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We rely on a deep stack of abstractions to efficiently build software appli-

cations without having to completely understand the nuance of language run-

times, operating systems, and processor architectures. Each layer in the stack

relies on the guarantees of the layer below, with all software relying on the func-

tionality provided by the hardware on which it executes.

Similarly, when we build secure software, we define security in terms of high

level application policies and rely on a stack of abstractions to enforce those

policies. Therefore, all of software security relies on the guarantees provided

by processor hardware. However, those guarantees offer less protection than

we have traditionally assumed, and real processor implementations routinely

exhibit vulnerabilities that undermine traditional assumptions about hardware

behavior.

Modern processors incorporate a host of optimizations to execute software

as quickly and efficiently as possible; unfortunately, these optimizations are at

the root of some serious security weaknesses. In particular, researchers have

recently discovered easily exploitable timing-channel vulnerabilities that arise

due to processor speculation, like Spectre, Meltdown, and the many variants

that have since been uncovered. Concerningly, these vulnerabilities are not the

result of cutting-edge, untested optimizations; they are fundamental to the de-

signs of almost all processors in the last 20 years.



The existence of these vulnerabilities highlights the need for a well-defined

contract between software and hardware that does not allow the hardware to

leak software’s secrets arbitrarily, especially via timing channels. Furthermore,

we need tools to enable the construction and verification of secure processors

that adhere to these new contracts. As functional processor correctness is al-

ready a difficult verification problem, we likely need new approaches to prove

processor security.

This dissertation addresses the above concerns by applying Information

Flow Control (IFC) to both the hardware–software interface and to Hardware

Description Languages (HDL) themselves. By using IFC as the de facto lan-

guage of security, we can define a hardware–software contract capable of pro-

viding timing-channel security without exposing extraneous details about pro-

cessor internals. Intuitively, using IFC as a tool to then build processors also

enables proving that real processor implementations refine this IFC contract.

This dissertation also addresses the problem of constructing correct proces-

sors by introducing a high-level HDL that targets the design of efficient proces-

sor pipelines. By raising the abstraction of hardware design, we can more easily

connect the implementation’s semantics to the hardware–software contract. We

can also reason statically about complex optimizations such as speculation by

providing abstractions that generate correct circuitry by construction.

We hope that future processors and interfaces are designed with timing-

channel security in mind, and that these new abstractions will percolate back

up the software stack to make timing-channel security available and efficient

for all applications.
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CHAPTER 1

INTRODUCTION

Software security is a critical issue in the ubiquitous computer systems that

we trust to communicate, store our data, do business, and generally rely on for

almost every aspect of our lives. One of the central directives of software se-

curity is confidentiality: preventing unauthorized parties from observing secret

data. Confidentiality, especially of critical information like passwords and cryp-

tographic keys, is necessary to enforce of many application security policies.

Unfortunately, confidentiality has proven difficult to formally guarantee (or

even practically enforce) thanks in significant part to timing side-channels. side-

channels are unintended means of observing or communicating information

which bypass security mechanisms. As the name would suggest, timing side-

channels can leak information through the time an operation takes to complete.

While timing channels are a well-studied problem, recent discoveries have re-

vealed that optimizations fundamental to modern hardware design have also

ingrained subtle and yet exploitable timing vulnerabilities into most modern

processors. These vulnerabilities are known as transient execution attacks (or

speculative execution attacks) since they exploit the speculative nature of high

performance processors and the presence of transiently executed instructions.

Spectre [103] and Meltdown [72] were the first examples of transient execution

attacks to be discovered, but since then researchers have unearthed dozens of

variants and other speculative side-channels [126].

All hardware-based timing channels (including transient execution attacks)

are especially concerning since they allow attackers to bypass higher level secu-

rity mechanisms; it is impossible to build and execute secure software on vul-

1



nerable hardware. Furthermore, as these vulnerabilities are baked into the sili-

con, it is more or less impossible to patch affected processors; the efforts to apply

microcode patches have been of limited success and error prone [75]. Instead,

operating systems (OS) and compiler-level defenses [67, 24] have been broadly

applied to mitigate Spectre and its variants. However, these defenses are coarse-

grained, accompanied by large performance overheads, brittle to future poten-

tial attacks, and even still fail to enable secure software sandboxing [79].

To build software systems which we can trust, we need stronger guarantees

about the integrity and confidentiality properties of the processors that software

runs on. Additionally, we need to be able to trust that real processor implemen-

tations do indeed provide their claimed security assurances, in spite of the com-

plex optimizations that they incorporate. To this end, we cannot simply rely

on one-off defenses and the status quo for processor testing; we need provably

secure designs and tools that can automatically check or generate their imple-

mentations.

This dissertation addresses the challenges facing the construction of

hardware–software systems with strong, timing-channel resilient security prop-

erties:

• How can we define hardware–software interfaces that enable the develop-

ment of timing-channel resilient software? Can we support programs with

different security and performance requirements with a single Instruction

Set Architecture (ISA)?

• Is it practical to implement and verify hardware that provides the neces-

sary guarantees? How do we develop tools to design secure hardware

while still enabling key performance optimizations like speculation?
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Next, this dissertation presents further background on the problem of hard-

ware timing channels and provides a roadmap for how to answer the aforemen-

tioned questions.

1.1 Transient Execution Attacks

Transient execution attacks rely on the fact that modern processors predict

which instructions to execute next instead of waiting for potentially long la-

tency operations. These processors delay finalizing, or committing, instructions

until they are sure that it was not the result of an incorrect prediction. In this

way, speculation has no visible effect on the architectural state: the registers and

memory which are readable and writable via software. Nevertheless, mispre-

dictions still end up leaving evidence of those incorrect instructions inside the

processor’s microarchitectural state: the internal processor structures used to im-

plement the ISA and optimize performance. These changes to the microarchi-

tecture affect the time at which instruction commitment takes place. Transient

execution attacks first cause the processor to speculatively access confidential

information and then use well-known timing channels to then extract it from

the microarchitectural state.

The canonical example exploiting Spectre vulnerabilities allows software to

read memory outside of a software sandbox by effectively ignoring a bounds

check on an array.

if (x < a.len) {

b = a[x]; // speculatively out of bounds

c = y[b]; // can leak b via cache timing channel

}
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This “bounds check bypass” is the poster child for transient execution attacks.

Most memory accesses are in bounds and thus the processor is likely to predict

that the branch should be taken. Given this prediction, the memory access on

line 2 will be speculatively executed even when it is outside the bounds of a.

That value (b) can then be leaked via well-known cache timing channels. When

line 3 executes, the address computed using y and b will be pulled into the

cache, and the attacker can probe the y array later to determine the value of b.

Even this simple attack allows malicious JavaScript to escape a web

browser’s sandbox, and the litany of variants [79] make total defense impos-

sible within a single process. Unfortunately, recent research [16] has shown

that building completely timing-channel-free caches would only begin to mit-

igate the issue; the exploitability of subtle timing channels within instruction

scheduling and microarchitectural resource contention hint at the vast depths

of unexplored potential speculative vulnerabilities.

In addition to effectively reading any memory location that they can ad-

dress [103], attackers can also use speculative execution to subvert the integrity

guarantees of secure enclaves [116] and to undermine the techniques we use to

program secure cryptographic libraries [25]. These weaknesses make it impos-

sible to secure software without restrictive and pessimistic assumptions about

processors’ speculative behavior. Even worse, the software mitigations em-

ployed on one processor might not work on another or on future chips, despite

their pessimism! We need more precise semantics with respect to speculative

behavior and timing channels than traditional ISAs provide. Future hardware–

software interfaces need to establish clear and usable limits on what data may

or may not influence timing both in general and under speculative execution.
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1.2 Hardware–Software Contracts For Security

The root of trust for all systems is, in the end, the hardware on which the soft-

ware executes. For an operating system to provide process isolation, it relies

on the memory management unit to enforce page table permissions. Privilege

rings and system calls enable manipulation of trusted state via tightly controlled

entry points and protect the OS from processes. However, these abstractions fail

to encapsulate timing channels and the threats that they pose.

The timing behavior of processors is left intentionally abstract. The (quite

reasonable) logic behind this choice is that it enables development of new opti-

mizations in the processor itself without changing the software interface. Nev-

ertheless, in practice, software developers routinely break this abstraction bar-

rier to improve performance, for instance to take best advantage of the proces-

sor’s caches. Similarly, attackers leverage undocumented behavior of branch

predictors and caches to carry out transient execution attacks.

As time has gone on, processor vendors have realized the utility of break-

ing the traditional ISA abstraction barriers with instructions that manipulate

what has historically been considered microarchitectural state. For example,

the clflush instruction clears the cache hierarchy state. Traditionally one con-

siders the cache part of the microarchitecture; different implementations of the

same ISA may have differently structured caches. One the one hand, without

primitives like clflush there would be no way for software to isolate two

security domains from side-channels in current processors. On the other, the

semantics of these instructions do not actually provide any guarantees about

timing-channel freedom. They are state-centric and imperative; they only indi-
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cate how the microarchitecture should be changed and do not qualify what the

microarchitecture may influence.

Taking clflush as an example, we can see that its functionality is useful

and to some degree necessary for security, but it is wholly insufficient. There are

no guarantees that the latency of the clflush instruction itself does not create a

timing channel, nor does it prevent other memory-access based channels. Iron-

ically such primitives can sometimes even be used by attackers to create more

reliable timing channels! We argue in this dissertation that ISAs must provide

timing-centric guarantees that enable software to control or at least comprehend

when and what information might be leaked via timing channels.

1.3 Information Flow Control

This dissertation adopts Information Flow Control (IFC) [38, 139] to build ab-

stractions with end to end security guarantees. IFC is a technique with a wide

range of applications as it tracks how data within the system influence each

other. In the realm of security, IFC has been well-established as a means of en-

forcing both confidentiality and integrity policies. IFC can either be statically

checked [39] as a form of formal verification, or dynamically enforced with a

run-time monitor [105].

The gold standard confidentiality and integrity property provided by IFC

systems is noninterference. Intuitively, noninterference says that you can freely

alter some subset of your system without changing the behavior that is visible

to some observer. For instance, confidentiality can be defined by declaring that

secret inputs will not influence public outputs. In this way, noninterference
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effectively says that your system behaves the same as one where the data you

wish to protect is explicitly partitioned from the rest of the system. Since real

systems often violate noninterference, many other IFC conditions have been

proposed that weaken noninterference but maintain principled definitions of

security [84, 26].

We utilize IFC to define hardware–software interfaces with extensional se-

curity guarantees. In this way, we can still maintain an abstraction barrier that

allows many different hardware microarchitectures while still enforcing useful

and strong guarantees about how secret or untrustworthy data may affect ex-

ecution. Unlike most prior work, we propose IFC models where real time is

exposed to the attacker. This choice puts an end to timing side-channels; once

time is part of the security contract, it can no longer be exploited. This disser-

tation will show how to define such strong contracts while both maintaining a

flexible programming model for software, and also allowing critical hardware

optimizations like speculation.

1.4 Contributions

This dissertation describes three broad contributions to the problems laid out so

far. The subsequent chapters each address the following contributions, respec-

tively:

• Chapter 2 explores how to design a hardware–software interface that pro-

vides strong, timing-sensitive security conditions. We propose that secu-

rity should be a first-order concern for ISA design, rather than tacked on

ad hoc just to support OS features.
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The contract we propose models the processor as an IFC monitor; the

software is responsible for specifying the security policies on architectural

state, and the hardware is responsible for enforcing those policies. Impor-

tantly, these policies allow software to dictate which architectural state is

allowed to influence the timing of execution. This chapter expands upon

the formal security guarantees of this ISA, how it enables software to trade

off security and performance smoothly, and the guidance it provides to

hardware designers to build secure processors.

• The research in Chapter 3 is motivated by the question: “How can we

statically reason about the behavior of speculative processors?” In try-

ing to prove that synthesizable descriptions of circuits actually fulfill the

hardware–software contract proposed in Chapter 2, we found that rea-

soning about speculative execution quickly became intractable. The root

cause of this difficulty was that the register transfer level (RTL) abstraction

adopted by most hardware description languages (HDL) is very low level.

RTL languages do not make the high-level structure of processors explicit,

and thus our tools could not leverage any of the invariants established by

these structures.

We propose a high-level HDL specifically designed to describe speculative

processor pipelines which we call PDL (Pipeline Description Language).

Unlike existing HDLs, PDL provides one instruction at a time semantics: a

processor’s behavior in PDL is equivalent to one that executes instructions

sequentially, in isolation. However, PDL enables the creation of efficient,

parallel execution of instructions via abstractions for common microar-

chitectural optimizations including: pipelining computation across clock

cycles; efficient resolution of data dependencies between instructions; and
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speculative instruction execution.

We show that PDL enables swiftly describing a series of different microar-

chitectures that implement the same ISA and make use of interesting per-

formance optimizations. In future work, we hope to show how to use

PDL’s high-level abstractions to easily verify security properties of the

specified designs.

• Chapter 4 is motivated by a similar question to the previous chapter:

“How can we verify information flow properties of speculative circuits?”

Although we designed PDL to build secure speculative processors, some

components of processors will still need to be built in lower level languages

like SystemVerilog [1]; at the very, least PDL relies on Verilog libraries to

implement its own abstractions.

We incorporate erasure labels into an existing IFC RTL language, and then

show how they can be used to statically track the influence of speculative

execution. We show that erasure labels allow us to statically check that a

speculative processor obeys a strong notion of security called Speculative

Noninterference. This condition ensures that programmers only need to

reason about the architectural behavior of their program to understand

what information might leak through timing channels; they do not need to

understand what they processor may or may not do speculatively.

Lastly, we implement number of different processor modules central to

high performance out-of-order processors in our language. These mod-

ules often exhibit transient execution vulnerabilities; our implementations

are guaranteed to be free of such weaknesses and required minimal effort

to convince our type checker that they were secure.
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CHAPTER 2

AN INFORMATION FLOW ISA FOR CONTROLLING TIMING

CHANNELS

2.1 Introduction

While timing channels have been well known to the security community for

decades, recent hardware-based exploits attest that these vulnerabilities remain

unsolved problems. For example, the Spectre, Meltdown, and Foreshadow

attacks allow unprivileged processes to learn secrets by timing memory ac-

cesses [103, 72, 116]. The sophisticated security mechanisms provided by these

modern processors—privilege rings, memory management units, and software

guard extensions [80]—are completely undermined by uncontrolled timing be-

haviors. Current processors are not timing-safe.

The hardware-security community has investigated how to eliminate timing

channels from circuit implementations, but these are not panaceas. Hardware

description languages (HDLs) such as SecVerilog [139] and Caisson [71] provide

timing-sensitive noninterference. They ensure that the time at which “public”

state is updated does not depend on any “secret” state. While they do provide

useful primitives for implementing secure processors, these languages are not

sufficient for executing timing-safe software in a real-world setting. They can

preclude necessary operations (such as modifying security labels at run time)

and limit software’s ability to specify security policies by baking those policies

into the hardware. In practice, software needs the ability to make application-

level policy decisions while still benefiting from the timing-sensitive guarantees

of security-focused HDLs. On the other hand, more complex instantiations of
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secure processors lack proofs that their ISAs enforce a meaningful security con-

dition. The Hyperflow processor [47], for instance, allows bounded software

modification of the “context label”, but no ISA-level security condition gives

guidance on how safe this is.

Software attempts to eliminate timing channels have had some success but

ultimately are not comprehensive, instead targeting empirically known sources

of timing variation. For example, compilers for cryptographic computation[5,

14, 122] help to mitigate side-channels but are fundamentally incomplete, since

they only model well known sources of timing variation such as branching and

caching. To fully remove timing channels, a new interface is needed to constrain

how hardware state influences timing and which software instructions might

leak information [137, 49].

The missing link between these hardware and software approaches is an

Instruction Set Architecture (ISA) with an explicit abstraction for the influence of

the machine state on timing. With such an ISA, strong timing-sensitive security

conditions could be proved about software, relying on the guarantees made by

hardware.

As a straw man, a software–hardware contract might ensure that all in-

structions with secret operands execute in constant time. In fact, existing tech-

niques for securely implementing cryptography implicitly assume such a con-

tract. However, constant time inevitably means worst-case time, in general, so

such a contract has daunting implications for the performance of memory oper-

ations. We argue that this kind of contract is unnecessarily restrictive. It is not

necessary that such instructions take constant time; it is only necessary that the

time taken does not leak information.
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This chapter presents an ISA design that can be the interface connecting

high-level timing-sensitive software abstractions to low-level timing-safe pro-

cessor implementations. Our ISA is based on information flow control (IFC),

which means our software–hardware contract is a set of IFC properties, rather

than a prescriptive set of implementation behaviors such as forcing certain in-

structions to take constant time. Because the interface is based on IFC, it is

possible to formally prove that only permitted information affects timing.

Our ISA design includes features to avoid being overly restrictive, as IFC

systems often are [95]. To this end, it includes downgrading operations that al-

low software to endorse untrusted inputs and to declassify secret data. We also

allow software to specify its own timing security policy, which permits trading

off timing-channel protection for performance. Both of these features are limited

so that they cannot be abused by attackers to undermine the security guarantees

of well-behaved programs. We additionally include security primitives that are

required to implement a practical operating system. These instructions are anal-

ogous to traditional system calls, but they are designed to prevent unexpected

information leakage.

The ISA in this chapter tackles these goals with novel constructs and stronger

formal security assurance:

• The ISA dynamically enforces timing-sensitive nonmalleable information

flow [26], while also preventing implicit flows created by checking muta-

ble labels.

• The ISA allows software to control the level of timing-channel protec-

tion. The ISA can be used to eliminate timing channels, mitigate timing

channels with bounded information leak using predictive mitigation [137],
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or enforce nonmalleable information flow control without timing-channel

protection.

• The ISA also includes novel instructions for implementing privilege

changes to emulate the functionality of system calls while maintaining

nonmalleability.

• The ISA is accompanied by formal, proved security guarantees for pro-

grams implemented with it.

• We also formally specify security conditions with which hardware imple-

mentations must comply to ensure security of the ISA.

The chapter proceeds as follows. Section 2.2 presents background on secu-

rity labels and our attacker model. Section 2.3 sketches our approach to con-

trolling timing channels. Sections 2.4 and 2.5 formalize the ISA and discuss its

novel features in detail. In Section 2.6, we discuss the security conditions as-

sumed of the hardware and the practical challenges in realizing those policies

with modern HDLs. Section 2.7 presents the security results for this ISA and

brief sketches of their proofs. Section 2.8 uses example code to demonstrate use

of the ISA. In Section 2.9 we discuss related work and we discuss future work

in Section 2.10.

2.2 Background

Our ISA both extends the RISC-V ISA1 [121] with new instructions and modifies

the semantics of existing instructions. RISC-V has instructions for computing

1Our approach is not specific to RISC-V and could be adapted for use in other instruction
sets.
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Figure 2.1: Security lattice operators

on data, moving data to and from memory, and for changing program control

flow. Architectural state refers to any storage location that is explicitly accessi-

ble or modifiable by software, including the 32 general-purpose registers, the

program counter and all memory locations. Our extension modifies all archi-

tectural state to be associated with a security label. All other hardware state is

considered microarchitectural and affects only the performance of software but

not its functional behavior.

The complete RISC-V ISA has many Control Status Registers (CSRs) which

are considered architectural, but for brevity we omit most of them from our

formalization. These CSRs should in principle also each have their own security

labels.

2.2.1 Security Labels

As in most IFC systems, our security labels form a lattice that supports a “flows

to” relation v , a lattice join t and a lattice meet u . We use the phrase “more

restrictive” to refer to labels higher in the lattice ordering (e.g., a v b means “b
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is at least as restrictive as a”). Figure 2.1 defines useful and mostly standard

notation for label reference and manipulation. The label lattice is a product of

two other lattices, one for integrity (trustworthiness of data) and one for con-

fidentiality (secrecy of data), so a lattice element is a pair (i, c). For generality,

we represent the two component lattices abstractly, but we restrict them to be

dual lattices over the same carrier set. That is, the ordering v is reversed for

the integrity and confidentiality components of the label lattice. The reflection

operator 



J
JJ , used for controlled downgrading, swaps the two components of a

lattice element.

An illustrative instantiation of this lattice is for the component lattice ele-

ments to represent principals. For instance, component b could represent both

Bob’s integrity (data written by Bob) and Bob’s confidentiality (data readable by

Bob), where Bob is a user of the system. Bob’s data can flow to anywhere that

has a label at least as confidential and no more trusted than b. Suppose there is

a principal > that is least in the integrity ordering (meaning that it is trusted by

everyone) and greatest in the confidentiality ordering; conversely, ⊥ is highest

in the integrity ordering (meaning that it is untrusted) and least in confidential-

ity. Then data labeled (>, b) flows to the label (b,>) because in integrity we have

> v b and in confidentiality, b v >.

