ofm ×n). (For

example, the overhead estimate for simple flooding will be 1 if space for fields such asm.id is ignored.) Note

that the overhead estimate measures total bytes transmitted until transmissions ofm and control packets form

end. The consensus overhead is the ratio of the total number of bytes transmitted during a run over the number of
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nodes.

We vary both density and maximum node speed. The former is the average number of nodes within a disc of

radius equal to the nodes’ wireless range and is varied by changing the wireless range from 100m to 300m in steps

of 25m. The resulting density thus varies from11/7 to 99/7 and the average size of immediate neighborhood from

4/7 to 92/7. The max. speed varies from 1m/s to 35m/s.

5.1 Relative Performance of Core Protocols

We first compared the performance of PDP, RDP and PKRM of Section 4 to study the impact of different de-

sign approaches. Figure 1 shows the broadcast overhead forβ = 5 seconds and maximum speed = 10 m/s, with no

crashes.
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Figure 1. PDP, RDP and PKRM protocols.

The PDP fares best in denser networks while the

RDP in sparser ones. It appears that pro-actively

transmitting m, with careful use of (only)real-

ize packets, yields low overhead in dense net-

works; similarly, transmittingm only on the

need_to_propagatebasis works well in sparser con-

ditions. These benefits are offset by high over-

head in networks of opposite nature. RDP expends

too many control packets in dense networks, un-

til neighbors are known to have the sameK(m),

KK(m) andKR(m), and also often redundantly transmitsm even though all neighbors do havem; PDP’s pe-

riodic transmissions ofm itself is unproductive in sparse networks. The overhead for the PKRM supports one’s

intuition that combining the features of the PDP and RDP, would save bandwidth over a range of densities. It

approaches that for simple flooding once the network ceases to be very sparse, and becomes close to 1 in very

dense networks.

5.2 Performance of PKRMo

Figures 2 and 3 show how PKRMo performs for varying densities for three different values ofβ and with a

max speed fixed at 10m/s. The overhead and the latency are very low beyond 150m and 200m wireless range
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respectively, even though 20% of nodes are allowed to crash during the simulation. (Note: the more the crashed

nodes, the longer it takes form to reach (n − f ) nodes.) Figures 4 shows how PKRMo performs in terms of
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Figure 2. Overhead vs. density (max speed = 10m/s).
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overhead for various speeds, with wireless ranges fixed at 100m and 200m. (The three graphs above the flooding

line correspond to 100m.) The overhead at 200m and also above (not shown) seems almost unaffected by the

increase in mobility, while at 100m, the mobility actually benefits PKRMo slightly, since an increased mobility

tends to heal partitions quicker.

Figure 5 shows how the latency is affected by node speeds, with a wireless range again fixed at 100m and 200m.

(The top three graphs again correspond to 100m.) The observations regarding range and speeds, hold here as well

(as in Figure 4).
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Figure 4. Overhead vs. speed for range =
100m/200m
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5.3 Performance of Consensus Protocol

The consensus protocol uses PKRMo (with β = 5s) for broadcasting. The study reported here is of focused

in nature but has surprising results. We report how a consensus run is affected when nodes initiate at the same

time but proposingonly different initial values. (Fewer distinct proposals made at different instances do not tend

to slow consensus down.) The number of nodes initiating a consensus varied between 1 and 40. Note that latency

is the duration between the consensus initiation and the first decision; after the latter, the protocol behavior is the

same irrespective of the number of initial proposals. What we found surprised us: the number of differing initial
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Figure 6. Consensus overhead vs. speed for wire-
less range = 100m with 1, 20 and 40 different initial
values.
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Figure 7. Consensus latency vs. speed for wireless
range = 100m

proposals, had an almost negligible effect on latency and overhead so long as it is more than one. Obviously,

when only one proposal was made, the protocol terminated in exactly one round every time, but the difference

when varying the number of initial proposals between 2 and 40 was limited. Figures 6 and 7 show how setting the

number of different initial proposals to 1, 20 and 40 impacts the overhead and latency over a range of node speeds,

with wireless range = 100m. These findings were in sharp contrast to the performance study we did in wired, local

area network environments, where the number of different values proposed had a big impact on both latency and

overhead.

The reason is due mainly to theabsence of LAN effect. Recall that the nodes wait to receive(d(n + 1)/2e)

messages of a given phase. In MANETs, unlike in LANs, a broadcast is received at widely different times by

various nodes (i.e., a node normally acts as a forwarder ofm, and in PKRMo after a random delay following the

reception). In a typical run of PKRMo, with range = 100m, max speed = 5 m/s andβ = 5s, the first reception of
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m by 20, 26, 30 and 40 nodes occurred within 15.83, 36.31, 67.48, and 94.15 seconds respectively afterm was

broadcast. Thus, fewer nodes complete the waiting much earlier than others, choose a random value in phase_2

and force the stragglers to accept the chosen values as their ’choice’. (See expedited executions in 4.5). That is, the

slow ones do not actually make a random choice. Further, the earliest of the earlier ones often manage to impose

their choice on a majority of slow nodes. So, the protocol converges towards a decision faster.
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Figure 8. Rounds vs. Max Speed with wireless

range=100m.