2.2.2 Downgrading

Downgrading is the act of lowering the label of data in the lattice, violating the

normal direction of information flow expressed by the lattice ordering. While

downgrading greatly improves expressibility, it is important to constrain it, so
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that an attacker cannot leverage the downgrading mechanism to extract more

secrets or modify more trusted state than the application developer intended.

Our ISA enforces nonmalleability, a form of constrained downgrading, defined

by Cecchetti et al. [26]. Nonmalleability guarantees both robust declassification

and its dual transparent endorsement, which respectively constrain the down-

grading of confidentiality and integrity.

We define compromised labels to represent exactly the set of labels that can

never be safely downgraded under nonmalleability.

Definition 2.1 (Compromised Labels). A label is compromised if it is not as trusted

as it is secret:

l @ 



J
JJ (l)

Intuitively, compromised data contains secret information but has been

modified by an attacker or other low-integrity source. Allowing such data to

be downgraded opens up the possibility of “confused deputy” style attacks,

where trusted code that executes downgrades can be tricked into downgrading

arbitrary data.

2.2.3 Attackers

We represent attackers by the maximal integrity iA with which they can act and

a minimal confidentiality cA that they cannot observe. This is equivalent to typ-

ical attacker definitions which use a maximal confidentiality cM the attacker can

observe. Since we assume a finite lattice, we can translate cM to cA as follows:

Ls = {l | l @ cM}
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Figure 2.2: A 2-D slice of the combined confidentiality and integrity lat-
tice. The red section represents all compromised labels. The
dotted lines represent valid boundaries specifying a particular
attacker model and dividing the lattice into quadrants. The in-
tersection of these lines must be a compromised label, but need
not be the same in each component lattice.

cA ≡
∨
ls∈Ls

ls

cA represents the disjunction of all labels which cM is not allowed to read, and

therefore defines the minimal confidentiality that they cannot observe.

It is convenient to summarize the attacker as a single label A = (iA, cA). As

depicted in Figure 2.2, the components cA and iA define upward-closed sets of

secret and untrusted labels:

S = {l | cA v l}

U = {l | iA v l}

The sets of public (P) and trusted (T ) labels are simply any labels not in S or

U, respectively. Attackers can only read public data and can only write to un-

trusted data.
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Fair Attacks. Similar to prior work on robust declassification [84], our secu-

rity guarantees hold against fair attacks, where high-secrecy and high-integrity

information are only protected from attackers that do not already know those

secrets or are not already highly trusted. In this work, fair attacks are defined as

those where A represents a compromised label:

Definition 2.2 (Fair Attacker). Attacker A = (iA, cA) is a fair attacker if and only if

A is a compromised label.

Since a given attacker may be partly trusted with respect to integrity and

confidentiality, the label A is not a fixed, known label. Rather, we consider the

system to be secure if it is secure against all possible fair attackers A.

Our earlier Bob example can illustrate why this definition eliminates unfair

attackers. In a security lattice including the orderings (>,⊥) v (b, b) v (⊥,>),

consider the attacker with Bob’s integrity who is only allowed to read fully pub-

lic data: A = (b, b).2 A is not a fair attacker: it is as trusted as Bob (and can

therefore impersonate him) but is not supposed to learn any of Bob’s secrets. Es-

sentially, this A would model Bob attacking himself. Our security condition does

not prevent Bob from mistakenly releasing his own data to the public; it prevents

untrusted attackers from doing so and from manipulating Bob into doing so for

them.

Other Assumptions. We assume a strong attacker that may observe the wall-

clock time at which writes to public locations occur, and not just the ordering of

writes. This observational power corresponds to a colocated attacker-controlled

process that can race on memory accesses and has access to wall-clock time.

2Note that this label is not compromised since (b, b) v (b, b)
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# s0: secret int, a0: public int[], a1: public int

add s1, a0, s0 # s1 = &(a0[s0])

lw s2, 0(s1) # s2 = *s1

lw a1, 0(a0) # a1 = a0[0]

Figure 2.3: Meltdown-style timing channel via microarchitectural state

Defending against such a strong attacker is preferable since it makes the security

assurance correspondingly stronger.

Since our ISA implements a dynamic IFC system, attackers can observe the

labels of data through the success or failure of run-time checks [15]. For exam-

ple, if secret (S) is used (either directly or implicitly through branching ) to label

another piece of data (D) as secret, then an attacker may learn information about

S when their attempt to read D fails. The ISA does not include instructions for

explicitly reading labels and therefore we assume attackers cannot directly read

label values.

2.3 Controlling Timing Channels

Here we present high-level examples of where timing channels arise and how

we approach mitigating them. Figure 2.3 contains RISC-V code with a simple

microarchitectural timing channel: a secret-dependent load causing cache inter-

ference. In this example, s0 is a secret value; a0 and a1 are public information.

In modern processors, lw (“load word”) is not a constant-time operation; its

duration depends primarily on the address being accessed and other microar-

chitectural state (notably the cache). In this case, the address depends on s0,

a secret offset into array a0. Loading the data at address s1 also causes some
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# l0,l1,l2: public int

# h1,h2: secret-trusted int

# secret: secret-trusted boolean

l0 = l1

if (secret):

h1 = l1;

else:

h1 = l2;

l0 = 1

Figure 2.4: Untrusted inputs causing secrets to leak via timing

region of the a0 array to be placed in cache. If this region happens to be close to

the beginning of the array, the second lw experiences a cache hit and executes

quickly. In this way, an attacker who can observe how long it takes to load pub-

lic information learns some secret information. This vulnerability reflects the

core information transfer mechanism of the Meltdown attack [72].

In our ISA, software specifies a timing label, an upper bound on what infor-

mation may influence instruction completion timing. If the program in Figure

2.3 executed with a secret timing label, then it would have the same unsatisfac-

tory timing guarantees as current software. However, if the timing label were

set to public, then only public information could influence how long any in-

struction took and the latency of the second lw will not reveal any information

about s0. Obviously, software running at a low timing label may not benefit

from all possible performance optimizations, but it does not necessarily require

hardware to take worst-case time.

Figure 2.4 represents a different kind of timing channel, where an at-

tacker can determine information about secrets by observing how long secret-

dependent operations take. In this example, the attacker primes the cache by
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loading a public value, l1. Then, by observing when l0 is updated, they can

infer whether or not the memory read operation in between was a cache hit

or miss. A hit implies that the true branch was taken, since l1 was already

cached.

The problem here is related to the interaction of low-integrity state with

high-confidentiality computation; a cache that has been tainted with attacker-

influenced state should not be allowed to influence the duration of secret op-

erations. We incorporate this idea into our upcall instruction, which allows

software to execute in a secret context for a predetermined amount of time. Crit-

ically, low-integrity attackers cannot upcall their way into learning secrets nor

can they influence how trusted code execute their upcalls. By considering the

relationship between integrity and confidentiality, we can allow programs sim-

ilar to Figure 2.4 to execute safely, while disallowing variants that might leak

information through timing.

2.4 Formalizing the ISA

2.4.1 Definitions and Model

In this section we present an abridged semantics for our ISA. First, we introduce

the model for our semantics and some notational definitions. We represent our

ISA as a small-step operational semantics on configurations.

Definition 2.3 (Configurations). A processor configuration represents the current

state of the processor, encompassing both architecturally visible state and microarchitec-
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Table 2.1: Modified Semantics for Standard RISC-V Instructions

Insn Type Restrictions Behavior

COMPUTE pcl t L(rs1) t L(rs2) v L(rd) M′ = M[rd 7→ Rs1 ⊗ Rs2]

LOAD pcl t L(rs1) t L(M(Rs1)) v L(rd) M′ = M[rd 7→ M(Rs1)]

STORE pcl t L(rs1) t L(rd) v L(M(Rs1)) M′ = M[M(Rs1) 7→ Rd]

BRANCH L(rs1) t L(rs2) v pcl pc′ = (Rs1 ⊗ Rs2)?imm : pc + 4

JUMP L(rs1) v pcl pc′ = Rs1

ALL PC L(M(pcv)) v pcl ∧ pcl v 



J
JJ (pcl) applies to all instructions

ALL T tl v 



J
JJ (tl) ∧ pcl v tl applies to all instructions

tural state.
SW registers/memory M : Int→ Int

SW label mappings L : Int→ Lbl

opaque HW state µ : Name→ Lbl

program counter and label pc : PC = Int × Lbl

cycle counter and label t : T = Int × Lbl

call stack CST : List(PCT)

processor configuration C : 〈CST ,M, L, µ, pc, t〉

For simplicity, we represent both registers and DRAM as a single mapping

M, in which registers are located at special addresses. Addresses are drawn

from Int, a set of finite-size integers.3 Name is a set of variable names, which can

refer to locations but are not directly representable as values. Lbl is the set of

labels representable in our lattice. For brevity, throughout this chapter we use

3The size of this range (for example, 32 or 64 bits) is architecture-specific.
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the names of the elements of Ci, indexed with the same index i, as a shorthand

for the corresponding component of Ci. For any index i, Ci = CS i,Mi, Li, i, pci, ti.

For example, µ1 represents the µ component of C1. Additionally, we use pcv to

refer to the value of the pc and pcl to refer to its label. The same convention is

used for t.

In order to reason about the security label of a given piece of state in the

processor, we define various conventions for looking up label values and con-

verting integers to labels.

Definition 2.4 (Label lookup). Both architectural state and microarchitectural state

are tagged with security labels. These functions describe how to determine the value of

a location’s label, where i ∈ Int, and n ∈ Name.

Interpret i as a Lbl value γ(i)

Label of location i L(i)

Label of n Γ(C)(n)

Γ is a function parameterized on processor state. This function is defined

statically for a given implementation of the hardware at design time. This pa-

rameterization allows the label of any location to depend on software-specified

values and/or other run-time microarchitectural state.

2.4.2 Operational Semantics

We present this ISA as a small-step operational semantics, factored into two se-

mantics: a partial semantics specified by software instructions and an opaque

hardware semantics that describes the behavior of microarchitectural state. Fig-

ure 2.5 shows the complete operational semantics for a CPU and how, in any
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GR ` 〈CST ,M, L, µ, pc, t〉 −→ 〈CST ′,M′, L′, µ′, pc′, t′〉

EXECUTE

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ′,M′, L′, pc′, t′l〉
GR ` 〈CST ,M, L, µ, pc, t〉 −→µ 〈µ

′, t′v〉

GR ` 〈CST ,M, L, µ, pc, t〉 −→ 〈CST ′,M′, L′, µ′, pc′, t′〉

STALL
〈CST ,M, L, µ, pc, t〉 −→µ 〈µ

′, t′v〉

GR ` 〈CST ,M, L, µ, pc, t〉 −→ 〈CST ,M, L, µ′, pc, (t′v, tl)〉

Figure 2.5: Complete CPU operational semantics. These rules defer to
semantics which describe how architectural state is modified
(−→A) and which describe how microarchitectural state is mod-
ified (−→µ).

given time step, the CPU can update architectural state (by taking a −→A transi-

tion) or “stall” (from the perspective of software) by updating only microarchi-

tectural state. While we provide the explicit semantics for −→A (see Figures 2.7

and 2.8), the semantics for −→µ are intentionally left unspecified because they

are implementation-dependent. The architectural semantics (−→A) do not de-

pend upon the current state of µ since µ should not, by definition, influence the

behavior of software (beyond timing). Instead, we define a set of properties

that the transition function −→µ must satisfy. It is these properties that allows

the ISA to offer security guarantees that current architectures lack.

Table 2.1 provides an abridged definition of instruction restrictions (also re-

ferred to as “label checks”) and behavior for pre-existing RISC-V instructions.

For abbreviation purposes, the notation rx represents the index of a register spec-

ified by an instruction. To refer to the contents of the register, we write Rx, a

shorthand for M(rx), the contents of the special memory location which holds

that register. The symbol ⊗ represents some arithmetic or relational operator

appropriate to the instruction in question.
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In general, the restrictions on instructions prevent state with high-security

labels from influencing state with low security labels. If the restrictions for a

given rule cannot be met, the instruction becomes a “no-op” that increments

pcv but has no other effects. No-ops avoid leaking information through the en-

forcement of label checks. However, for certain errors, it is safe to jump to a

special program counter, errorpc, while retaining the current pcl and tl. One

such error is violation of the ALL PC rule, which can safely cause the program to

jump to errorpc without breaking noninterference. The full list of these errors

is specified in Appendix A. At this point, any error-handling program may ex-

ecute (for example, to signal termination), as long as it obeys the restrictions on

normal execution. To a public observer, a program that produces an error with

a secret pc label therefore appears equivalent to a correctly operating program.

Appendix A also lists specific rules for which label-checking operations can

raise explicit errors and which require squashing via no-op. We include in our

proofs that error handling does not violate our security conditions.

The COMPUTE, LOAD/STORE and BRANCH restrictions are straightforward;

they ensure that instruction operands and the pc must flow to the destination

register. The BRANCH restrictions prevent implicit flows.

The ALL PC restriction ensures that the instruction being executed is at least

as trusted and public as the pc itself. This constraint prevents a trusted or public

program from reading instructions from secret or untrusted memory. Addition-

ally, ALL PC maintains the invariant that a program may execute only if it has

an uncompromised pc. We note in §2.5 that keeping the pc uncompromised is

required to prevent call gates from breaking nonmalleability.
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if (s):

upgrade(ts, UNTRUSTED)

else:

skip

ts2 := ts

Figure 2.6: Leaking secrets via an integrity upgrade. Execution is success-
ful exactly when s is false.

The ALL T restriction ensures that the timing label is uncompromised and is

at least as restrictive as the pc label. We summarize these restrictions as a validity

condition:

ISVALID(pcl, tl) , (pcl v tl) ∧ (pcl v 



J
JJ (pcl)) ∧ (tl v 




J
JJ (tl))

Intuitively, it would be difficult to implement any reasonable hardware that did

not guarantee this condition. In any case where the pc label was more restrictive,

the duration of the instruction would have to be independent of the instruction

performed! This is obviously impractical for real systems, and the restriction

allows us to mostly reason about pcl when proving security conditions (see Ap-

pendix A).

2.4.3 Label Mutation

Figures 2.7 and 2.8 give the operational semantics for instructions that modify

label state or that raise or lower privilege.4 Label-mutation instructions modify

the labels of memory locations. It is well known that flow-sensitive monitors,

including this ISA5, can leak information by modifying labels if mutation is not
4The Rsn notation refers to RISC-V style register addresses; instruction-size limitations re-

quire that the real encoding differ slightly from this notation, but it is semantically equivalent.
5Although this ISA is flow-sensitive, it does not have floating labels [22], and therefore labels

must be explicitly changed by software instructions.
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GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M′, L′, pc′, tl〉

l = L(rd)
l′ = γ(Rs1) RELBL(pcl, l, l

′) L(rs1) v pcl L′ = L[rd 7→ l′]

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L′, (pcv + 4, pcl), tl〉
DWNLBL

l = L(rd)
l′ = γ(Rs1) UPLBL(pcl, l, l

′) L(rs1) v pcl L′ = L[rd 7→ l′]

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L′, (pcv + 4, pcl), tl〉
UPLBL

pc′l = γ(Rs1) t′l = γ(Rs2) pcl v pc′l
tl v t′l ISVALID(pc′l , t

′
l ) L(rs1) t L(rs2) v pcl ∅ , CST[head]

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, (pcv + 4, pc′l), t
′
l〉

RAISELBL

¬INUPCALL

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, (pcv + 4, pcl), tl〉
OTHER ERROR

Figure 2.7: Operational semantics for label-mutating instructions given a
call-gate registry GR.

appropriately limited [15, 22]. Since our approach involves no extra static in-

formation about the executing software, we implement the no-sensitive-upgrade

(NSU) policy [9]. The NSU policy dynamically prevents leaks by requiring that

the pcl can flow to both the original label and the final label of the data.

However, this restriction does not eliminate all information leakage caused

by label mutation. Consider the example in Figure 2.6. In this case, the label

change is inside a secret context, which requires that the pc is secret and trusted.

Register ts is secret and trusted and the upgrade makes it secret and untrusted.

The label pcl flows to both the original and final labels of ts, so the aforemen-

tioned rule is satisfied. Nevertheless, the final assignment (which occurs in a

public context) to ts2 will succeed in the case where s is false and fail other-

wise since ts now represents untrustworthy information.
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¬INUPCALL pc′l = γ(Rs1)
t′l = γ(Rs2) ISVALID(pc′l , t

′
l ) L(rs1) t L(rs2) t L(rs3) t L(rd) v pcl

pcl t tl v pc′l v t′l endpc = Rs3 endt = Rd + tv

CST ′[head] = ((endpc, pcl), (endt, tl)) CST ′[tail] = CST

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ′,M, L, (pcv + 4, pc′l), t
′
l〉

UPCALL

INUPCALL ((endpc, pc′l), (endt, t′l )) = CST[head] tv , endt

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, pc, tl〉
UPRET-NOP

INUPCALL ((endpc, pc′l), (endt, t′l )) = CST[head]
CST ′ = CST[tail] tv = endt

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ′,M, L, (endpc, pc′l), t
′
l〉

UPRET-DONE

∅ = CST[head] endpc = pcv + 4
CST ′[head] = ((endpc, pcl), (null, tl)) CST ′[tail] = CST

(pc′, t′l ) = GR(Rs1) ISVALID(pc′l , t
′
l ) L(rs1) v pcl pc′l t t′l @ pcl

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ′,M, L, pc′, t′l〉
DWNCALL

((pc′v, pc′l), (null, t′l )) = CST[head]
pcl t tl @ pc′l u t′l CST ′ = CST[tail]

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ′,M, L, (pc′v, pc′l), t
′
l〉

DWNRET

INUPCALL

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, pc, tl〉
UPRET ERROR

Figure 2.8: Operational semantics for call gate instructions given a call-
gate registry GR.
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Additionally, since label arguments themselves are labeled memory loca-

tions, we require that the label of those arguments flows to pcl. For example, the

instruction dwnlbl x3, x6 means: “Downgrade the label of register x3 to the

label represented by the value stored in register x6”. If the label of x6 itself were

secret, using it to change the label of x3 in a public context could allow an ob-

server to learn about the content of x6. If the label of a location whose content

is used as a label does not flow to pcl, then the instruction becomes a no-op to

prevent this kind of leakage.

We introduce additional restrictions on both upgrade and downgrade rules

to prevent similar kinds of information leakage; these rules differ from each

other in order to be more permissive.

Upgrading. The predicate UPLBL(pcl, l, l
′) expresses the NSU check for up-

grading label l to label l′ in the context pcl:

UPLBL(pcl, l, l
′) , (pcl v l v l′) ∧ (l′ v 




J
JJ (pcl))

The intuition here is that we need an upper bound for the final label to pre-

vent it from moving to a new quadrant in the lattice. UPLBL deviates from

the original NSU definition by adding the constraint l′ v 



J
JJ (pcl). This prevents

programs from creating untrustworthy information in secret contexts and vice

versa. For the program in Figure 2.6, the uplbl instruction fails the UPLBL test,

preventing the offending label modification. Unfortunately, this still leaks the

value of s since the program only fails when s is true. The key insight for han-

dling this case is that the failure happens while the pc is still in a high context,

so measures can be taken to prevent a low context from observing the failure.

We discuss this leakage in further detail below (§2.4.4).
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public_val = 0

while (secret_1 < secret_2):

# do some slow computation

secret_1++

public_val = 1

Figure 2.9: Secrets may be learned from the timing of the write to
public val.

Downgrading. There are two different cases to consider when downgrading

label l to l′: l′ v l and l′ @ l. For the first case, the predicate DWNLBL(pcl, l, l
′)

expresses the existing nonmalleable information flow restrictions when down-

grading label l to label l′ in the context pcl.

DWNLBL(pcl, l, l
′) , (pcl v l′) ∧ (l′ v l) ∧ (l v 




J
JJ (l))

The other case is the general form of downgrading, which we model as first

executing a downgrade from l to l u l′, followed by an upgrade to l′. As one

might expect, this essentially combines the restrictions from those other cases:

RELBL(pcl, l, l
′) , (pcl v l u l′) ∧ (l v 




J
JJ (l)) ∧ (l′ v 




J
JJ (pcl))

This check implies the original nonmalleability restrictions,6 which means it

is no more permissive. An alternative for modeling general downgrades would

be to simulate first an upgrade to the join and then a downgrade. That require-

ment implies the one we’ve just described and is therefore also safe. However,

it may be overly restrictive. It is unclear if the two are equally permissive or if

downgrade-then-upgrade permits more safe programs for our lattice definition.

This question lies outside the scope of this chapter.

6In our setting, their requirement would roughly translate to the conditions: l v l′ t 



J
JJ (pcl t l)

and pcl v l′.
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2.4.4 Raising context labels

The upcall/upret instruction pair introduces primitives for controlling tim-

ing channels while branching on secret or untrusted values. The upcall in-

struction allows a process to enter a more restricted context with a higher pcl

and tl, while pushing the current pcl and tl to a call stack. In the new context, the

program cannot write to low outputs, but its execution timing can be influenced

by high hardware state. However, returning from this context reveals timing in-

formation about the duration of the subprogram. This problem can be seen in

the higher-level program shown in Figure 2.9. The low adversary is allowed

to observe the time of completion for the while block, since it can observe the

timing of the writes to public val. However, the duration of this block de-

pends upon secret values. This example shows a more general version of the

label-checking termination channel from Figure 2.6.

To control timing channels, upcall instructions are given an absolute end

time and an ending program counter as arguments. Once the end time is

reached, the processor steps to the end pcv. The instruction arguments are saved

onto a hardware call stack along with the caller’s pcl and tl. Intuitively, this

semantics preserves noninterference because the subprogram cannot modify

memory locations or labels in a way that changes low observations. Since the

completion of the upcall is determined purely from information of at most the

level pcl, no termination channel influences subsequent program steps.

In general, this approach is impractical because it requires programmers or

compilers to know cycle-accurate durations of program segments. However, it

can easily be used to execute untrusted functions. The upcall instruction can

create a low-integrity sandbox that runs until the provided timeout expires.
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Using upcalls for timing mitigation. To support a more flexible programming

model, we also expose a generic interface for handling returns from high con-

texts via an exception. When the timer completes, if the current instruction is

not an upret, the configuration steps to a known exception handler pcv
7. Fur-

thermore, when a label check fails inside of an upcall, the program simply stalls

(i.e., steps to a new configuration where no architectural state has changed).

Whichever of these conditions causes the exception is recorded in a status reg-

ister (implemented as a CSR), with the high label of the upcall. In Figure 2.8, we

use the INUPCALL check to specify whether or not a configuration is inside of an

upcall by inspecting the head of the call stack. If INUPCALL is true, then the er-

ror can be handled normally, otherwise it should be squashed and the program

should stall.

INUPCALL ,

(((endpc, pc′l), (endt, t′l )) = CST[head])

∧ (pc′l v pcl ∧ t′l v tl)

With this primitive, the timing mitigation algorithms described in prior

work [137, 8] can be implemented, enforcing bounded leakage on informa-

tion from the high context. We note that this information release is still non-

malleable; both robust declassification and transparent endorsement are main-

tained under these mitigation mechanisms. Importantly, our restrictions pre-

vent attackers from exploiting mitigation to exfiltrate arbitrary data.

Checking whether or not a high context subprogram failed due to violating

the label check restrictions also represents a nonmalleable information release.
7Termination behavior can be configured on a per-program basis; it is only required that the

configuration is completed using only information that is low relative to the program’s original
pcl.
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The data in the status register can be declassified or endorsed to reveal whether

or not a label check caused the subprogram to fail. Revealing this informa-

tion violates the termination sensitivity of the subprogram noninterference. Al-

though the subprogram cannot modify any low state, information is transferred

via termination.

Further upcall restrictions. upcall and dwncall instructions may not be ex-

ecuted inside an upcall. Intuitively, a dwncall (which lowers pcl) would allow a

process to produce public outputs while still inside the upcall, leaking informa-

tion about its timing and progress. As mentioned, the arguments to the upcall

instruction must also themselves be labeled so that they flow to the current pcl.

Without this requirement, secret or untrusted information could still influence

the duration of the subprogram.

The nesting restriction could be relaxed to allow for multiple upcall in-

structions so that the context could be raised repeatedly. However, we do not

include it in this formalism since it would complicate the requirements for hard-

ware (call stacks would no longer have finite depth). In reality, nesting would

be useful for implementing the process of control transfer from user space to

operating system privileges and from there to the hypervisor level.

Permanently raising context labels. In addition to the upcall instruction,

the pcl and tl can be raised by simply writing to them (they are implemented as

CSRs). In order to preserve noninterference, the labels can only be raised in this

way. Once raised, a program can only lower its context labels by executing a

dwncall instruction. This limits the possible leakages caused by the program

to outputs produced by the set of trusted functions which it is allowed to call.
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2.4.5 Lowering context labels

The dwncall/dwnret instructions allow programs to call into more-public

and more-trusted contexts via call gates. Call gates are essentially labeled func-

tions that have been pre-registered by a public–trusted entity. The call-gate reg-

istry is effectively a read-only function lookup table.8 A call gate registration

contains a pc and tl; using a dwncall instruction sets the current pc and tl to

the gate’s values while pushing the prior values onto a call stack. These instruc-

tions provide hardware support for the privilege escalation features described

in prior work on security and information flow. In particular, they closely re-

semble the primitives required to implement gates from the Multics and HiStar

operating systems [99, 136]. In those systems, gates were used respectively to

call known functions with higher privileges than the caller, and to implement

synchronous RPC.

2.4.6 Exceptions and Asynchrony

We do not include exception configuration or handling in our ISA formalism or

formal security proof. In this section, we describe how one could incorporate

these features into our ISA without compromising its security conditions. All

exceptions have a triggering condition and an exception program counter (epc)

that points to the interrupt service routine (ISR)9.

Trigger conditions can be specific to an ISA-extension or architecture and

8Using rules similar to the uplbl instruction, call gate entries can also be made more secret
or less trusted without violating noninterference.

9 This is not the same as the RISC-V epc CSR, we are paraphrasing the exception handling
mechanism for clarity.
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are often defined by the hardware. The epc is programmed by software and

stored in a CSR. There are additional exception-masking CSRs which software

can use to suppress the trigger conditions. In general, in order for an exception

to fire, the security label of all trigger conditions (including masks) must flow to

the current pcl; otherwise, an attacker process may learn that an exception fired

and deduce some secret related to its cause. For arithmetic exceptions such as

integer overflow or divide-by-zero, this implies that the instruction operands

flow to the current pcl; if they don’t, the exception must be suppressed. The

label of the pc while the ISR is actually handling the exception must also be

lower bounded by all trigger inputs and the label of the epc register itself. In

this way, if an exception trigger condition is secret, its handler must be executing

in a secret context and cannot produce public outputs.

We believe the primary complications involved in integrating exception han-

dling into such an ISA are as follows. First, it is not always clear how to label

exception triggers. For example, should an incoming network packet signal be

labeled public or could the timing of packet arrival give an attacker information

about co-resident processes? Likely, this choice should be programmable by

software depending on the threat model. Secondly, depending upon how hard-

ware state is labeled, asynchronous exceptions (such as timers and incoming

network packets) may be frequently dropped or delayed. In order to account

for this, the processor and ISA may need to be modified to support batched

handling of exceptions along predetermined schedules within the CPU itself.

Additionally, it may be difficult to limit the number of actual hardware signals

that contribute to exception trigger conditions in real implementations. For ex-

ample, Van Bulck et al. [117] found that Intel SGX implementations allowed the

currently executing instruction to complete before handling certain exceptions.
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Waiting for instruction completion means that most control signals in the CPU

would influence the exception trigger conditions. It is not always possible to

immediately transfer control to the ISR without waiting for some state to clear

in the CPU, and thus it may be challenging to implement practical exceptions

that execute in contexts that have low confidentiality or high integrity.

2.5 ISA Design Discussion

Here we highlight some salient points of our design and compare and contrast

with other language-based IFC systems.

Compromised contexts and data undermine nonmalleability The original

nonmalleability chapter [26] identified restrictions on downgrading that are

equivalent to our observation that compromised labels cannot be downgraded

to public or trusted status. We additionally notice that executing in a compro-

mised context can unsafely leak information through timing. Specifically, this

can violate the non-occlusion principle of declassification described by Sabelfeld

and Sands [96]. Consider the scenario where upcall operations implement

predictive mitigation, and therefore enforce nonmalleability (rather than nonin-

terference). Allowing a process to raise its pcl and/or tl to a compromised level

is unsound because it implicitly allows that process to declassify arbitrary data.

With our restrictions, observing the duration of this subprogram leaks only the

caller’s secrets and is therefore robust; otherwise any information could be im-

plicitly declassified via this channel.
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Software can control how much information it leaks through timing channels

Our ISA provides strong guarantees with respect to timing. As long as a pro-

gram keeps its timing label low and executes fully low-deterministic upcalls, it

leaks no information through its timing behavior. However, programs are not

strictly bound by these restrictions. By explicitly exposing the pcl, tl and upcall

timing to software, we grant programs the ability to weaken these restrictions

gracefully to suit their needs. This provides important flexibility for situations

where our threat model is overly strong or when application-specific data may

only require probabilistic guarantees about timing consistency.

Limitations of Our ISA While our ISA has strong security guarantees and im-

portant security primitives, there is much room for future research. First of all,

our timing label mechanism does provide a bound on which information may

be implicitly leaked through timing channels. However, this coarse-grained ap-

proach could potentially leak any information below the timing label. This be-

havior is unlike the dwnlbl instruction, which explicitly denotes the memory

location to be downgraded. Our ISA also does not incorporate explicit timing

into any instructions other than upcall. While this lack of explicitness is bene-

ficial for remaining implementation-agnostic, it does not give guidance on how

to implement secure and efficient hardware. Yu et al. [128] describe an ISA

which focuses on this performance aspect, by exposing more microarchitectural

information in their ISA. Future secure ISAs and ISA extensions must be de-

signed with both of these goals in mind, potentially leading to new semantics

or completely novel timing-aware instructions.

Finally, our work only targets the single core subset of the RISC-V ISA and

does not provide guidance on how to address multicore communication and
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interference. This realm of interconnected computing devices communicating

via shared memory and coherence networks introduces many more opportu-

nities for timing interference and side-channel communication. Investigating

this problem requires a significant further effort in analyzing the semantics of

existing memory models, microarchitectural coherency guarantees and how to

efficiently incorporate IFC labels into these protocols.

2.6 Hardware Semantics and Properties

As mentioned earlier, an actual hardware implementation of this ISA will be a

circuit that not only implements the software-visible semantics but also refines

the full CPU semantics. We now discuss properties of a hardware implementa-

tion that are sufficient to guarantee the ISA-level security conditions. Addition-

ally, we discuss the implications of these properties on hardware implementa-

tions and comment on what techniques may be utilized to verifiably construct

hardware with said properties.

Property 2.1 (Deterministic Execution). For any configuration C,

and for i ∈ {1, 2}

C −→µ 〈µi, tvi〉 =⇒ ((µ1 = µ2) ∧ (tv1 = tv2))

∧

C −→ Ci =⇒ C1 = C2

The operational semantics for the transition function on microarchitectural

states must be deterministic. Furthermore, we assume that the full semantics

which determines when to stall the processor is also deterministic.
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We believe that this property can also be relaxed to allow for sources of non-

determinism (such as changes in clock frequencies, random number generators,

etc.) as long as this nondeterminism is truly generated by noise or other pub-

lic/trusted factors. Defining exactly what factors are public/trusted is a com-

plex decision related to particular threat models and is out of scope for this

chapter.

Property 2.2 (Single-Step Machine Noninterference). Given a set of low labels in

the security lattice, L,

∀C, i ∈ {1, 2}.

(C1 =L C2) ∧ (Ci −→ C′i )

=⇒ ((µ′1 =L µ
′
2) ∧ (t′v1 =L t′v2)).

The hardware implementation must enforce a timing-sensitive noninterfer-

ence condition for microarchitectural state for all transitions. With this defi-

nition, the label of t effectively bounds which hardware state may affect the

timing of operations (including the decision to stall or not stall computation).

The above property also implies that −→µ enforces timing-sensitive noninter-

ference on µ and t. Note that this noninterference condition only applies for

microarchitectural state, not architectural state. The architectural state may be

downgraded using the downgrade instructions in our ISA.

The above definition of timing-sensitive machine noninterference is actually

overly strong and we can substitute a slightly weaker property. t is interpreted

as a global clock; however, this requirement enforces that hardware end instruc-

tions at exactly the same real time whenever t′l ∈ L. For most cases this isn’t a

problem, since tl ∈ L and therefore both configurations start executing the in-
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struction at the same time. It is not unreasonable for hardware to therefore en-

sure that they end at the same time by using only low-labeled state to influence

their duration.

However, some instructions can lower tl thereby creating a scenario where

tl ∈ H and t′l ∈ L. In our ISA, dwncall can create this scenario and would

theoretically require that two executions always enter the call gate at the same

time, even when they previously had high timing labels. Since tv1 , tv2 there is

no way for a CPU to ensure t′v1 = t′v2. Luckily, real-time equivalence is not really

the guarantee we need. We just need the duration of the instructions to be equal

in both configurations, if t′ ∈ L. For all of the instructions in our ISA, this results

in exactly the same security guarantees that we have claimed in §2.7. Below is

the amended Single-Step Machine Noninterference property:

∀C, i ∈ {1, 2}.

(C1 =L C2) ∧ (Ci −→ C′i ) =⇒ (µ′1 =L µ
′
2) ∧ (t′l ∈ L =⇒ t′v1 − tv1 = t′v2 − tv2))

Property 2.3 (Computability of Label Lookups).

∃Γ, ∀C, n ∈ dom(µ),Γ(C)(n) is computable

Property 2.3 has so far been an implicit assumption. The function Γ is param-

eterized on all of the configuration state; it represents a function that must be

computed at run time and therefore must be implemented in the microarchitec-

ture. In combination with Property 2.2, this implies that the process of looking

up microarchitectural labels does not violate noninterference [141]. It also im-

plies that, after a configuration step C −→ C′, Γ determines low equivalence by

evaluating labels of µ using C′, not the original configuration C (we formalize

low equivalence further in §2.7).
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Intuitively, the above properties suggest that there is no hardware-level in-

formation flow which violates timing-sensitive noninterference except for flows

that are explicitly induced by software instructions. For instance, declassifying

a secret memory location, loc, with a dwnlbl instruction can only declassify

microarchitectural state that specifically represents loc’s data. We discuss the

ISA-level security properties that we can derive from these guarantees in §2.7.

2.6.1 Implications for Hardware Implementations

Property 2.1 can be easily satisfied, for the most part, as processors are typically

implemented as deterministic digital circuits. While some features require a

notion of nondeterminism (such as random number generators or external sen-

sor inputs), these can be modeled as the I/O to a deterministic digital circuit.

In the design, one must label and build deterministic circuitry used to process

these values (e.g., a buffer containing input packets from the network) but the

non-determinism of the outside system has no direct impact on the security of

the processor itself. As discussed in §2.4.6, this may lead to different low-level

behaviors and performance characteristics in real implementations.

Furthermore, even features with unpredictable behavior can be modeled de-

terministically as long as their inputs are deterministic. For example, DVFS [54]

modulates clock frequency during execution and can change the wall-clock time

of code execution. However, if those modulation decisions are made via a dig-

ital circuit and their inputs are deterministic, we can model DVFS as software-

visible architectural state and guarantee that its use does not violate our security

conditions.
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Property 2.2 requires a processor to be designed to remove timing chan-

nels through its microarchitecture. A recent publication [47] shows that such

a tagged processor with strong control for microarchitectural timing channels

and potentially reasonable overheads is feasible. Yu et al. [128] have also

shown recently that it is feasible to build a modern CPU with speculation, out-

of-order execution and other microarchitectural optimizations while enforcing

probabilistic-noninterference [11]. These results provide evidence that it is pos-

sible to build efficient secure hardware, with the appropriate ISA abstractions.

Property 2.3 suggests that processor microarchitecture needs to be designed

in a way that allows the security label of microarchitectural state to be deter-

mined. This property can be achieved by either statically labeling hardware

modules at design time or by adding hardware tags to track runtime labels. Re-

cursively, these tags are also microarchitectural state and their labels must also

be computable. Therefore, real implementations will use both of these tech-

niques (static vs. dynamic labels) since Γ is only computable if it eventually

reaches a fixed point.

Our ISA provides hardware designers with the flexibility to choose how to

realize timing-sensitive noninterference. For example, in order to remove cache

timing channels, a processor designer may statically partition a cache; dedicate

a cache to one security level and flush it when the security level is lowered;

bypass the cache; or even introduce scratchpad memory with a fixed latency;

any implementation will suffice so long as its timing behavior is noninterfering.
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2.6.2 Enforcing Timing-Sensitive Noninterference

in Hardware

For strong security assurance, we ideally want to formally enforce the proper-

ties needed for a secure hardware implementation. There exist several efforts to

develop security-annotated Hardware Description Languages (HDL) that can

provide timing-sensitive noninterference guarantees, similar to the one we spec-

ify here [139, 44, 10]. Previous studies show that these security-annotated HDLs

can be used to express realistic security policies and implement complex circuits

that satisfy them [46, 47, 70, 71].

The primary challenge with proving Property 2.2 by using secure HDLs is

that these languages do not have separate notions of “architectural” and “mi-

croarchitectural” state; the entire circuit is represented as a single state machine.

Phrased another way, hardware and software are concerned with different def-

initions of observability; in the hardware description, all state is considered

observable, even though software can only directly observe architectural state.

This disconnect makes proving a hardware implementation correct challenging

for a few specific reasons.

First, it is impossible to prove that an implementation that supports ISA-

level downgrading provides microarchitectural noninterference. Any imple-

mentation of our ISA must contain downgrades at the HDL level, which cor-

respond to those required to implement downgrading instructions. However,

the noninterference guarantees provided by these HDLs are completely obvi-

ated by including downgrades; they cannot ensure that the information being

downgraded is limited only to architectural state.
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A second issue with proving hardware implementations secure is the differ-

ence in label equivalence models. We assume that an attacker cannot read the

value of a secret label, but can observe the fact that the label is secret. In the

hardware, any location which stores a label value must itself be labeled. Given

the attacker model above, it is unclear how to write down the label of this lo-

cation. If we label it as public, then the HDL will allow us to define hardware

that leaks the values of secret labels to attackers. If we label it as secret, then the

HDL will conservatively disallow some safe label checking operations.

We believe that these problems may be solved by applying prior techniques

for verifying CPU correctness (such as Pipecheck and RTLCheck [77, 78]).

Moreover, these approaches could be augmented with formal verification tools

specifically designed for IFC. For instance, Nickel [102] is a framework for prov-

ing noninterference that uses application specific definitions of observational

equivalence. Investigating how to utilize these approaches to prove microar-

chitectural noninterference while supporting software-level downgrading and

notions of observability is an interesting research question that has yet to be

fully demonstrated.

2.7 ISA Security Properties

This section describes some of the security properties of this ISA and their per-

formance and usability tradeoffs.

Low Equivalence. We start by formalizing the low equivalence of configura-

tions, relative to a set of low labels, L. This models the ability of an observer
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pc1 =L pc2 ⇐⇒ ((pcl1 ∧ pcl2) < L) ∨ (pc1 = pc2)
t1 =L t2 ⇐⇒ ((tl1 ∧ tl2) < L) ∨ (t1 = t2)

L1 =L L2 ⇐⇒ (L1 ≈ L2) ∧ (∀ j ∈ dom(L). L( j) ∈ L =⇒ L1( j) = L2( j))
M1 =L M2 ⇐⇒ (L1 ≈ L2) ∧ (∀ j ∈ dom(M). L( j) ∈ L =⇒ M1( j) = M2( j))
µ1 =L µ2 ⇐⇒ Γ(C1) ≈ Γ(C2) ∧

∀n ∈ dom(µ). Γ(C)(n) ∈ L =⇒ µ1(n) = µ2(n)
CST1 =L CST2 ⇐⇒ CST1 uL CST2

C1 =L C2 ⇐⇒ (pc1 =L pc2) ∧ (t1 =L t2) ∧ (M1 =L M2)
∧ (µ1 =L µ2) ∧ (CST1 =L CST2)

Figure 2.10: Low Equivalence of Configuration Components, relative to
“low” labels, L.

who can only differentiate between low states; two low-equivalent configura-

tions appear identical to a “low observer”. First, we define an equivalence op-

erator on label mappings to formalize our notion that attackers cannot observe

exact label values.

Definition 2.5 (Label Lookup Domain Equivalence). For an attacker inducing

label sets P, S,U, and T

L1 ≈ L2 ⇐⇒ ∀n ∈ dom(L).