As depicted in Figure 8, we seldom observed

more than 2 rounds for the first decision to be made

and never more than 3 rounds.

6 Conclusion

The broadcast protocols presented and studied

here ensure maximum coverage that can be guaran-

teed. This feature, on one hand, helps applications,

like consensus, to perform well and, on the other,

requiresm to be buffered until realization. The lat-

ter can cause buffer overflow under heavy message

traffic and for very large values ofI andn. In such

occasions, the protocols can be made to operate for a lower assured coverage (c) by appropriately defining realiza-

tion, and this will reduce message retention duration. The problem of buffering is addressed in various ways in the

literature. In [4], a node ’realizes’ once it entrustsm with another ’suitable’ node. To identify the latter, it probes

nearby nodes for, and collects, feasibility information, and then evaluates an application-tunableutility function.

Probing involves broadcasting of small packets and is invoked judicially (to minimize overhead). PKRMo (possi-

bly specified with lowerc) can be an ideal candidate for it. Use of (probabilistic) deliverability predictability and

of a family oforaclesdetermines the suitable node in [15] and [14], respectively. Both assume that the communi-

cation opportunities are in general predictable from the nature of the application. Our protocols assume that only

B andδ are predictable from the application settings: we have, in the terminology of [14], acontactoracle that

outputs onlyB andqueueingandtraffic demandoracles forδ. While the above cited works focus storage issue in

the context of unicasting, [19, 5] consider one-to-many dissemination. The latter’s approach is similar to our RDP,

but m is realized once it has been transmittedτ times; using Markovian analysis,τ is estimated to beO(ln(n))
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for maximum coverage.

We have assumed an initial configuration forG wherein each of then nodes has a unique sequence number in

[0, . . . , n − 1] and knows the value ofn. This is not easy to achieve and realizing this assumption is addressed

as a topic in itself by [2]; interestingly, it is done using a consensus protocol, assuming a broadcast protocol, and

disallowing crashes (so thatn > 2f holds) until the initial configuration is formed. Once isG initialized, the

problem of managing join/departure requests and of assigning a unique sequence number to a joiner, can be solved

in the presence of crashes by imposing a total order on the requests which is feasible with a consensus protocol

[13].

We have pursued the approach ofpartitionable groupin which any partition that occurs heals eventually. We

note here that a partition can be permanent in thepartition-centricparadigm (e.g., [16]) in which a node’sworld-

view is confined to those nodes which are deemed to have connectivity with that node. Our experience and that

of others [7, 6] indicate two problems in working with this paradigm: a partition may be falsely concluded (due

to inappropriate timeouts used) even when connectivity does exist; this is acknowledged, for example, in [16].

Secondly, when healing of partitions is observed, the state reconciliation which must ensue between the merging

components is a message-expensive operation even in fixed network systems. For these reasons, we chose to

take the approach of partitionable group which does not allow partitioning between operative nodes to become

permanent.
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7 Appendix

7.1 Proposition 1

Suppose that nodes never crash (each node is operative) and have no knowledge about immediate neighbor-
hood. A broadcast protocol with the SSP cannot guaranteec ≥ 1, unless every node withm transmitsm at least
once everyτ time,τ < (B + δ), until transmissions ofm are stopped for ever.

Proof: Let us hypothesize that there is a broadcast protocol which, in every execution, (1) preserves the SSP
and ensuresc ≥ 1; and, (2) chooses a node that hasm and makes it ’silent’ (i.e., not transmitm) for at least (B+δ)
time. Specifically, the protocol chooses a silent durationS, S ≥ B + δ, a timing instances, s + S < te, and some
node withm, and keeps the chosen node silent during [s, s + S].

The proposition is proved by contradiction. SinceI is unknown and (te − tb) is finite, it is possible to have
executions in whichI is larger than(s + S)− tb and also(te + S)− s. Consider one such execution in whichm
is broadcast when the broadcaster’s immediate neighborhood is empty.

Let P be the set of nodes that havem at somet ≥ tb, andP be the set of those that do not havem. P is a
singleton set attb (containing only the broadcaster node). So,| P |≥ 1 at anyt andc = | P | −1. Chooset such
thatP at t is not empty. (This is possible as| P | = (n− 1) at tb ≤ t.) Let the MANET, starting fromt, keep the
nodes ofP disconnected from those ofP, except for the period mandated by the liveness property.

t ≤ s: SinceI > (s + S) − tb, the direct connectivity expected during [t, t + I] can occur during [s, s + S].
Let the MANET choose a node fromP which the protocol has made silent ats, and a direct connectivity period
that starts ats + δ and ends ats + B + δ ≤ s + S.

t > s: SinceI is larger than(te + S) − s, the direct connectivity expected during [t, t + I], can occur during
[te, te + S], after all transmissions ofm end atte.