(L1(n) ∈ P ⇐⇒ L2(n) ∈ P) ∧

(L1(n) ∈ T ⇐⇒ L2(n) ∈ T )

We define the ≈ relation on the labels of microarchitecture similarly.

Figure 2.10 shows the definition of low equivalence for all configuration

components. We assume that L,M, µ and Γ are total functions so that domain

equality is implicit. The requirements of low equivalence explicitly require that
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“label lookups” for both architectural and microarchitectural state return equiv-

alent but not equal values for high labels. Call stack low equivalence requires

that all entries with low pcl are in the same position in the stack and are them-

selves low-equivalent. By construction, all low entries must be at the head of

the stack10 so it is sufficient to check that the low prefixes of each call stack are

equivalent.

Definition 2.6 (Call Stack Prefix Low Equivalence).

CST1 uLCST2 ⇐⇒

(1) CST1 = ∅ ∧ ∀(pci, ti) ∈ CST2, pci ∈ H

or

(2) CST2 = ∅ ∧ ∀(pci, ti) ∈ CST1, pci ∈ H

or

(3) CST1[head] = (pc1, t1) =L (pc2, t2) = CST2[head]

∧ CST1[tail] uL CST2[tail]

Security Guarantees. All of the theorems in this section have full proofs,

which can be found in Appendix A.2 First, we show that executing programs

that do not contain downgrade or call-gate instructions preserve noninterfer-

ence.

We use the term valid configurations to refer to configurations that were

initialized with reasonable values. Specifically, the configurations satisfy the

ALL PC and ALL T requirements and the initial call stacks are empty.

Theorem 2.1 (Noninterference Modulo Downgrading and Call Gates).

10This is enforced by preventing dwncalls while inside of an upcall.
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For any two valid configurations, C1 and C2 and any low set of labels, L, where no

instruction is a dwnlbl, upcall, upret-done, dwncall or dwnret:

(Ci −→
∗ C

′

i) ∧ (C1 =L C2) =⇒ C
′

1 =L C
′

2

where −→∗ is the reflexive, transitive closure of −→.

The proof is a straightforward structural induction on the operational se-

mantics of the processor. By assuming Property 2.2, essentially all of the work

in this proof requires proving noninterference of the −→A semantics.

We next extend Theorem 2.1 to prove noninterference even when using

upcall instructions.

Theorem 2.2 (Noninterference Modulo Downgrading).

For any two valid configurations, C1 and C2, and any low set of labels, L, where no

instruction is a dwnlbl, dwncall or dwnret.

(Ci −→
∗ C′i ) ∧ (C1 =L C2) =⇒ C′1 =L C′2

In the scenario covered by Theorem 2.1, once the pcl was high, it could never

be lowered again. That makes the noninterference proof trivial but also limits

functionality. To prove Theorem 2.2, we show that all operational steps taken

while an upcall is on the call stack can be modeled as a single operational step

to low-equivalent configurations. We can show this since the end configuration

of the upcall is predetermined by low-equivalent state and high pcs are nonin-

terfering (i.e., programs executing with a high pc cannot modify any low visible

state).

Note that while this theorem is termination-sensitive , it is not timing-

sensitive. In the case where tl @ pcl, attackers may make observations about
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high state based on the timing of writes to low state. We present a corollary that

provides timing sensitivity.

Corollary 2.1 (Timing-Sensitive Noninterference Modulo Downgrading).

If (pcl ∈ L =⇒ tl ∈ L) for all intermediate configurations and upcall regions

have fixed durations, then Theorem 2.2 provides timing sensitivity.

This corollary ensures that at any time that low writes are possible, the at-

tacker observes them occurring at the same time in any execution. Furthermore,

the duration of high call gates will be determined by low information.

As defined in §2.2, nonmalleability is essentially defined as maintaining both

robust declassification and transparent endorsement. Even with no syntactic

restrictions (unlike the prior theorems) our ISA enforces nonmalleability.

Theorem 2.3 (Nonmalleable Information Flow). For attacker-induced high label

sets S and U and their respective complements, P and T and valid configurations,

∀{s, u} ∈ {1, 2},Csu

((Csu −→ C′su) (C1u =P C2u) (Cs1 =T Cs2))

=⇒

((C′11 =P C′21 =⇒ C′12 =P C′22)

∧

(C′11 =T C′12 =⇒ C′21 =T C′22))

Assuming Theorem 2.2, we only need to reason about instructions which

violate information flow: dwncall and uplbl. The key restrictions which pro-

vide nonmalleability are those that prevent the pcl or tl from becoming compro-

mised and the restriction that compromised data is never downgraded.
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# PCLBL = TLBL = (TRUSTED, PUBLIC)

# L(key) = L(s0) = (TRUSTED, SECRET)

# L(in0) = (TRUSTED, PUBLIC)

upcall est, ST, ST, enc_end

----------------------------

# PCLBL = (T,S), TLBL = (T,S)

andi in0, in0, MASK

xor s0, key, in0

lw s0, 0(s0) # (a)

andi s0, in0, mask

lw s0, 0(s0) # (b)

declreg s0, PUBLIC

upret

----------------------------

enc_end:

Figure 2.11: Mitigated AES.

2.8 Program Examples

We now describe examples of how to use our ISA features in practical scenarios.

AES is a well known encryption algorithm which does not require the pro-

gram to branch on any secrets [34]. Instead, AES uses a public lookup table

indexed by computation involving both the secret key and public input. This

behavior of executing secret-dependent memory accesses makes it susceptible

to a number of timing-channel attacks [17, 59, 104, 52, 89], some of which are

similar to the vulnerability in Figure 2.3.

Figure 2.11 is a toy version if this AES-style lookup table access in our ISA.

Without mitigation techniques, the execution of the second load (b) could be

faster if it accesses the same cache line from (a). Similarly, another program may

also infer the value of the secret through cache contention.
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One existing software-based mitigation technique for preventing this cache

timing channel is to preload the entire lookup table ahead of time [21]. Preload-

ing allows a cache implementation to fill its entries with useful data based only

on public addresses. However, this approach is not guaranteed to be secure

on normal hardware; if a cache were too small to contain the entire table (or

evicted entries for any other reason), it is possible that some lookups would

trigger misses, thereby leaking information with an unexpectedly slow duration

for certain keys. Other efforts to eliminate these problems with AES still rely on

the assumption that certain instructions are constant-time [64].

Our ISA enables software to control microarchitectural timing channels in a

principled manner. On hardware implementing our ISA, the secret-dependent

loads in Figure 2.11 cannot affect public microarchitectural state and therefore

cannot leak secret information through memory contention. Additionally, the

strategy of preloading the cache can still improve performance on some imple-

mentations. One potential CPU implementation might maintain private and

public cache partitions. During the preload phase, public and trusted code fills

up the public cache partition with some or all of the AES table. During the en-

cryption phase, secret code can read those entries but cannot modify them, in-

stead making updates only to the private cache partition. This implementation

would allow for a more secure and efficient AES execution. Nevertheless, the

duration of the entire execution could leak some information about the secret

key; this example also shows how software can use an upcall instruction to

obscure that duration by providing an explicit end time (via the est argument

in the example’s upcall).
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# PCLBL = TLBL = (PUBLIC, UNTRUSTED)

# L(guess) = (PUBLIC, UNTRUSTED)

# L(pass) = (SECRET, TRUSTED)

dwncall check_pass

===============================

# PCLBL = TLBL = (PUBLIC, TRUSTED)

check_pass:

endoreg guess, TRUSTED

upcall est, ST, ST, end_check

-------------------------------

# PCLBL = TLBL = (SECRET, TRUSTED)

beq guess, pass, success

li res 0

upret

success:

li res 1

upret

-------------------------------

end_check:

declreg res, PUBLIC

dwnret

Figure 2.12: Password checking in the proposed ISA.

2.8.1 Password Checker

In this example, we show how to implement a nonmalleable password checker

which can be called by untrusted users with the dwncall instruction. The code

for this checker is shown in Figure 2.12. This program starts in a public and

untrusted context, which would be typical for an unauthenticated user. The

untrusted user generates their guess and puts it into the register called guess.

Then they use the dwncall instruction to call the check pass function and

gain high integrity. This is analogous to executing a tradition system call where

the user program can execute trusted code with operating system privilege.
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Once the check pass function has started, it must endorse the user’s guess,

since a trusted pc cannot branch on low-integrity data. In order to compare

the secret password value with the guess, the program executes an upcall

instruction to enter a timing-mitigated region. Inside that region, the program

computes either a 1 or 0 based on whether or not the guess was right or wrong,

and then returns. Finally, at the end of the check pass function, the result is

declassified to public and the call gate exits back to the untrusted context.

If an untrusted user were to execute the check pass function like a normal

function call, their attempts to endorse their own guess and upcall into a secret

and trusted state would both fail. This example illustrates the nonmalleability

guarantees and how trusted system code can be resident in the system but only

accessible via call gates.

2.9 Related Work

Software Information Flow Control. Software-based IFC has been applied in

many settings with the goal of eliminating timing channels [119, 135, 105, 63,

137, 2, 40, 15]. Kashyap et al. [63] discuss various software strategies for enforc-

ing timing-sensitive noninterference. In particular, they focus on using lattice

scheduling to ensure that the ordering of visible events does not leak secret in-

formation. Parsec [135] is a language for concurrent programming which, given

a race-freedom analysis, ensures observational determinism, a noninterference

condition for concurrent programs. Bedford et al. [15] have also shown how

a hybrid IFC system can provide progress-sensitive noninterference, a weaker

condition than timing sensitivity; it does not leak information based on which
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sets of outputs a program successfully produces. Secure multi-execution, where

a program is executed multiple times at varying security levels, has also been

used to prove timing-sensitive noninterference [40]. LIO [105] is a Haskell-

based language extension for mitigating both external and internal channels

through the use of monadic computation and IFC. Of the aforementioned sys-

tems, only LIO handles external timing channels. Like our ISA, LIO provides

a dynamic semantics for enforcing noninterference but lacks features such as

downgrading and integrity tracking.11 Additionally, it is a high-level language

which requires a software runtime for its security, making it unsuitable as an

ISA description.

This chapter describes a dynamic label12 model where all data is labeled,

including data used to represent labels. This is reminiscent of systems such

as JFlow/Jif [85, 83] and the dynamic security labels formalism [141]. These

languages rely on static annotations and dynamic label-checking operations to

guarantee noninterference while still permitting labels to be used in types. Since

our labels have a hardware representation, label-checking operations can be im-

plemented efficiently in hardware. Our platform appears well suited to accel-

erating such languages, allowing them to execute outside of a software run-

time. We considered explicitly modeling precise “labels of labels” as software-

accessible state, but it was unclear what further security this provided, and it

significantly complicated the run-time checks. Other dynamic IFC languages,

such as LIO [105], treat the label of label values as visible to the current context

but do not allow for their precise manipulation. This choice mirrors our rule

that the label of label arguments must flow to pcl.

11Follow-up work (e.g., [23, 22]) addresses some of these features.
12The word dynamic is unfortunately overloaded. Here, it refers to labels whose values are

explicitly visible or comparable at run time. Dynamic IFC systems are those that enforce security
via run-time checks. Our ISA both has dynamic labels and is a dynamic IFC system.
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Hardware-level information flow control. IFC techniques have also been

used to build timing-safe hardware. While not focused on timing, Suh et

al. [110] showed that processors could implement efficient information flow

tracking. Caisson and Sapper [71, 70] provided a nested state machine abstrac-

tion for circuit design and proved that hardware built using those tools enforced

timing-sensitive noninterference. More expressive HDLs that provide similar

security guarantees have also been developed using dependent types [45, 44].

The Hyperflow processor [47] is a fully-featured implementation of a RISC-V

CPU developed using these techniques.

Secure ISAs. While many of the above HW IFC systems presented CPUs and

ISAs, they were focused on security guarantees about the circuits. None of them

have proved security results for programs executing on top of their example ab-

stractions. Ge et al. [49] have defined a set of properties they argue post-Spectre

ISAs (called aISAs) must enforce to provide efficient, timing-sensitive security.

These properties primarily focus on prescribing how an operating system can

interact with the hardware to provide timing security. They refer to concrete

mechanisms such as hardware partitioning and time multiplexing rather than

the security properties that these mechanisms should aim to enforce. Our ISA

provides more fundamental guarantees than those suggested in their work, but

real implementations of our ISA would likely exhibit many of the properties

they list.

Yu et al. [128] have built an ISA extension for “oblivious computing” and

have proved probabilistic noninterference results. They have also built and

measured the performance of a speculative, out-of-order processor using this

ISA and demonstrated its performance improvements over more conservative
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techniques. Their ISA treats security as an optional component which soft-

ware may opt-in to by labeling instruction operands as public or secret. This

is promising evidence of the practicality of efficient microarchitectures for se-

cure ISAs.

The work of Zhang et al. [137] on language-based timing mitigation defines

a software–hardware contract based on “write labels” and “read labels” that al-

most directly parallel our pcl and tl. However, that contract requires well-typed

programs that correctly specify write and read labels; the hardware itself is not

assumed to enforce any restrictions on how these labels change over time. Fur-

thermore, our ISA considers both confidentiality and integrity while enforcing

nonmalleable downgrading. We do not require a fully trusted entity to perform

timing mitigation: any upcall caller can implement their own mitigation algo-

rithm in their own context.

OS-level information flow control. Asbestos [42] and HiStar [136] are two

well known IFC operating systems. They do not assure timing safety. However,

HiStar’s notion of gates informed our call gate mechanism, but the restrictions

on gates and the security guarantees differ from ours. NickelOS [102] has been

recently developed using intransitive noninterference, which allows more flexible

security policies than traditional IFC. However, NickelOS is not timing-sensitive

and focuses on information flow exposed through OS APIs.
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2.10 Conclusion and Future Work

In this chapter, we have proposed an ISA that defines a contract between soft-

ware and hardware that defines how information may or may not affect the

timing of instructions. Importantly, it provides timing safety without prescrib-

ing a fixed microarchitecture. As a byproduct, our proofs delineate conditions

that hardware should satisfy, thus providing guidance to hardware designers.

We foresee many avenues for further research in the domain of timing se-

cure ISAs. Modeling more ISA features such as exceptions, memory models,

and other concurrency mechanisms can provide evidence toward the practical-

ity of this approach to ISA design. Furthermore, it will help expose more poten-

tial side-channels that exist throughout the complex environment of multicore

processors.

Given this foundation, we can develop new instructions or instruction

semantics that expose different timing characteristics, such as fixed-latency

scratchpad memory [12] or other “oblivious” computation [128]. Experiment-

ing with these new ideas in the context of a nonmalleable ISA can also ensure

that the security guarantees hold end to end.

The largest open question is how to formally verify that hardware imple-

mentations satisfy the properties defined in §2.6, allowing us to connect security

guarantees of high-level languages and verified operating systems to the actual

behavior of the underlying hardware. There are many opportunities to improve

tools for relating the behavior of processor implementations to software-visible

specifications and security policies, which we begin to address in the following

chapters.
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CHAPTER 3

A HIGH-LEVEL LANGUAGE FOR PROCESSOR DESIGN

The ISA defined in the previous chapter left some open questions: how can

we be sure that the hardware we build actually respsects the timing guarantees

necesary for security? How do we know the design implements all of the secure

instructions faithfully?

This chapter begins to investigate these questions by addressing the general

problem of automatically relating low-level processor implementations to their

software-visible behavior.

3.1 Introduction

To achieve high performance, processors parallelize the execution of sequen-

tial instruction streams through pipelines, achieving high throughput via mi-

croarchitectural optimizations such as bypassing, speculation, and out-of-order

execution. Processor designs are inherently complex since they must respect

the sequential semantics of the instruction set architecture (ISA) despite aggres-

sively executing operations in parallel. Processors are usually designed using

hardware description languages (HDL) that operate at the register transfer level

(RTL), providing low-level control but at the cost of highly parallel semantics

that make reasoning difficult. This combination of complexity and RTL abstrac-

tion makes it difficult to achieve high confidence in the correctness of processor

implementations. In practice, RTL processors are usually validated via simu-

lation or bounded model checking: techniques that have seen practical success

but cannot expose all bugs in large designs [91, 62].
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We propose a new approach, a Pipeline Description Language (PDL) that

raises the level of abstraction to specifically target the construction of proces-

sor pipelines. PDL allows designers to easily specify the intended functionality

of a processor, while still giving them fine-grained control over its microarchi-

tecture and performance. Designers can demarcate stage boundaries, ensuring

each stage executes in a single clock cycle. PDL introduces hazard locks, which

abstract different implementations of stalling and bypass logic to prevent data

hazards. Additionally, PDL offers a speculation API that enables pipelines to

flexibly initiate and resolve branch prediction. Lastly, PDL supports a limited

form of out-of-order execution.

Despite this microarchitectural control, PDL provides an easy-to-understand

one-instruction-at-a-time semantics. The realized behaviors of pipelines are con-

sistent with an execution that runs each instruction completely in sequence.

This strong assurance allows designers and static analysis tools to easily rea-

son about the behavior of a design with respect to a sequential specification,

facilitating design space exploration.

As such, PDL does not directly support architectures with relaxed consis-

tency guarantees, such as the memory models of multicore architectures. Nor

can PDL express all pipelined architectures, such as superscalar or 2D systolic

arrays. Lastly, PDL does not provide strong guarantees about the timing of up-

dates to architectural state, and thus cannot reason precisely about timing chan-

nels. Supporting more relaxed definitions of correctness, microarchitectural ex-

pressivity, and precise reasoning about timing are interesting potential future

extensions to PDL.
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In this work we present the following:

• An overview of the PDL language and its microarchitectural abstractions

for pipeline structure, data hazard resolution, and speculation.

• An informal presentation of PDL’s semantics, correctness assurance, and

advantages over RTL.

• A description of the PDL compiler implementation.

• Evidence of PDL’s expressivity, practicality, and utility in design-space ex-

ploration. To do so we evaluate the performance of several RISC-V cores,

implemented in PDL with differing microarchitectures.

3.2 Pipeline Description Language

In an RTL implementation, the designer must explicitly instantiate registers to

store each pipeline stage’s inputs and must manually coordinate the commu-

nication between stages. PDL, in contrast, only requires the user to specify the

core functionality as an imperative-style program; then they can employ a few

key microarchitectural primitives to control the pipeline’s structure and per-

formance. The PDL compiler automatically generates the registers and control

logic necessary to split the pipeline into multiple, concurrently executing stages.

The PDL compiler also makes it safe and easy to alter the pipeline structure or

to move functionality across stages, without worrying about introducing bugs.
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1 pipe cpu(pc)[rf, imem, dmem] {
2 acquire(imem[pc], R); //IFETCH STG
3 insn <- imem[pc];
4 release(imem[pc]);
5 --- //DECODE STG
6 op = insn{6:0};
7 //decode logic for rs1,rs2,etc.
8 acquire(rf[rs1], R); acquire(rf[rs2], R);
9 rf1 = rf[rs1]; rf2 = rf[rs2];

10 release(rf[rs1]); release(rf[rs2]);
11 if (writerd) reserve(rf[rd], W);
12 --- //EXEC STG
13 alu_out = alu(alu_op, alu_arg1, alu_arg2);
14 offset = calc_offset(op, pc, imm, alu_out);
15 //start next instruction
16 call cpu(pc + offset);
17 --- //MEM STG
18 acquire(dmem[alu_out]);
19 if (isStore(op)) { dmem[alu_out] <- data; }
20 if (isLoad(op)) { rddata <- dmem[alu_out]; }
21 else { rddata = alu_out; }
22 release(dmem[alu_out]);
23 --- //WB STG
24 if (writerd) {
25 block(rf[rd]);
26 rf[rd] <- rddata;
27 release(rf[rd]);
28 }
29 }

Figure 3.1: Abbreviated PDL code for a 5-stage RISC pipeline.

3.2.1 Language Design

Figure 3.1 demonstrates some features of PDL by presenting an abbreviated

RISC processor. The code in this example is more similar to an imperative pro-

gram than typical RTL code, and can mostly be understood via the straightfor-

ward imperative interpretation. Syntax for combinational logic in PDL is mostly

standard, with support for sized integers and typical operators such as bit se-

lection and concatenation. Variables are declared and assigned exactly once,

like Verilog [111] wires. Array access notation denotes a request to a memory,
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which is any stateful, addressed data structure, including registers; it need not

be implemented as SRAM/DRAM. Memories may be declared as providing ei-

ther combinational or synchronous read access1. The read at line 3 is made with

the arrow (<-) notation because ”imem” has a synchronous interface: its data

cannot be used until the next pipeline stage. Modern processors often contain

pipelined subcomponents: PDL thus supports a call statement that allows one

pipeline to make a synchronous request to another, e.g.:

int<32> divres <- call multi_cycle_div(arg1,arg2);

The above example sends a request to a pipelined divider, multi cycle div.