No node inP receivesm during or outside the direct connectivity period and| P | does not increase aftert. At
t, | P |≥ 1 andc ≥ 0. That is,c ≥ 1 is not ensured.

7.2 Proposition 2

Any crash-tolerant broadcast protocol that has the SSP, cannot guarantee that more than (n − f − 1) nodes
receive an operative node’s broadcast, even if more than (n− f ) nodes, including the broadcaster, do not crash.

Proof (By Contradiction): Consider two executions of the protocol. Lette1 andte2 be the timing instances in
these executions, after which nodes do not retainm for propagation. By the SSP, (te1 − tb) and (te2 − tb) are finite
durations. LetF be any set off nodes which does not include the broadcaster ofm, andF be its complementary
subset.

Execution 1: All nodes ofF have already crashed beforetb. Since there are only (n − f ) operative nodes
(including the broadcaster),c < (n− f) at te1 .

Execution 2: No node has crashed beforetb and alln nodes remain operative untilte2 . However, the MANET
keeps nodes ofF outside the wireless range of every node inF until te2 . This is possible if the unknownI >
(te2 + B− tb), and the liveness property will be met when the MANET ensures direct connectivity between some
nodes ofF andF just afterte2 . Nodes ofF thus neither receivem nor execute the protocol form.

The protocol design system cannot distinguish these two executions for three reasons: (1) no node crashes
during the executions, (2) nodes ofF do not execute the protocol in both cases, and (3) there is no mechanism for
nodes ofF to detect whether a node inF is crashed or operative. Therefore,c < (n− f) in the second execution
as in the first. This contradicts the hypothesis, since alln nodes are operative throughout the second execution.
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7.3 Correctness Arguments for the Proactive Dissemination Protocol (PDP)

Consider an execution in which either the broadcaster is operative or an operative node receivesm. Let t ≥ tb
a timing instance during this execution andP denote the set of all those operative nodes not inP at t.

Delivery. Say, no operative node that hasm has realizedm at t. ChooseP to be any non-empty subset of all
those operative nodes with identicalK(m) at t. (By the nature of the execution considered, there is at least one
such singletonP.) P cannot be empty. Otherwise,P has all operative nodes (which are at leastn− f ) and all of
them have identicalK(m); since a node has1 for its own bit in itsK(m), all nodes inP have realizedm which
is not the case att.

When nodei of P and nodej of P directly connect, eitherj receivesm for the first time or the nodes exchange
their differentK(m). Thus, as the execution progresses with no node realizingm, each occurrence of direct
connectivity increases1 bits in theK(m)s of some operative nodes. Since (n − f ) is finite, some operative
node(s) must realizem within some finite duration.

Termination . Say, only some operative nodes have realizedm at t. LetP be the set of those operative nodes
that havem but not realized it att. When nodei of P and nodej of P directly connect, (1) nodei will realize
if node j has realized, or (2) nodej receivesm for the first time. Since the number of operative nodes is finite,
case (2) will cease and all operative nodes that havem realizem in finite time. realize(m.id)will no longer be
transmitted.

7.4 Correctness Arguments for the Reactive Dissemination Protocol (RDP)

Claim. Consider nodei and nodej with Ki(m) 6= Kj(m) at some timet during an execution. It is not possible
for bothKKi(m)[j] = 1 andKKj(m)[i] = 1 at t.

With no loss of generality, suppose thatKKj(m)[i] = 1 at t. This is possible only if nodej has known in the
past thatKi(m) = Kj(m). But att, Ki(m) 6= Kj(m). That is, nodei has increased itsKi(m) which must have
caused itsKKi(m) to be re-set. Further, nodei could not have learnt that nodej also increased itsKj(m) in the
same way. Therefore,KKi(m)[j] cannot be 1, and can only be 0.

The claim suggests that when unrealized nodesi andj with differentK(m) experience direct connectivity, at
least one of them will transmit at step 3. Further, ifKKi(m)[j] = 0 andKKj(m)[i] = 1, then nodej gains more
1-bits. The rest of the arguments can be constructed by choosing appropriateP as was done for PDP above, and
is omitted.

7.5 Correctness Arguments for PKRM Protocol (PDP)

The Arguments follow from those for the PDP, with an observation that when2(β + δ) ≤ B, the PKRM uses
direct connectivity between nodei with unrealizedm and a nodej effectively: nodej receivesm if it has nom
(steps 6 and 3a), or both nodes exchange theirK(m) if both are unrealized (step 3a).
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