The subsequent stage in the primary pipeline will wait for the divider’s re-

sponse before executing.

Pipeline Structure. Stage separators (---)2 control the structure of a pipeline,

breaking up combinational logic across multiple clock cycles.

Although each instruction flows through pipeline stages in sequence, stages

actually execute in parallel and can process multiple instructions at a time. For

the most part, separators can be placed wherever the designer wishes, to tune

the critical path of the realized design without affecting the functionality; PDL

rejects any design that could violate one-instruction-at-a-time semantics.

Out-of-Order Stages. PDL is not limited to fully in-order pipeline descrip-

tions; placing stage separators inside conditional branches describes a pipeline

as a directed acyclic graph. While instructions travel through the ordered

1 Synchronous means that requests and responses are coordinated via a clock-edge aligned
protocol, such as a ready-valid interface.

2 This notation is inspired by Dahlia’s [86] ordered composition operator.
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Table 3.1: The hazard-lock interface with summarized requirements for
using each operation.

Operation Description Requirements

reserve(m[a], R/W) Defines the intended order of mem-

ory ops

Lock has not been acquired and is executed dur-

ing an in-order stage.

block(m[a]) Stall the current thread until it can

execute the associated op

Lock has been “reserved”.

acquire(m[a], R/W) Syntactic sugar for reserve;

block

Same as reserve.

read/write(m[a]) Execute the op, potentially for-

warding data

Lock is “acquired” via block().

release(m[a]) Release lock resources associated

with op and commit

Read or write has executed, and release is exe-

cuted during an in-order stage.

checkpoint(m) Create a checkpoint of lock state Automatically inserted with final reservation.

rollback(c) Reset lock state to checkpoint c Automatically inserted with verify statements.

stages of the pipeline in the same order they were started, this is not

true for unordered stages. Consider the following CPU design, which uti-

lizes the aforementioned call statement to execute division in a separate

pipeline, but still allows memory access operations to execute in parallel:
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//DISPATCH

if (isDiv) {

--- //DIV

int<32> res <- call multi_cycle_div(arg1,arg2);

} else {

int<32> addr = arg1 + off;

--- //DMEM

int<32> res <- dmem[addr];

}

--- //WB

rf[rd] <- res;

DISPATCH

DIV

DMEM WB

coordination tag

Figure 3.2: Stage graph of a pipeline with unordered DIV and DMEM
stages. Each stage can execute different instructions in parallel:
an in-order issue, out-of-order execute pipeline. The coordina-
tion tag is used to re-establish the original execution order in
the WB stage.

Figure 3.2 visualizes the pipeline generated by this code snippet. The DIV

and DMEM stages may execute in parallel, despite being unordered. PDL en-

sures that the code following the branch (the WB stage) does execute in order.

PDL generates coordination signals that record the original execution order. The

DISPATCH stage enqueues a tag indicating which branch an instruction took;

the WB stage uses this queue to determine from which stage to receive its next

inputs, and stalls until that stage has completed execution.
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Pipeline Threads. In PDL, a pipeline body describes how to sequentially pro-

cess a single instruction. To initiate execution of the next instruction, a recursive

call is used, as at line 16. The one-instruction-at-a-time semantics allows the

designer to think of these recursive calls as tail calls that occur at the end of the

pipeline body. Semantically, a pipeline is a loop that processes one instruction

per iteration.

The placement of the recursive call does not affect the semantics of the

generated circuit, but it does have an impact on performance: it introduces con-

currency. At this point in the pipeline, the pipeline begins processing the subse-

quent (called) instruction, in parallel with the rest of the current instruction. We

borrow the term thread from concurrent software; each instruction is executed

by a single thread that travels through the pipeline independently, and poten-

tially in parallel with other threads. Thread order refers to the order in which

threads are initiated; it is equivalent to program order in processors.

3.2.2 Preventing Data Hazards with Hazard Locks

A key to one-instruction-at-a-time semantics is ensuring that pipelines are free

of data hazards. Data hazards occur when read and write operations on mem-

ories do not respect thread order, and are typically prevented by explicit stall

logic or by bypassing values from writes to reads. For instance, in a standard

5-stage processor pipeline, stall and bypass logic are needed to prevent the fol-

lowing RISC-V [121] instruction sequence from creating a read-after-write haz-

ard:

lw a0, 0(sp) //load data from stack into a0

addi a0, a0, 1 //increment a0 register
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Absent this logic, the read from register ”a0” in the second instruction would

occur before the load into ”a0”, so the final value of ”a0” would effectively ignore

the load instruction.

Hazard Locks. PDL introduces a novel hazard lock abstraction to prevent data

hazards. Hazard locks encapsulate data hazard prevention in a separate hard-

ware module, whose usage in the pipeline can be checked by the compiler. This

design contrasts strongly with traditional RTL development, where bypass and

stall logic is explicitly described by the designer and manually integrated into

the entire pipeline. RTL hazard resolution logic is also non-modular and brittle;

it cannot be re-used across designs, and must often be changed if the pipeline

structure is modified. On the other hand, hazard locks are a general abstraction

that can express a variety of different microarchitectural designs, from simple

stall logic to the renaming used in complex out-of-order pipelines.

As with traditional software locks, a thread must acquire a hazard lock before

accessing the associated memory location:

acquire(rf[rs1], R); //acquire READ lock for rs1

int<32> x = rf[rs1]; //OK: lock acquired

int<32> y = rf[rs2]; //ERROR: acquire missing

Similarly, hazard locks must eventually be released. To support implementations

with a variety of performance characteristics, PDL allows acquisition to be split

into two phases: reservation, and blocking until the reservation is fulfilled.

reserve(rf[rd], W); //reserve WRITE lock for rd

--- //(READ locks can be reserved too)
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Table 3.2: Speculation operations supported by PDL.

Operation Description

s <- spec call pipe(pred) Spawn a speculative thread using value pred.

update(s, npred) Update the prediction for speculation s using npred.

verify(s, real) { pred(...) } Mark speculative thread s as correctly or mispredicted by comparing

the value of real to the original prediction; optionally, update external

predictor module pred.

spec check() Kill the current thread if it has been mispredicted.

spec barrier() Stall until this thread’s status is known. If mispredicted, then kill this

thread.

block(rf[rd]); //STALL this stage until OK to exec

The acquire operation is actually just syntactic sugar for the sequence reserve

followed by block in the same stage.

A key insight is that, even in highly speculative, out-of-order processors,

there is an in-order execution point where the CPU establishes and records se-

quential data dependencies in some data structure. We abstract this record-

keeping point as lock reservation; it must execute in thread order, but still allows

execution to proceed freely. Blocking represents the point in the pipeline when

a stage may be forced to stall lest it observe a stale value or incorrectly over-

write state. Writing data makes it available for bypassing, and releasing the lock

represents the actual, in-order commit point.

Table 3.1 lists a summary of the hazard lock interface and how the PDL com-

piler restricts its use. For brevity, we often refer to hazard locks as “locks” in the

remainder of the chapter.
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3.2.3 Refining the Hazard Lock Abstraction

While the lock abstraction allows PDL to reason about whether a design is

free of data hazards, different lock implementations have different performance

characteristics. PDL is bundled with a small library of lock implementations re-

flecting different microarchitectural designs; designers can also implement and

use their own unique locks in RTL. Here we present the implementations we

have developed.

Queue Lock. The simplest lock implementation is a First-In-First-Out (FIFO)

queue of reservation requests for a given memory location. Reserve enqueues a

request. Block stalls until the associated reservation is at the head of the queue.

Read and write access memory normally. Release dequeues the reservation. The

implementation refines the specification required by PDL, but assumes we have

a separate queue for each memory location: an obvious impracticality for large

memory. To efficiently implement queue locks, we provide a fully associative ar-

ray of queues. In this way, any location can be associated with any queue and is

disassociated once the queue is completely empty (and is therefore reusable by

another location). The size of the associative array and the depth of the queues

are design parameters that may influence performance; for instance, attempting

to reserve an unused location when all queues are in use could cause pipeline

stalls. This lock represents a simple but low-performance design: it has stall

logic but no bypassing paths between conflicting writes and reads.

Bypass Queue. To support in-order cores with bypassing, we implemented

a lock which commits writes to the memory in reservation order, but allows

67



write values to be bypassed to reads by storing them in a temporary buffer. We

implement this lock as a queue of write addresses, values, and valid bits. Reserve

write enqueues the address and sets the associated valid bit to 0. Block write is a

no-op, and writes update the data and valid bits of the associated queue entry.

Release then commits the write to the actual memory.

Reserve read checks for conflicting writes and updates a register with the en-

try number of the given write. Block read stalls until the conflicting write has

executed (if there is one), and reading either forwards data from the write or

reads directly from the memory. Release read frees internal state for future read

reservations. This implementation also buffers read data so that access to the

memory occurs in the same cycle as reservation, and includes combinational

bypass paths so that writes are observable to reads in the same cycle. With this

implementation, we can fully bypass a standard 5-stage in-order core.

Renaming Register File. We also implemented the lock interface with a re-

naming register file of the kind used in modern out-of-order processors. A re-

naming register file maintains a table that maps architectural register addresses

(a.k.a. names) to physical names, and stores data in a traditional register file in-

dexed by physical names. Lock reservation translates to physical name allocation

for writes, and physical name lookup for reads. A vector of per-register valid

bits tracks their status: they are set to 0 on allocation, and 1 once data is written.

Block operations are no-ops for writes and check the appropriate valid bit for

reads. Release operations are no-ops for reads, but for writes they add the old

name mapping to a free list for future allocation. Like the Bypass Queue, this

implementation can fully bypass a 5-stage pipeline, although it is also general

enough to be a good fit for a Tomasulo-style out-of-order machine [114].
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3.2.4 Speculation

Speculation is critical for processor performance, and PDL enables a large class

of speculation through speculative call statements. As with locks, PDL offers a

modular abstraction for speculative operations, summarized in Table 3.2. De-

signers can initiate a speculative thread, mark it as (mis)predicted, update a

prediction, and kill speculative threads. In PDL, all speculation is made ex-

plicit, even speculation that is often overlooked in processors: the typical ”pc

+ 4” prediction that instructions usually execute sequentially. The following

snippet implements this speculation:

spec_check(); //Kill this thread if misspeculated

s <- spec call cpu(pc + 4); //Spawn a new thread

The spec call speculatively spawns a new thread with the argument pc + 4

and produces a handle, s, used to later reference this speculation. We refer to the

thread making the speculative call as the parent thread, and the thread created

by the speculative call as the child thread. In a pipeline that uses speculation,

every thread has the potential to be both a parent and a child. For that reason,

we use the operation spec_check to kill the current thread if it is misspeculated.

Note that this check does not prevent “nested” speculation (i.e., speculation

initiated by an already speculative thread); this check just ensures that already

misspeculated threads do not continue to speculate.

Eventually, the parent thread must verify whether its prediction was correct:

s <- spec call cpu(pc + 4);

... //later in the pipeline

spec_barrier(); //blocking version of spec_check()

verify(s, npc); //check that npc == pc + 4
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The parent thread first ensures that it itself is non-speculative with a blocking

version of the speculation check. Then it marks reference s with a single bit

defining its correctness; PDL automatically propagates the original prediction

and inserts a comparison with the given value. In this instance the verify op-

eration marks s as correct if npc == pc + 4. If the prediction was wrong, the

child thread will be killed once it executes a spec_check or spec_barrier op-

eration (often in the same cycle). In this case, verify also causes the parent to

spawn a new, non-speculative, thread with the correct value.

PDL also supports an update operation that can be used to compose both

termination and speculation, by spawning a new thread if the new (presumably

more accurate) prediction does not match the original and marking the old child

thread for termination.

PDL allows predictors to be implemented as modules in RTL safely: pre-

dicted values cannot affect functional correctness! Predictor accuracy has sig-

nificant impact on processor performance, so the ability to integrate custom

predictors without compromising PDL’s correctness assurance is critical for ef-

ficiency. The following example shows how to use an external branch history

table (BHT) for branch prediction:

s <- spec call cpu(pc + (bht.req(pc) ? imm : 4));

...

verify(s, npc) { bht.upd(pc, brTaken) }

The module bht must be declared earlier in the PDL program as externally im-

plemented with a req interface that produces a boolean. A true value indicates

the branch should be taken; false means it should not. The predictor bht also

provides an upd interface that receives a pc and a “was taken” bit to update its
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own internal state. Whenever verify executes, the branch history table is also

updated.

Implementation. Like locks, speculation in PDL places few restrictions on the

structure and timing of the pipeline. To achieve this, PDL stores speculation

state in a table, which threads can use to update and read speculative sta-

tus. Spawning a thread allocates a new identifier. verify and update state-

ments mark a child thread’s entry as correct or incorrect. Entries are freed

whenever a child thread learns its speculative status through spec_check and

spec_barrier statements. Importantly, whenever a verify or update marks

an entry as mispredicted, it also marks all newer entries as mispredicted too. In

this way, all threads will eventually be notified of their status, even if their par-

ent is killed before it calls verify.

This table is a straightforward circular buffer, which is also synthesized with

combinational bypass paths between the status updates and speculation checks.

These paths are necessary when pipelines both speculate and resolve every cy-

cle (the typical case). However, representing this structure as a registered table

allows it to function even in loosely timed scenarios, where threads may not

check their speculative status in every pipeline stage. This implementation re-

quires no strict assumptions about the timing of speculative checks and verifi-

cation operations, and frees PDL from the in-order requirements of other tools

that generate pipeline speculation [88]. This design can contribute to the over-

head of PDL when building very simple processors whose control logic can be

manually optimized by reasoning about global invariants. Nevertheless, it gen-

eralizes to more complex processors which do not broadcast speculation results

to every stage.
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1 pipe ex1(in)[m]: {
2 spec_barrier();
3 s <- spec call ex1(in + 1);
4 reserve(m[in], R);
5 acquire(m[in], W);
6 m[in] <- in; release(m[in], W

);
7 ---
8 block(m[in], R);
9 a1 = m[in]; release(m[in], R)

;
10 verify(s, a1);
11 }

(a) Original PDL Code

1 pipe ex1(in)[m]: {
2 a1 = m[in];
3 m[in] = in;
4 call ex1(a1);
5 //Erased ---
6 //Erased Spec Operations
7 //Erased Lock Operations
8 //Delayed Write Operation
9 //Replaced verify() with

tail call
10 }

(b) Code representing sequential semantics

S1
spec

S2

verify

(c) Stage Graph Representing
the Pipelined Circuit

Figure 3.3: Interpretations of a Sample PDL Pipeline

3.2.5 Supporting Speculative Reservation

For any given lock implementation, allowing speculative lock reservation could

lead to bugs; a thread holding a lock may be killed, leading to an inconsistent

lock state. To increase the expressivity of PDL, we extend the lock abstraction

with checkpoint and rollback primitives that can be used to safely undo spec-

ulative lock operations. A checkpoint causes the lock to logically snapshot its

current internal state and returns a handle referencing this snapshot; rollback

indicates that the snapshot is no longer needed, and/or that the lock should

revert its internal state to the given snapshot.
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Unlike the other lock operations, these need not be exposed to the designer;

these operations must be executed exactly at certain points in the pipeline, and

the compiler can automatically insert them. Specifically, a checkpoint must

be taken atomically as each thread completes its reservations; thereby making

a checkpoint between the reservations of a parent thread and its (speculative)

child. Rollback invocations must coincide with verify and update operations;

whenever a parent terminates its child thread, it should revert all memories to

the state that captures the parent’s reservations, but not subsequent speculative

ones. To illustrate this, we annotate the following snippet where the compiler

would invoke checkpoint and rollback operations:

s <- spec call cpu(pc + 4); //...

if (writerd) { reserve(rf[rd],W); }

//c <- checkpoint(rf);

//take checkpoint after last reservation

...

verify(s, npc); //rollback(rf, c);

//undo speculative ops on rf if misprediction

//release lock state associated with checkpoint

Checkpoint Implementations. We extend both the BypassQueue and the Re-

naming Register File with standard rollback mechanisms. The former requires

little additional state; the head of the write queue (i.e., most recently reserved

write) itself serves as a checkpoint. Rollback simply requires invalidating all en-

tries newer than that point and moving back the write queue head. For the

rename file, we replicate the mapping table and free list; rollback resets the main

mapping table and free list to the indicated replica.
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3.3 Sequential Pipeline Behavior

A central draw of PDL is that it allows designers and static analysis tools to de-

scribe and reason about pipelines as sequential programs that process instructions

one at a time. Any PDL program accepted by the compiler can be automatically

translated—via a straightforward erasure process—to a sequential program that

serves as a specification of correctness, which the pipelined circuit generated by

PDL refines.

RTL languages have no such canonical sequentialization; many hardware

designs do not implement a sequential specification and thus may exploit the

unfettered parallelism of RTL. However, PDL’s one-instruction-at-a-time se-

mantics greatly simplify reasoning and can likely alleviate the scalability prob-

lems of traditional RTL testing and verification. For instance, to achieve sound-

ness, bounded model checking of RTL pipelines requires considering instruc-

tion sequences long enough to saturate the pipeline [91]; applying this tech-

nique to PDL programs would only require analyzing sequences of length 1.

Sequential software proof techniques, such as Hoare logic [55], which are not

easily adapted to RTL languages, can also be applied to sequential PDL pro-

grams.

Assumptions. PDL’s correctness relies on the correctness of the compiler it-

self, and the RTL implementations of the lock API. Namely, locks must ensure

that reads and writes must be stalled (via block) if they would produce ob-

servations inconsistent with the reservation order. We plan to formalize this

verification requirement, as well as the correctness of PDL’s overall design, in

future work.

74



Locks can be verified using existing hardware verification techniques [19,

62]. However, unlike verifying bypassing networks in RTL processors, locks

enable modular verification: they can be verified in isolation, since PDL checks

that they are used correctly by the main pipeline. Modularity also implies that

locks may be reused across processor designs, amortizing the effort of correct-

ness proofs. Importantly, a verifier (human or tool) only needs to reason about

the software-visible architectural state, and does not need to supply any global

invariants about a pipeline’s microarchitectural state, a notoriously difficult veri-

fication task [28, 140].

3.3.1 Extracting a Sequential Specification

A PDL pipeline can be understood as a sequential program through a straight-

forward translation procedure. This program effectively defines the behavior

of the given PDL pipeline as a sequence of updates to, and observations of,

architectural state. As an example, Figure 3.3 includes a simple pipeline, its se-

quential interpretation, and a graph describing the circuit structure. The steps

for this translation are straightforward:

• Erase stage separators, speculation checks, initiation and invalidation, and

lock operations.

• Replace verify statements with call statements

• Delay memory write and recursive call statements to the end of the

pipeline.

Erasing microarchitecture-controlling primitives is intuitive; by design they
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should have no impact on the intended functional behavior of the pipeline.

Verifying speculation is the exception, as it does imply functionality; however,

without any speculative events it reduces to unconditionally spawning a child

thread (i.e., a recursive call).

We also apply reordering transformations on memory writes and recursive

calls. Memory writes are delayed until after all reads, and recursive call state-

ments are moved to the end of the program to become tail calls. In the realized

pipeline, the placement of these statements have performance impact (and of-

ten placing them earlier is better); functionally, their location in the program

should have no impact. For call statements, this property is obvious; since

call initiates the next instruction, its behavior should be sequenced after all of

the operations for the current thread. For memory writes, we made a simpli-

fying design decision to declare that their effects are not visible to the current

thread. This decision simplifies locks so that they do not need to consider de-

pendencies between reads and writes from the same thread, as no thread may

read its own writes. Conveniently, this transformation also produces programs

that align with typical ISA semantics; when a location is both read and written

by an instruction, the read appears to occur before the write.

The obvious operational interpretation of these sequential specifications

(such as Figure 3.3(b)), yields a definition of correctness for the generated cir-

cuit; the effects on memories referenced by the pipeline appear to happen one

iteration at a time, in sequence. Thus, each iteration corresponds to a single in-

struction that may read and write shared memory, and lastly determines which

instruction to execute next.
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3.3.2 Informal Correctness of PDL

We briefly justify why the PDL compiler only generates pipelines whose concur-

rent execution is consistent with the behavior of their sequential interpretation.

Preventing Data Hazards. In PDL, locks do the “heavy lifting” to prevent data

hazards. As explained in §3.2.3, locks implement stall, bypass, and commit logic

for each memory that the pipeline accesses, and expose this logic through the

lock interface in Table 3.1. PDL confirms that this interface is used appropriately,

and rejects pipelines in which data hazards could still occur. Specifically, lock

implementations need to assume that:

• Reservations are made in the intended program order.

• Stages check that block returns true before accessing memory.

• Write locks are released (committed) in program order.

The PDL compiler rejects any pipeline description in which these three re-

quirements may not be satisfied. To enforce them, it checks that each lock is

used in the intended sequence (i.e., reserve; block; access; release), and that the

reserve and release operations are guaranteed to execute in thread order. The

former is easily checked with a path-sensitive analysis (see §3.4.3). The latter

requirement necessitates reasoning about the possible parallelism in the com-

piled design. PDL does not reason about concrete timing of stage execution.

Instead, by examining the structure of the stage graph, it proves that all threads

must traverse, in thread order, the stages that contain reserve and release write

statements for a given memory. For example, if all reserve statements for a given

77



memory only occur in a single stage, in-order reservation is trivially satisfied.

§3.4 discusses how the PDL compiler implements these checks in more detail.

Speculation Correctness. We also argue that speculation does not influence

the observations of threads in PDL pipelines. PDL guarantees this by validating

the following conditions:

• All speculative calls are verified or killed accurately.

• Misspeculated threads are rolled back before committing writes

PDL establishes a key invariant that simplifies correctness reasoning around

speculation: all speculative calls are resolved in thread order. PDL enforces this

by restricting verify statements to non-speculative threads. If speculation were

resolved out of order, then a verified thread might still be speculative and PDL

would need a more complicated speculation tracking and resolution mecha-

nism. Instead, PDL guarantees that each verify statement fully determines the

speculative status of its child thread: either it was correctly predicted, or it and

its children were all misspeculated. Through another path-sensitive analysis, the

compiler ensures that all speculation is eventually resolved by the parent.

Intuitively, PDL checks that reservations to write locks (i.e., those that can

change the observations of other threads) are rolled back before they can in-

fluence non-speculative threads, if they were misspeculated. Since speculation

verification happens in order, the rollback event associated with that verification

resets all speculatively updated locks to a point right after the parent’s reserva-

tions. Effectively, in addition to terminating all speculative threads, verification

signals for locks to undo all speculative modifications to their state. We also
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require that write locks are not released by speculative threads; this prevents

writes from becoming permanent before misspeculation is discovered.

3.4 Rule Checking

This section expands on the details of the PDL compiler’s program checking

process which defends the intuition outlined in §3.3. Figure 3.4 visualizes the

end-to-end checking and compilation process.

3.4.1 Lock Checking

In addition to standard type checking rules, PDL has a unique set of restrictions

for locks to ensure that the realized, parallel design accesses locks correctly.

• Locks must be reserved in thread order.

• Each thread must use locks in the appropriate sequence: reserve; block;

read/write; release.

• Write locks must be released non-speculatively in thread order.

The first and third restrictions are checked by proving that all of the reserve

and release operations occur during in-order stages of the pipeline. We estab-

lish in-orderness by constructing the stage graph for the pipeline; if a stage is

ordered with respect to all other stages, then it will be executed by threads in

order. We slightly relax this restriction, allowing these operations for a given
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PDL Compiler

Program
checker

Z3 SMT Solver

PDL Program

Pipeline

RTL Lock

Figure 3.4: Each PDL program is checked for well-formedness and correct
lock usage, relying on Z3 for its path-dependent analyses. If
successful, it produces a BSV pipeline. Locks are implemented
in RTL and not checked for correctness.

memory to occur inside at most one branch of an out-of-order region. For in-

stance, in Figure 3.2 it is safe if all reservations for access to data memory occur

in the DMEM stage. Although it is unordered with respect to the DIV stage, DIV

does not make any reservations and thus races to reserve locks cannot occur.

Reservations must also happen atomically, meaning that thread i makes all

of its reservations for a given memory before thread i + 1 makes any. The PDL

compiler ensures atomicity by annotating the start and end of a lock region: the

set of stages in which the reservations for a given memory occur 3.

reserve(m[a], R); //Start Lock Region m

---

reserve(m[b], W); //End Lock Region m

The compiler inserts control logic to ensure that only a single thread may exe-

cute inside a lock region at a time. However, in practice the region is usually

only a single stage and no extra logic is needed or used. The main use of multi-

stage reservation is for indirect references:

3 The designer may also manually place these annotations and compiler will check that they
actually wrap all of the reservation operations for the given memory.
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UNKNOWN

SPECULATIVE

spec_check   

NONSPECULATIVE

    spec_barrier   ---

Figure 3.5: A state machine representation of the typestate used to check
speculative status of pipeline threads.

acquire(m[a], R); //Start Lock Region m

b <- m[a];

---

acquire(m[b], W); //End Lock Region m

This pipeline cannot reserve all aliasable memory locations in a single stage, be-

cause it must read from m before knowing all the addresses to reserve. While

this pattern can arise in certain pipelined circuits, it is uncommon for proces-

sors. Importantly, atomicity is only required for all of the reservations of a given

memory; reservations for two different memories may occur in different stages

without synchronization penalty, since those reservations cannot possibly alias

each other.

3.4.2 Speculation Checking

PDL limits the use of speculation to ensure that the final design is equivalent to

a non-speculative version. First, we check that all speculative calls are eventu-

ally verified across any program path; this uses the same machinery as checking

that lock operations are called in the correct sequence and is described in more
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detail in §3.4.3. Second, PDL prevents speculative effects from being observ-

able by non-speculative threads via restricting the set of operations that spec-

ulative threads may execute. We adapt typestate [108] to determine the spec-

ulative status of threads in any given stage. Threads can transition between

three states: Unknown, Speculative, and Nonspeculative4, beginning in

state Unknown and using the speculation primitives to transition to other states.

Figure 3.5 illustrates the relationship between typestates and these primitives.

The non-blocking check spec_check transitions to Speculative, only es-

tablishing that the thread is not definitely misspeculated. After a stage separator, if

Speculative, the typestate is reset to Unknown since its status may have been

resolved by the time the thread executes the next stage. The only way to estab-

lish that a thread is Nonspeculative is to use a blocking check spec_barrier

. Unknown threads may not make speculative calls or reserve locks, as these

operations (if made by an already misspeculated thread) could cause races on

starting new threads, and inconsistent lock state, respectively. Neither Unknown

nor Speculative threads may verify their own speculation or release write

locks, lest they permanently update lock state and write data that some non-

speculative thread may read before they are rolled back.

3.4.3 Path-Sensitive Checking

PDL cannot rely on purely syntactic type checking to prove that locks transi-

tion through the correct sequence of states. Since the placement of operations

and stage separators inside conditional branches can influence the structure of

4We do not need a Misspeculated state since misspeculated threads will automatically be
terminated and will not execute code following the speculation check operations.
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the pipeline, it is important to allow flexible placement of lock operations. For

example, a purely syntactic type checker could not prove the following code

snippet reserves the lock before blocking on it:

if (writerd) { reserve(rf[rd], W); }

---

if (writerd) {

block(rf[rd]); rf[rd] <- wdata; release(rf[rd]);

}

To permit such programs, we generate constraints to prove that locks are in the

necessary state when they are used. The compiler runs an abstract interpretation

over the program that approximates branch conditions using variable equality

and boolean logic. To allow the compiler to precisely check lock usage, de-

signers need only to simplify branch conditions into booleans or comparisons

between variables. We then employ the Z3 SMT solver [36] to verify that the

constraints are satisfied. The same code snippet follows, annotated with the

information derived by our compiler and checked by Z3:

if (writerd) { //LockState: free

reserve(rf[rd], W);

} //Lockstate: writerd => reserved

// ˆ !writerd => free

---

if (writerd) {

block(rf[rd]); rf[rd] <- wdata; release(rf[rd]);

} //Lockstate: writerd => released

// ˆ !writerd => free

PDL also uses this technique to confirm that speculative calls are resolved and

that pipeline call statements are well-formed: each thread either makes a single
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recursive call, or outputs a value. In other words, each thread may either spawn

a single child thread or terminate.

3.5 Implementation

Our prototype implementation of the PDL compiler is written in 10K lines of

Scala; the lock implementations are written in 1.7K lines of Bluespec System

Verilog (BSV) [87] and 1K lines of Verilog5. Given a PDL source program, the

PDL compiler produces a BSV module that implements the specified design.

From this module, the open-source BSV simulator and compiler can be used

to run simulations or produce synthesizable Verilog. We chose BSV as a target

language since it provides a natural translation from PDL stages to BSV rules.

While this choice simplified code generation, it is not a fundamental require-

ment; it is certainly possible to implement a different back end for the PDL

compiler targeting Verilog or another similar HDL. We implement locks in a

combination of BSV and Verilog; the Queue Lock is implemented in BSV and

the others are written in Verilog. The language choice at this level is for conve-

nience; in principle, locks can be implemented in any RTL language.

3.5.1 Code Generation

In BSV, each rule is guaranteed to execute atomically in a single clock cycle;

additionally, one can provide conditions that prevent BSV rules from execut-

ing. Given these conditional rules, BSV will automatically generate the control

5 The PDL compiler is open-source and can be found at: https://github.com/
apl-cornell/PDL.
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Table 3.3: Performance in Cycles-Per-Instruction of multiple processor
configurations on a selection of integer benchmark kernels. All
processors implement the RV32I ISA, except for the PDL 5Stg
RV32IM configuration.

Processor coremark aes gemm mm-block ellpack kmp nw queue radix GeoMean

Sodor 1.441 1.201 1.530 1.525 1.380 1.496 1.355 1.332 1.282 1.37

PDL 5Stg 1.436 1.230 1.529 1.525 1.380 1.496 1.376 1.332 1.282 1.39

PDL 3Stg 1.205 1.101 1.265 1.262 1.190 1.247 1.188 1.118 1.108 1.18

PDL 5Stg BHT 1.367 1.154 1.413 1.414 1.269 1.255 1.306 1.231 1.202 1.28

PDL RV32IM 1.384 1.230 1.421 1.226 1.280 1.496 1.376 1.332 1.282 1.32

logic necessary to execute as many each cycle as possible. The PDL compiler’s

strategy is to represent each pipeline stage as a single BSV rule, and to supply

conditions to stall or kill a stage’s execution when necessary, according to the

appropriate PDL primitives.

We split the original PDL program into a DAG of pipeline stages as described

in §3.2.1. Live variable analysis is used to annotate the edges between the stages

with all variables needed by a later stage. Each stage translates to a single BSV

rule, guaranteeing that all of its state-modifying operations occur in the same

cycle. Each edge translates to a FIFO which stores the data communicated be-

tween stages. The FIFO is an abstraction over pipeline registers; the current

compiler uses the default BSV FIFO implementation (which employs 2 regis-

ters), but it could be replaced with a single-register implementation. The only

exception to this generation mechanism are the coordination edges generated to

control out-of-order regions of the graph; these send only a single value, used

by the downstream stage to determine which other input FIFOs to read from.

The combinational logic associated with each stage can be generated in a
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straightforward fashion and placed outside of the rules. The rule bodies contain

all of the state-modifying or inter-stage operations: FIFO en/dequeues, lock op-

erations, memory writes (and reads for synchronous memories), and updating

speculation status. Lastly, we generate PDL’s stall conditions to prevent BSV

from scheduling rules erroneously. BSV automatically ensures rules do not ex-

ecute when there is no valid data or there is back pressure from a later stage

(i.e., the input FIFO is empty or the downstream one is full). Thus we only

need to add stall conditions for spec_check, spec_barrier, and block com-

mands and for stages that receive data from a variable-latency operation (e.g.,

responses from synchronous memories or other PDL pipelines).

BSV automatically generates a schedule that executes as many rules as pos-

sible within a single clock cycle; this corresponds to the control logic for stage

activation. PDL does not guarantee that this schedule is optimal. PDL does au-

tomatically include two scheduling directives necessary for high performance.

One indicates to BSV that it is safe to execute all stages that send data to the be-

ginning of the pipeline (i.e., recursive call and verify statements) and appro-

priately muxes the correct values based on misprediction logic. The second en-

sures that BSV will make speculation results combinationally available to earlier

stages (i.e., the misprediction signal is propagated immediately to early stages

that contain spec_check or spec_barrier statements). With these directives,

PDL can generate speculative pipelines that execute one instruction per cycle.
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3.6 Evaluation

To demonstrate PDL’s expressivity and efficiency, we present a number of dif-

ferent implementations of the RISC-V32 ISA, and compare their performance

and area to a baseline implemented in Chisel [10]. To measure software-visible

performance (cycles per instruction—CPI), we use RTL simulations for the de-

signs that simulate cache hits for every memory access (single-cycle responses).

To measure processor area, we target a 100 MHz clock frequency using 45nm

FreePDK [107] technology and execute synthesis and place-and-route. In our

measurements we consider only the processor cores and exclude caches and

any other parts of the memory hierarchy since PDL was not used to generate

that part of the microarchitecture.

3.6.1 Performance

We compare the PDL-designed processors with the Sodor processor in its fully

bypassed configuration. Sodor is implemented in Chisel and represents a stan-

dard 5 stage RV32I processor [92]. First, we show that our processors can im-

plement a similar architecture. The PDL 5 Stage processor divides functionality

across stages in the same way as Sodor and uses the Bypass Queue lock (see

§3.2.3) to bypass write data. The PDL processor also implements the same spec-

ulation logic as Sodor, always predicting that branches are not taken and suffer-

ing a 2-cycle stall on taken branches and jumps. Both processors also experience

the same stalls for data hazards thanks to their bypassed designs; they stall for

1 cycle, but only on load–use dependencies6.

6 A load instruction whose value is used by the subsequent instruction.
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Figure 3.6: Design cell area for 5 Stage processors both with and without
bypassing logic. Sodor is a baseline implemented in Chisel.
Results achieved using 45nm technology targeting a 100 MHz
clock frequency.

The first two rows of Table 3.3 present the CPI of the designs when execut-

ing a number of small benchmarks. The first benchmark, coremark, is from the

eembc [33] embedded benchmark suite. The remainder of the benchmarks are

the selection of integer kernels from the MachSuite [90] that we could success-

fully execute on the Sodor processor. There is a small variance between Sodor

and PDL 5Stg, especially in the aes benchmark; this is the result of a minor dif-

ference in the benchmark binaries, which was required to be compatible with

the test benches. We manually confirmed that exactly the same stalls occurred

in both pipelines and that this CPI difference does not signal a difference in

processor performance.

Figure 3.6 shows the synthesis results for the Sodor and PDL 5 stage proces-

sors. We also include the areas for non-bypassed versions of both processors

to measure the overhead caused by including bypassing logic. The PDL pro-
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cessor requires more area than the Sodor processor, and bypassing induces a

larger percentage overhead than in Sodor (2.96% increase vs. 1.06%). Some of

this area is due to less efficient stall logic and pipeline register representation.

Specifically, the FIFO implementations consume significant combinational and

non-combinational area. These overheads are all artifacts of the immaturity of

the PDL compiler, and are not fundamental to PDL’s language design. Bypass-

ing, on the other hand, is more expensive in PDL than in the hand-written ver-

sion, because PDL assumes nothing about the timing or coordination of stages

and pays for this generality. In particular, the Bypass Queue requires a dynamic

priority calculation to determine which write is the most recent, and stores some

information redundant with data in pipeline registers.

Nevertheless, we are not concerned with this overhead for two reasons.

First, these cores are small and thus cache areas would likely dominate costs

in a complete chip. We used CACTI [124] to estimate the area overhead when

using even tiny (4KB, 2-way associative) L1 data and instruction caches. For this

configuration, PDL induces only a 5% overhead when considering the total area

of core and L1 caches together; this provides an upper bound on chip area over-

head, as real systems often use significantly larger caches. Second, in designs

that support any out-of-order execution (even mostly in-order CPUs such as

Ariane [133]), the complexity of PDL locks is required by the implementation.

The bypass logic in Sodor is simple because the designer can statically know

which stages might contain the bypass data and in which order to prioritize

them. As soon as out-of-order behavior is introduced, a dynamic mechanism

(such as those implemented in the PDL Bypass Queue and Renaming Register

File) becomes required to correctly forward write data.
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3.6.2 Expressivity

Lastly, we highlight the expressivity of, and design exploration enabled by, PDL.

In addition to the 5 stage RV32I processor, we present:

• A 3-stage RV32I core

• A 5-stage RV32I core with a branch history table

• An RV32IM core with parallel, pipelined multiplication and division units

To demonstrate their microarchitectural differences, Table 3.3 also contains per-

formances results for these three processors. Deriving these other designs from

the original required far less effort than in a conventional design process. Re-

ducing the number of stages from 5 to 3 required eliminating two stage separa-

tors, and modifying read locks to be reserved and acquired in the same cycle;

we used a slightly simplified version of the Bypass Queue to support this ef-

ficiently. Adding a custom branch predictor required almost no change to the

PDL design since the same speculation primitives can be linked with an ex-

ternal, RTL-implemented predictor. This did involve changing some logic to

update predictions in the second pipeline stage once we determined an instruc-

tion was a branch. We needed to modify only about 20 lines of code from the

original 5-stage design to implement each of these microarchitectures.

The RV32IM processor required noticeably more effort—it introduced new

functionality and made the pipeline structure not fully linear. Similar to the

design of the Ariane [133] processor, the execute stages of this processor are

split based on functional unit (multiply, divide, ALU/memory), can execute in

parallel, and write back data out of order (when using the Bypass Queue or
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pipe cache(addr, dataIn, isWr)[entry, main]: int {
idx = getIdx(addr);
acquire(entry[idx], R);
cline = entry[idx]; release(entry[idx]);
hit = //cline is valid and matches addr
if (!hit || isWr) { reserve(entry[idx], W); }
if (hit || isWr) {
dout = //cline data for rd, else default val
output(dout); //enqueue response

}
maddr = alignAddr(addr);
if(!hit) { newline <- main[maddr]; }
---
if (!hit || isWr) { //update cache entry
newCline = //construct from newline and data
block(entry[idx]);
entry[idx] <- newCline; release(entry[idx]);

}
//queue response for cache miss
if (!hit && !isWr) {
output shiftOut(newline, getOffset(addr));

}}

Figure 3.7: Abbreviated PDL code for a direct mapped, write-allocate,
write-through cache.

Renaming Register File locks). The multi-cycle divider and multiplier are both

also implemented as PDL pipelines. The former computes 1 bit of an integer di-

vision per cycle and supports only 1 concurrent operation; the latter takes two

stages to implement integer multiplication and is fully pipelined, supporting 2

concurrent operations. Together, these were written in 32 lines of PDL code. A

non-linear pipeline allows all execution units to run in parallel without increas-

ing pipeline depth, providing a slight CPI benefit over a 5-stage in-order CPU,

and this structure reflects the microarchitecture necessary for high performance

in deeper and/or wider pipelines. Modifying the decode logic to support these

new instructions and altering the pipeline structure required an additional 30

lines of PDL code.
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Non-processor Designs. PDL is not inherently limited to building processors;

as described above, the multiplier and divider in our RV32IM CPU were also

implemented in PDL as pipelines to which the main CPU issued requests. Fur-

thermore, PDL can express pipelined modules that carry their own state, and

guarantees that requests make updates and observations to that state in order.

To demonstrate this feasibility, we built a 2-stage direct-mapped data cache with

a write-allocate, write-through policy, in PDL. An abbreviated version of the

cache is shown in Figure 3.7. The cache contains two memory references, its

entry array of cache lines, which would typically be implemented with SRAM,

and a main interface to DRAM. The first stage is responsible for reading the ap-

propriate cache line and issuing a request to main memory on a cache miss, or

responding to the “caller” on a hit. The second stage waits for the response

from main memory and then updates the appropriate cache line. We use the

PDL Queue Lock to protect the data cache entries, effectively stalling concur-

rent accesses to the same cache line. We expressed this design in about 50 lines

of PDL code.

3.7 Future Work

PDL provides the foundation for a new methodology of processor development

that can provide high-level semantics as well as low-level control over hard-

ware design. One potential opportunity enabled by PDL is to explore the de-

velopment of high-assurance microcontrollers for safety-critical systems, such

as pacemakers [100]. While PDL’s current features are not extensive enough to

implement a modern high-performance processor, it should enable rapid but

safe microcontroller development.
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We also believe the PDL approach of abstracting common microarchitectural

structures can be extended to support more advanced designs. For instance,

PDL currently only allows out-of-order execution inside branches; new exten-

sions that abstract reorder buffers and instruction schedulers could enable in-

struction reordering at any point in the pipeline. Another potential extension

would be to generalize speculation from branch prediction to arbitrary value

speculation.

To increase confidence in PDL’s claims, the semantics and correctness guar-

antees of PDL could be formalized precisely, and the compilation strategy (or

compiler itself) could be proven correct. We also believe that PDL’s correctness

guarantees could be extended to provide security guarantees. PDL’s explicit

treatment of speculation as a language construct may allow simpler reasoning

about hardware speculation security properties, such as strictness-ordering [3]

or non-interference [139] of speculative state.

3.8 Related Work

An old but short line of work aims to automatically generate pipelined proces-

sors from sequential specifications. Paul and Kroening [68] generated the stall

and forwarding logic for an ordered list of stages with register assignments and

combinational logic. Similarly, Nurvitadhi et al. [88] translate “transactional

specifications” into pipelines; their work supports speculation and allows de-

velopers to selectively enable bypass paths via an iterative design tool. More

recently, Liu et al. [73] demonstrated, with their ASSIST framework, how to

synthesize high-performance, customized RISC architectures from a micro-op
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language. All of these projects are limited to strictly in-order pipelines, and can

only generate specific implementations of speculation and bypassing.

Although the ASSIST framework can search through different timings with

varied number of stages and bypass paths, it operates at a higher level of ab-

straction than PDL; the designer has no control over pipeline organization or

optimization. This design makes autotuning tractable, but greatly limits the

space of possible processor designs. PDL, on the other hand, admits more gen-

eral pipeline DAGs that do not require fully in-order execution, and is a lan-

guage, rather than a one-off tool. This enables static analysis and other tech-

niques to improve PDL and provide further guarantees about PDL pipelines.

PDL’s hazard locks and speculation API offer more flexibility, demonstrating

that processor components with a variety of implementations can be abstracted

behind a single checkable interface.

TL-Verilog [56] is a language for designing pipelines with abstract timing.

As with PDL’s stage separators, TL-Verilog allows the designer to split combi-

national logic into sequences of stages with annotations. However, TL-Verilog’s

focus is on ensuring an equivalent semantics between the abstractly timed de-

sign and the physically timed implementation. TL-Verilog provides designers

with low-level control of timing but unlike PDL, does not prevent data hazards.

BSV [87], Koika [20] and the BSV-based Kami [28] are considered high-

level HDLs, because their transactional “one-rule-at-a-time” semantics can sim-

plify correctness reasoning. Rules in these languages must execute in a sin-

gle cycle, and thus their atomicity guarantees cannot automatically provide

the one-instruction-at-a-time semantics of PDL; in particular, their compilers can-

not automatically detect data hazards like PDL can. However, PDL is targeted
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more specifically at pipeline development, and thus these languages are more

general-purpose.

High-level synthesis (HLS) tools [32] might appear similar but aim to solve

a very different problem: automatically generating a timed hardware imple-

mentation from a sequential, untimed algorithm description. Because HLS pri-

marily focuses on statically scheduling dataflow operations across hardware re-

sources, it is unsuitable for synthesizing processors, which exhibit dynamic data

dependencies. There are some recent examples of simple HLS processors [94],

but these require the designer to explicitly denote bypassing logic as if they

were writing RTL. Researchers have recently proposed using dynamic schedul-

ing to improve the performance of HLS pipelines [61], using load–store queues

to both enforce dynamic data dependencies and schedule memory operations.

Unlike all of these tools, which rely on automatic scheduling, PDL gives hard-

ware designers direct control over pipeline design and timing. Additionally,

PDL supports integration with custom RTL implementations for breaking data

dependencies via its lock API, rather than requiring a fixed implementation.

Type systems have been used in recent HLS languages [32] to provide other

forms of static guarantees, focusing on performance rather than correctness.

Dahlia [86] uses affine types to ensure predictable performance and to avoid

synthesizing complex arbitration logic. Aetherling [41] automatically compiles

data-parallel programs to streaming accelerators, using a type-directed search

for hardware scheduling. Both of these tools target development of statically

scheduled hardware accelerators rather than processors.
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The Jade [93] language for distributed computing contains primitives similar

to PDL’s hazard lock reserve. While they are also used to manage concurrent

access to shared state, Jade locks do not support speculation and are not stati-

cally checked for correct use.

3.9 Conclusion

PDL is a Pipeline Description Language that raises the abstraction of RTL to pro-

vide one-instruction-at-a-time semantics while enabling efficient, parallel exe-

cution by modularizing bypassing and speculation logic. PDL still gives archi-

tects low-level control over the microarchitecture and timing of their processor,

and is compatible with RTL implementations of modules for branch prediction

and hazard resolution. We have shown that a variety of RISC-V microarchitec-

tures can be implemented in PDL with acceptable overhead. Through its flex-

ible abstractions for hazard resolution and speculation, PDL promises to ease

the burden of processor verification while still allowing out-of-order and spec-

ulative microarchitectures.
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CHAPTER 4

SPECVERILOG: ADAPTING INFORMATION FLOW CONTROL

FOR SECURE SPECULATION

The prior chapter focused on novel tools for hardware design that can pro-

vide higher level guarantees; however, it did not address the ability to verify

timing-sensitive security properties of low level hardware descriptions. This

chapter presents a security-typed HDL that prevents speculative timing attacks.

4.1 Introduction

Spectre and Meltdown [103, 72] have exposed significant timing-channel vul-

nerabilities ingrained in the designs of modern processor microarchitectures. In

response, the software security community has developed a number of mitiga-

tions, formal security conditions, and principled defenses [67, 50, 24, 51, 118];

however, most of this work requires assuming certain microarchitectural be-

haviors or models. To make the job of software easier, architects have pro-

posed many hardware defenses [129, 127, 4, 3, 74, 97, 101, 123, 126] that provide

stronger speculative security guarantees, including invisible speculation [127],

transient non-observability [74], and strictness-ordering [3]. Implementations

defending these conditions can still allow most speculative execution to mini-

mize run-time overhead, while providing reasonable semantics on which secure

software can be built. Despite this plethora of designs, there have been few ef-

forts to ensure that synthesizable implementations of these defenses actually

uphold their proposed security guarantees.
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One established technique for verifying security properties of Register

Transfer Level (RTL) hardware descriptions is Information Flow Control

(IFC) [38, 139]. In fact, several aforementioned defenses claim to provide IFC-

inspired security conditions [50, 27, 130, 74, 51]. We propose using an IFC type

system for an RTL Hardware Description Language (HDL) to statically verify

that the hardware synthesized from the design is guaranteed to be free of tran-

sient execution vulnerabilities. However, this task is not as simple as imple-

menting a speculative processor in an IFC-typed HDL [47]; limitations of the

existing languages make it a challenge to defend speculative noninterference

and related security conditions.

In this work, we address these limitations and show how an IFC-typed HDL

can be extended to guarantee speculative security. Specifically, we adapt era-

sure labels [29], which express a limited form of temporal IFC policies, to an RTL

language. Erasure labels allow us to prevent misspeculated data from persist-

ing and influencing non-transient execution, without needing an explicit func-

tional specification for “misspeculation”. We also incorporate a novel form of

permissive dynamic label checking to enable dynamic scheduling of concurrent

instructions. This is one of the first efforts to statically check RTL hardware

designs for speculative security guarantees, and the first that does not require

significant manual proof effort by the designer.
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This chapter describes our contributions:

• Section 4.2 provides background on transient execution vulnerabilities and

also the capabilities and limitations of some existing IFC tools for RTL design.

• Section 4.3 describes SpecVerilog1, our extension to an existing IFC HDL. We

also demonstrate that erasure labels in SpecVerilog can be employed to detect

transient execution vulnerabilities and verify secure mitigation mechanisms.

• Sections 4.4 and 4.5 provide formal descriptions of SpecVerilog’s security

guarantees and how they can be instantiated to prevent transient execution

vulnerabilities in an out-of-order (OoO) processor.

• The remainder of the chapter describes several case studies implemented in

SpecVerilog, related efforts, and a general discussion of the design of, benefits

of, and future opportunities for SpecVerilog.

4.2 Background

4.2.1 Transient Execution Vulnerabilities

Speculation is a critical performance feature in modern processors which intro-

duces transient instructions into the processor pipeline. Transient instructions

are not part of the intended execution and thus are not allowed to influence

any architectural state. Nevertheless, transient execution vulnerabilities such as

Spectre, Meltdown, and a host of others [103, 72, 116, 117], exploit the presence

of transient instructions to access otherwise-protected data. Such data can then

1 The system name has been changed to facilitate blind review.
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be leaked through well known microarchitectural side-channels. To avoid per-

formance degradation, most defenses to these vulnerabilities seek to allow as

much speculation as possible while limiting their effects on microarchitectural

state. As understanding of these attacks has progressed, researchers have found

an ever-increasing number of side-channels for transiently accessed data. Some

are very subtle, such as speculative interference attacks [16] which leave little-to-

no lasting trace within the microarchitectural state. In turn, new attacks prompt

a new wave of defenses or other modifications to close the recently discovered

holes.

We seek to end the cycle of attack discovery and defense development with

a formal approach to comprehensively prevent transient execution vulnerabil-

ities in realistic hardware implementations at the RTL abstraction. We extend

existing IFC techniques for HDLs to safely reason about the potential influence

of speculative execution. In this way, any design accepted by our tool is guar-

anteed to be free of transient execution vulnerabilities—even previously undis-

covered ones.

4.2.2 Information Flow Control HDL

Information flow control is a technique for enforcing policies that govern the

flow of information, especially policies about confidentiality and integrity [38,

139, 69, 134]. These policies are often formalized as some form of noninterference,

which states that high system state does not influence low state. In the case of

confidentiality, high corresponds to secret and low to public. When applied to

RTL languages, which have explicit semantics for time passing, IFC provides
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timing-sensitive security guarantees. For instance, IFC has been used to imple-

ment many timing-channel resilient hardware modules, from encryption units

that protect keys [60, 113], to processors [113, 47, 112] that provide architecture-

level security guarantees.

Static IFC tools rely on designer-provided annotations to capture intended

security policies. In the case of confidentiality, the designer annotates the se-

crecy of the system state. The tools then check that the described hardware de-

sign obeys the implied policy, and reject unsafe designs. In this work, we build

upon and extend one such tool, SecVerilog [139], which uses a type system to

check security annotations (labels) on hardware at compile time. We discuss

alternative tools for checking hardware IFC properties in § 4.7.

Below is a simple example of the checks made by SecVerilog’s IFC type sys-

tem. Consider a set of security labels PUBLIC and SECRET, where secret infor-

mation is not allowed to leak to public locations.

1 input d1 { SECRET } ;

2 input d2 { PUBLIC } ;

3 reg o1,o2 { PUBLIC } ;

4 always@( * ) begin

5 o1 = d1; //FAIL! SECRET->PUBLIC

6 if (d1) o2 = d2; //FAIL! Implicit Flow from d1

7 else o2 = 0; //FAIL! Implicit Flow from d1

8 end

SecVerilog prevents direct illegal information flows, such as in line 5, by ensur-

ing that the operands on the right-hand side of an assignment are permitted to

flow to the destination on the left-hand side. Additionally, SecVerilog prevents
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implicit flows, such as in lines 6–7, by ensuring that expressions used in branch

conditions may flow to conditionally assigned destinations.

4.2.3 Dynamic Labels

While SecVerilog is a static tool, it allows policies that depend on run-time be-

havior. It uses dynamic labels [141]: security annotations that are determined by

run-time values. In a security-typed HDL like SecVerilog, dynamic labels ef-

fectively allow the same physical register to store data from different security

levels over time. In the following snippet, the mode register is used to describe

the secrecy of the data register’s contents.

1 // L(0) = PUBLIC; L(1) = SECRET

2 input new_mode { PUBLIC } ;

3 reg mode { PUBLIC } ;

4 reg data { L(mode) } ;

The function L(x) is a dynamic label that maps run-time values onto security

levels as described on line 1. For instance, whenever mode stores the value 1,

we know that data stores secret information. This kind of dynamic label can

model an architecture like ARM TrustZone [76], where the processor can switch

between secure and insecure worlds.

Since a given register’s security level can change when the clock ticks, to

check non-blocking assignments, SecVerilog considers the destination’s next-

cycle label. Using the types above, we can consider how SecVerilog checks a

mode change:
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1 reg data { L(mode) } ;

2 always@(posedge clk) begin

3 mode <= new_mode;

4 data <= (new_mode < mode) ? 0 : data;

5 end

SecVerilog requires that values being written into register data are allowed to

flow to L(new mode), since that will be the next-cycle label of data. For in-

stance, if mode is currently 1 (and thus data is secret), but ”new mode is 0

(and thus data” will become public), SecVerilog only accepts the design if

the contents of data are overwritten with public information. Line 4 includes

the dynamic check necessary for SecVerilog to conclude that the design is se-

cure.

Although powerful, dynamic labels can also introduce subtle security vul-

nerabilities. One such problem is the “label of labels” consideration [66]; in our

prior example, mode itself is a run-time signal and thus has its own label. There-

fore, comparisons on dynamic labels can cause implicit flows. SecVerilog avoids

these issues with well-formedness assumptions.

Nevertheless, SecVerilog’s dynamic labels cannot sufficiently express and

defend speculative security conditions. When speculation is involved, the true

security level is only determined in the future when the transient state is either

invalidated or affirmed.
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4.2.4 Speculative Noninterference Conditions

Prior work has established a variety of noninterference conditions intended

to prevent transient execution vulnerabilities [130, 50, 74]. At a high level,

these conditions guarantee that speculatively accessed data does not influ-

ence attacker-visible state. The definitions of “attacker-visible” and the scope

of which speculatively accessed data is protected vary slightly in each, lead-

ing to stronger or weaker security guarantees. For this work, we consider

a strong, timing-sensitive noninterference condition similar to transient non-

observability [74], that we call Transient Noninterference and define formally

in § 4.5. Informally, transient non-observability states that transiently accessed

instruction operands should not influence the time at which non-transient in-

structions commit.

To defend Transient Noninterference with an IFC system, we need a lattice

of labels that defines both the speculative status of hardware state and when

influence is allowed. The v relation (read: “flows to”) defines allowed influence.

A first attempt at such a lattice might be the following:

COMMIT v SPEC v MISS

This set of labels allows committed data to influence everything; misspeculated

data cannot influence anything; and unresolved speculative data is in the mid-

dle. Unfortunately, this set of labels requires violating noninterference to pro-

mote data from SPECULATIVE to COMMITTED once we learn the speculation

was correct. For instance, the following example implements logic to relabel

data upon discovering misspeculation or commitment, but fails to type-check:
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1 //S(0) = COMMIT; S(1) = SPEC; S(2) = S(3) = MISS

2 wire specCorrect, specMiss { COMMIT } ;

3 reg [1:0] isSpec { COMMIT } ;

4 reg specData { S(isSpec) } ;

5 always@(posedge clk) begin

6 if (specCorrect)

7 isSpec <= 0; //FAILS: Downgrades SPEC to COMMIT

8 else if (specMiss)

9 isSpec <= 2; //OK: Upgrades data to MISS

10 end

Line 7 fails to type-check in SecVerilog. The value of specData stays the

same, but its label moves down in the lattice, so this assignment appears to

SecVerilog to violate noninterference. In the current cycle, specData may be

speculative and in the next cycle the same data will be treated as committed.

This is exactly the designer’s intention, but it is not captured by the labels used

and cannot be verified as safe by SecVerilog without voiding the language’s

security guarantees.

Other attempts to map speculative security conditions onto SecVerilog’s la-

bels are equally fraught. For instance, consider another dynamic label that only

upgrades data upon discovering misspeculation:

1 //S(0) = COMMIT; S(1) = MISS;

2 reg isMiss, commData { COMMIT } ; reg specData { S(isMiss) } ;

3 always@(posedge clk) begin

4 //If not speculative RIGHT NOW, forget the dynamic label

5 commData <= (!isMiss) ? specData : commData;

6 end
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Line 5 illustrates the issue with this labeling scheme; the semantics of S(x)

allow the data to influence committed state on any cycle where isMiss is false.

However, isMiss may become true in the future, and thus commData may

contain misspeculated state.

This problem cannot be solved with conventional IFC labels because they

cannot reason about future events. SecVerilog’s dynamic labels must immedi-

ately resolve to a specific security level since they are functions of the current

state. Therefore, in order to precisely encode the concept of misspeculation, one

would need a function from the current system state to whether or not a specu-

lative event is predicted correctly; this is impossible for any interesting uses of

speculation. The whole point of speculation is to optimistically predict the cor-

rect execution path to avoid blocking on long-latency operations; if one could

immediately determine the correct prediction, speculation would be unneces-

sary!

4.3 Erasure Policies & Secure Speculation

Our key insight is that we can add speculative security guarantees to SecVer-

ilog by extending it with erasure policies [30, 31]. An erasure policy is a form

of information-flow policy that allows specifying when data must be removed

from a system. For example, a software web app might enforce the erasure pol-

icy that a user’s session data must be deleted after their session expires. In the

context of processor development, erasure policies can be used to specify that

transiently accessed data (and anything derived from it) must be deleted after
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misspeculation is discovered. We incorporate erasure policies into an extension

of SecVerilog that we call SpecVerilog in order to express speculative security

conditions.

SpecVerilog supports erasure policies through erasure labels, security annota-

tions that can express erasure policies in an IFC system. We adapt prior work on

software erasure labels [30] to RTL hardware design. Our novel contributions

include dynamic erasure labels and enforcing erasure policies fully statically (i.e.,

without requiring a run-time monitor).

4.3.1 Erasure Labels

In SpecVerilog, erasure labels take the following form:

b1
c(~x)↗b2

Here, b1 and b2 are (potentially dynamic) security labels, and c(~x) is an erasure

condition. Erasure labels guarantee that label b1 is enforced, until the current sys-

tem state implies the erasure condition is true. After that point, b2, the stricter

label, is enforced. This mandatory enforcement of a stricter label is called era-

sure. As in prior work, erasure is end-to-end, meaning that the erasure of some

data implies the erasure of all data derived from it as well. End-to-end erasure

is specified formally in § 4.5.

Let us consider an example of erasure in SpecVerilog. For brevity, from here

on we use ⊥ to represent the least restrictive label (e.g., COMMIT) and > to rep-

resent the most restrictive (e.g., MISS).
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1 input doErase { ⊥ } ;

2 reg data { ⊥ doErase↗> } ;

3 reg top { > } ;

4 always@(posedge clk) begin

5 data <= data; //FAILS! doErase may be true

6 top <= data; //OK! top has high label

7 end

Since SpecVerilog does not rely on a run-time erasure mechanism, it must verify

that whenever an erasure condition might be fulfilled, the relevant data is either

erased or is written only to a more restrictive location. In the above snippet,

line 6 is safe because the destination register has a higher label than the upper

bound of data’s erasure label. However, line 5 is unsafe because it is possible

that, on any given cycle, doErase is true and thus data must be erased.

To satisfy the erasure policy and SpecVerilog’s type checker, we can change

line 5 to:

data <= (doErase) ? 0 : data;

Effectively, SpecVerilog requires the designer to insert run-time checks which

enforce the desired erasure policy.

4.3.2 Ensuring Secure Speculation

Erasure labels are a generic, design-agnostic tool for tracking information flow,

but they can be used to prove that hardware designs satisfy speculative security
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Figure 4.1: Visualization of Temporal Ordering. The green box highlights
all i for which commit(i) is true. Annotated arrows represent
misspeculation, and an arrow from i to j indicates that j di-
rectly follows i in program order. seq is the relation defined as
the transitive closure of these arrows.

guarantees like Transient Noninterference. Depending on how we apply era-

sure labels to a processor design, we can achieve different levels of precision or

ensure different speculative security conditions.

We illustrate one possible approach that provides comprehensive secu-

rity with a reasonable level of precision. We show how to defend Tempo-

ral Ordering, an approximation of Transient Noninterference introduced by

Ainsworth [3]. They define Temporal Ordering as a relation between instruc-

tions x and y:

x
T
=⇒ y ⇐⇒ commit(x) ∨ seq(x, y)

The predicate commit(x) is true when instruction x has either already com-

pleted or is guaranteed to complete. The predicate seq(x, y) is true if x comes

before y in (a potentially speculative) program order. Figure 4.1 visualizes a for-

mal definition of these predicates. i[s0...sm]
n is the nth instruction to execute in the

program order produced by the sequence of incorrect speculative predictions s0

through sm. Therefore, only instructions with an empty misspeculation history

represent the ISA-defined program order; this is exactly the set of instructions

for which commit(i[s0...sm]
n ) is true.
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The seq relation (i.e., speculative program order) is equivalent to the arrows

in Figure 4.1. Instruction i is only directly connected to j by an arrow if j is the

next instruction in program order or is predicted to be the next instruction by

a misspeculation sn. seq is the transitive closure over these arrows. In this

way, two instructions are only part of the same speculative program order if the

earlier instruction’s misspeculation history is a prefix of the later’s.

If all value and timing influences between instructions respect Temporal Or-

dering, the processor also exhibits Transient Noninterference. We formalize this

property in § 4.5. To enforce Temporal Ordering with SpecVerilog labels, we

only need two underlying lattice elements to represent the security of data: ⊥

(the least restrictive element) for committed instructions and > (the most re-

strictive element) for misspeculated instructions. If we could precisely know,

at all times, whether or not an instruction would misspeculate in the future,

these simple labels would be sufficient to ensure that misspeculated instruc-

tions never influence the time at which other instructions commit. The value

of erasure labels is that they track the influence of instructions even without

knowing a priori whether they will misspeculate.

4.3.3 Incorporating Erasure

At a high level, we enforce Temporal Ordering by associating an index with each

instruction which corresponds to its place in the speculative program order. For

this design, we assume that the only source of speculation is predicting which

instruction to execute next. Later, we discuss how to generalize these labels to

other forms of speculation.
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We define an erasure label SL(x) for any state associated with instruction x,

using an erasure condition INV(x):

INV(x) ≡ missValid && missId < x

SL(x) ≡ ⊥ INV(x)↗>

We assume that missValid and missId are control signals in the processor;

on any cycle when missValid is non-zero, it indicates that the instruction af-

ter missId was the result of misspeculation (i.e., instruction missId made an

incorrect prediction).

To illustrate how the SL label can be used to track speculation, we consider

the update logic for the program counter (pc) register, which contains the ad-

dress of the next instruction to execute. As the pc changes, we need to keep

track of how speculative it is; an obvious way is to also store a tag that incre-

ments as it changes.

1 reg pc, pctag, spec_npc { SL(pctag) } ;

2 wire missValid, missId, realnpc { SL(missId) } ;

3 always@(posedge clk) begin

4 pc <= (missValid && missId < pctag) ?

5 realnpc : spec_npc;

6 pctag <= (missValid && missId < pctag) ?

7 missId : pctag + 1;

8 end

There are a few interesting components of this example. First, in line 1, we

use the SL label for both the program counter and its tag. We cannot use ⊥ for

the tag label since the tag itself (i.e., how speculative the next instruction is) is

influenced by speculation. Next, in line 2, we introduce the control signals for
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misspeculation and the “correct” pc value that is meant to fix the misspecula-

tion. All of these are labeled recursively with SL(missId) since, intuitively, they

must be coming from some instruction before the misspeculated instruction in

program order. Lastly, the lines to update pc and pctag include cleanup logic

for misspeculation; whenever misspeculation is detected, SpecVerilog requires

that pc and pctag are overwritten with less speculative information.

In the above example, the pctag is incremented with each new (speculative)

instruction. In this way, the INV erasure condition is consistent with the seq

relation from Temporal Ordering:

seq(x, y) ⇐⇒ INV(x) =⇒ INV(y).

However, in practice the pctag register is finite, so this example is unsound

since incrementing eventually causes the value to wrap around, violating the

above correspondence. Next, we generalize the INV erasure condition to prop-

erly track instruction order in modern processor designs.

4.3.4 Leveraging the Reorder Buffer

Speculative, out-of-order processors typically maintain a reorder buffer (ROB),

which provides the source of truth for program order. The ROB is a first-in-

first-out (FIFO) data structure that stores all of the metadata associated with

each instruction; entries are inserted in speculative program order and are only

removed when they are committed: that is, they have updated architectural pro-

cessor state. If an entry is found to be the result of misspeculation, that entry

must be invalidated before it would be committed.
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Since ROB order is a proxy for instruction order, we can define a new erasure

condition using the ROB’s circular buffer ordering:

INV(x, h) ≡ missValid && (missId − h) % sz < (x − h) % sz

sz is a design-time constant defining the size of the ROB, missValid and

missId are the same control signals as before, x is the index of a given ROB

entry, and h is the index of the oldest ROB entry. This circular buffer ordering

uses modular arithmetic to compute the age of a given index.

In this way, the ROB can be the source of truth for all of the labels in the pro-

cessor and is the only component whose labeling we need to trust. For the code

examples in this chapter, we use the unbounded integer erasure conditions that

can be compared with < to simplify presentation. Our case study implementa-

tions use the (more realistic) circular buffer ordering and thus contain slightly

more complex logic to implement modular arithmetic comparisons.

4.3.5 Implementing Secure Modules

Hardware modules may handle both speculative and non-speculative state. Se-

curely managing state from multiple security levels is challenging and error-

prone; we show how IFC brings some of the potential pitfalls to light, and how

to label secure implementations such that they type-check. For this section we

use secure caches as our motivating example, but these methods apply to any

hardware module that manages state influenced by multiple instructions.

The labels we’ve described so far require completely erasing the contents of

registers that might contain speculative data. However, real implementations of
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secure caches [3, 4, 120] use valid bits to mark data as “erased”, or even just de-

lay potentially unsafe operations until speculation has been resolved [98]. These

optimizations can also be verified as secure in SpecVerilog by using dynamic la-

bels in conjunction with erasure conditions.

Efficient Invalidation. Valid bits can easily be incorporated as dynamic labels

to efficiently mark data as unusable. We can modify our erasure labels from the

previous example to support this feature:

VALID(b) ≡ if (b) ⊥ else >

SLVAL(b, v) ≡ VALID(b) INV(v)↗>

The VALID label allows data to flow freely whenever the valid bit, b, is set to 1,

else it applies >, meaning the data cannot influence anything. In this way, any

data with the SLV label can be “erased” upon misspeculation by unsetting its

associated valid bit.

1 wire missValid, missId { SL(missId) } ;

2 reg sId, sValid { SLVAL(sValid, sId) } ;

3 reg sData { SLVAL(sValid, sId) } ;

4 always@(posedge clk) begin

5 sData <= sData;//OK! erased by marking as invalid

6 sValid <= missValid && missId < sId ? 0 : sValid;

7 end

SpecVerilog correctly accepts the above implementation since the SLVAL label

uses VALID as its lower bound; in any cycle where sData must be erased, its

valid bit will be set to 0 and so in the next cycle it will be treated as > (i.e.,

above the required erasure level). If we had removed line 6, then this snippet
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would not be accepted by SpecVerilog, since there would be no guarantee that

sData is invalidated upon misspeculation. Without the use of dynamic labels in

conjunction with erasure labels, we would not be able to verify this optimization.

Secure Dynamic Scheduling. Secure designs also need to appropriately order

or delay operations when they might affect the timing of less speculative ones.

Processors that do not correctly schedule operations are potentially vulnerable

to SpectreRewind [48] or other speculative interference [16] attacks. To accept

implementations that correctly schedule speculative operations, while still re-

jecting unsound designs SpecVerilog needs to reason precisely about label com-

parisons. In this context, label comparisons are dynamic checks that determine

which of two pieces of data is more speculative.

Consider a latency-insensitive interface that uses ready and valid bits for mak-

ing requests to a module. Whenever the following implementation of such a

module is not currently handling a request it sets ready to true and will accept

valid incoming requests:

1 //input and output have the same label, defined by client

2 input reqId, reqValid, req { SLVAL(reqValid, reqId) } ;

3 output reqReady { SLVAL(reqValid, reqId) } ;

4 reg curId, curVaild, cur { SLVAL(curValid, curId) } ;

5 always@(posedge clk) begin

6 //FAIL! req might not be allowed to observe cur

7 reqReady = ∼curValid;

8 if (reqValid && !curValid)

9 //FAIL! if 0, curValid cannot influence anything

10 curValid <= 1; curId <= reqId; cur <= req;

11 end
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This logic is, in general, insecure. When the current request is more specula-

tive than the incoming one, the incoming request is delayed, leading to a vi-

olation of Transient Noninterference. SpecVerilog correctly rejects this design

since it cannot prove that SLVAL(curValid, curId) is allowed to influence

SLVAL(reqValid, reqId).

In this scenario, secure designs must allow less speculative requests to pre-

empt others, but must prevent the opposite; this practice is called leapfrogging

in prior work [3]. SpecVerilog has a permissive label comparison operator that

enables designers to implement leapfrogging without violating SpecVerilog’s

security guarantees.

Here we demonstrate how to compute the ready bit in a secure SpecVerilog

implementation:

1 if (L(curValid) v L(reqReady))

2 //!reqValid || (curValid && curId <= reqId)

3 reqReady = ∼curValid;

4 else

5 reqReady = 1;

Line 1 demonstrates a label comparison in SpecVerilog, which dynamically

computes the labels of curValid and reqReady and evaluates to 1 only if the

comparison holds. The comment describes the actual logic that computes the

label comparison. We discuss this operator and its limitations further in § 4.4.3.

This version safely implements preemption and, with the interface labels from

the first example, is accepted by SpecVerilog. Most IFC-based type systems
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would reject this program because the label comparison can cause an implicit

flow. SpecVerilog introduces a novel and more permissive rule that accepts the

above code but does not compromise security.

Variable x
Level l ∈ L
Function f ∈ Zn → L
Condition c ∈ Zn → B
Basic Types b F l | f (~x)
Label τ F b | b1

c(~x)↗b2 | τ1 t τ2 | τ1 u τ2

Typing Context Γ ∈ x→ τ

Figure 4.2: Syntax of security labels. Label functions and policies are spec-
ified with variables. Policy conditions may also contain free
variables.

4.4 SpecVerilog Design

In this section, we briefly present SpecVerilog’s type system, formal security

guarantees, and implementation.

4.4.1 Typing Rules

SpecVerilog extends SecVerilog’s existing type system with rules for erasure la-

bels and permissive label comparisons. Our syntactic presentation here differs

slightly from prior work [139, 45] but is effectively the same, other than SpecVer-

ilog’s novel contributions.

Figure 4.2 presents the syntax for security labels in SpecVerilog. Other than

erasure labels and conditions, this syntax is directly borrowed from SecVerilog.
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It allows users to define their own underlying security labels, and to define dy-

namic labels as dependent types (i.e., functions of program state). Erasure labels

are formed from two non-erasure labels and an erasure condition2. Erasure con-

ditions are functions of run-time state that return true or false; when they return

true, the data labeled with this condition must be erased.

Since SpecVerilog is dependently typed, we also refer to the current system

state in some of our rules and definitions. In this presentation we keep the state

mostly abstract; this table describes our syntax:

Syntax Operation

σ Current system state

σ[x] Value of variable x

σ[~x] Value of list of variables ~x

σ −→ σ′ Clock-tick transition to next state

Well-formedness. We assume several well-formedness conditions about a

program’s types, which are defined in Figure 4.3. First, dependent labels must

only depend upon variables whose labels are less restrictive; this prevents un-

wanted information flow channels through label checking. Second, we require

that all variables appearing in dependent types are either the same as the vari-

able of the type (i.e., a recursive label) or they must be sequential variables (i.e.,

variables whose values only change on a clock edge). This restriction ensures

that any time a dynamic label changes its value, the change is checked for safety

by the typing rules. Lastly, we assume that all erasure policies actually repre-

2 Erasure labels cannot be nested, but this does not limit expressiveness. Taking the least
upper bound (t) of multiple erasure labels can achieve the same effect as placing erasure con-
ditions inside of lower or upper bounds.

118



sent upgrades; after erasure, the policy must be at least as restrictive as before

erasure.

1. ∀v ∈ Vars.∀v′ ∈ FV(Γ(v)).∀σ.obs(Γ(v′)) σv obs(Γ(v))

2. ∀v ∈ Vars.∀v′ ∈ FV(Γ(v)).v′ , v =⇒ v′ ∈ seq

3. ∀τ1
c(~x)↗τ2.∀σ.τ1 σv τ2

Figure 4.3: The well-formedness conditions for SpecVerilog type environ-
ments. Vars is the set of all variables in the program; FV(τ) is
the set of variables referenced in the type τ; obs(τ) is data visi-
bility and is defined in Figure 4.8.

4.4.2 Type Checking

SpecVerilog’s type-checking rules primarily rely on a may-flow-to relation, v ,

which describes allowed influences between security types. As is typical for

IFC, this relation is reflexive and transitive and relies on the underlying security

lattice ordering. The complete definition of v can be found in Figure B.2 in the

appendix.

τ v τ′

ERASE-ELIM
τ2 v τ′

τ1
c(~v)↗τ2 v τ′

ERASE-INTRO
τ v τ1

τ v τ1
c(~v)↗τ2

ERASE-WEAKEN
τ1 v τ′1 τ2 v τ′2 ∀σ.σ � c(~v) =⇒ σ � c′(~v′)

τ1
c(~v)↗τ2 v τ′1

c′(~v′)↗τ′2

Figure 4.4: The environment-independent may-flow-to relation for era-
sure labels.
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τ ↓σ τ
′

LABELS
l ↓σ l

FUNCTIONS
~v = σ[~x] l = f (~v)

f (~x) ↓σ l

ERASE
τ1 ↓σ τ

′
1 τ2 ↓σ τ

′
2 ~v = σ[~x]

τ1
c(~x)↗τ2 ↓σ τ

′
1

c(~v)↗τ′2

Figure 4.5: The function that resolves variables in labels.

COMMFT
τ ↓σ τ

′ τ1 ↓σ τ
′
1 τ′ v τ′1

τ σv τ1

SEQMFT
¬Erase(σ, τ, τ1) σ −→ σ′ τ ↓σ τ

′ τ1 ↓σ′ τ
′
1 τ′ v τ′1

τ σvnext τ1

Figure 4.6: May-flow-to relations parameterized on a given system state.
Rules COMMFT and SEQMFT type-check combinational and
sequential assignments, respectively.

COMASSIGN
Γ ` e a τ Γ(x) = τ′ x < FV(τ′) C =⇒ pc t τ σv τ

′

C,Γ, pc ` x = e

SEQASSIGN
Γ ` e a τ Γ(x) = τ′ x < FV(τ′) C =⇒ pc t τ σvnext τ

′

C,Γ, pc ` x <= e

LABELCOMP
Γ(v1) = τ1 Γ(v2) = τ2 ∀σ.τ1 σv τ2 ∨ τ2 σv τ1 τ = τ1 u τ2

Γ ` v1 v v2 a τ

Figure 4.7: Type checking rules for selected statements and expressions
in SpecVerilog. C is a set of constraints about the current (σ)
and next (σ′) states. pc tracks the label of variables read in the
current context.
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In Figure 4.4, we present the most interesting rules for SpecVerilog: those

concerning erasure labels. The ERASE-INTRO rule allows us to add an erasure

condition onto an existing policy and the ERASE-ELIM rule allows us to replace

an erasure label with a more restrictive label. The ERASE-WEAKEN rule de-

scribes how to replace one erasure label with another. Influence is allowed if

the lower and upper bounds both may flow, and if the new erasure condition

would evaluate to true any time the original condition would evaluate to true,

regardless of the system state.

As in SecVerilog, we use two different typing rules based on whether the

destination is updated combinationally, or sequentially. Figure 4.6 describes

how we resolve variables based on the kind of assignment. For combinational

assignments (i.e., blocking), all dependent types are resolved in the current con-

text. For sequential assignments (i.e., non-blocking), the label of the destination

is evaluated in the next-cycle context instead. Additionally, for sequential as-

signments, we require that the source does not need to be explicitly erased with

the Erase side condition. This condition returns true when the ERASE-WEAKEN

rule must be applied to prove that the flow is allowed and the left hand erasure

condition in that rule is true this cycle. Figure 4.7 demonstrates the actual typ-

ing rules for assignment statements in SecVerilog, which reference the variable

resolution rules in Figure 4.6. We omit the rules for when labels are recursive

for both combinational and sequential assignments for brevity; they are nearly

identical to those from SecVerilog.
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4.4.3 Erasure Label Design

The evaluation of erasure conditions in Figures 4.4 and 4.5 has a peculiar-

looking definition, so here we justify its design. Unlike normal dynamic labels,

erasure conditions are allowed to contain free variables. Consider our misspecu-

lation example from § 4.3.3:

INV(x) ≡ missValid && missId < x

INV has two free variables, missValid and missId. When applying the ERASE-

WEAKEN rule to check if INV(x) implies some other condition, the implication

must hold for any possible values of missValid and missId, but only for a con-

crete value of x.

This design is necessary to make erasure labels usable while still ensuring

erasure conditions are checked in the future. Obviously, if we resolve all of the

variables to values before checking, then the implication will hold on any cycle

where INV is true, which would (inappropriately) allow us to stop monitoring

erasure conditions. On the other hand, leaving all variables free would pre-

vent typing clearly safe programs. Effectively, we would be unable to leverage

knowledge of current and future system state to weaken the label.

The following snippet demonstrates a safe program which would not type-

check under the more restrictive treatment of erasure weakening. In this exam-

ple, we check an erasure condition and then conditionally copy speculative data

into a register.
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1 input rId, rData { SL(rId) } ;

2 reg sId, sData { SL(sId) } ;

3 always@(posedge clk) begin

4 //assume erase properly checks the erasure condition for

rId

5 if (!erase) begin

6 sData <= rData; sId <= rId;

7 end

8 end

If we did not resolve variables in the ERASE-WEAKEN rule, we would need to

prove the following to type-check the above code:

∀missValid, missId, sId, rId.

(missValid ∧ missId < sId) =⇒ (missValid ∧ missId < rId)

Unfortunately, the above statement does not hold; we cannot actually prove the

assignment is safe without relating the current value of sId to the new value of

rId after the assignment.

With the ERASE-WEAKEN rule from Figure 4.4 and resolving variables ac-

cording to the correct cycle values as in Figure 4.6, we can correctly type-check

the prior example. We need to prove:

∀missValid, missId. (missValid ∧ missId < sId) =⇒

(missValid ∧ missId < next(rId))

This can be proven by statically analyzing the program. In the context of the

assignment we know sId = next(rId); in this case the condition trivially holds.

Dynamic Label Checks. In SecVerilog (and other IFC type systems with dy-

namic labels), run-time label comparisons use the same rule as any binary op-
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eration: the label of the result is the join (t) of the labels of the operands. Un-

fortunately, this rule is too restrictive for efficient processor designs; specifically,

it makes it impossible to type-check dynamically scheduled modules such as

caches. Effectively, when handling concurrent requests with arbitrary labels,

there is no way to dynamically schedule them in a timing-safe manner. The

scheduling choice will leak information about the labels of the concurrent re-

quests to each other via a timing channel.

However, in the special case where the labels are guaranteed to be ordered

then there is a safe implementation (namely the preemption described in § 4.3.5).

We introduce a more permissive typing rule in Figure 4.7: LABELCOMP, which

effectively uses the lower label as the label of the result of the comparison and

allows SpecVerilog to type-check the safe implementation. This is an unintuitive

result which relies on the fact that an attacker can be statically sure that one of

labels must be able to flow to the other. We prove the soundness of this rule in

Appendix B.2.

4.4.4 Compiler Implementation

SpecVerilog builds upon the existing SecVerilog type checker, adding erasure

labels3. To support dependent types, SecVerilog relies on the Z3 SMT solver [36]

for type checking. Dynamic labels are specified by the user as Z3 functions,

which are referenced by the constraints that the SecVerilog type checker gener-

ates.

In SpecVerilog, users also supply erasure conditions as Z3 functions. We
3 The implementation is a fork of Icarus Verilog and can be found at https://github.

com/dz333/secverilog.
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support new syntax for erasure labels directly in Verilog source code that can

reference these erasure conditions. SpecVerilog generates constraints based on

the may-flow-to relation and typing rules described in Figures 4.4 and 4.7 and

discharges these constraints to the Z3 SMT solver to correctly type-check de-

signs using erasure labels.

We made several other modifications and improvements to the SecVerilog

compiler to incorporate features from other research efforts on IFC type systems

for hardware [139, 45, 46]. The modifications improved the efficiency of the

compiler (i.e., simplified the generated Z3 constraints), enabled us to precisely

type-check our most complicated examples, and fixed some bugs in existing

type checker implementations.

Permissive Label Comparisons. We have not implemented type checking for

the permissive LABELCOMP rule in the current SpecVerilog prototype. The dif-

ficulty in implementing this rule is that it requires automatically generating Ver-

ilog code from label definitions that correctly define the may-flow-to relation, as

opposed to generating Z3 constraints from Verilog code. It is certainly viable to

implement such a translation for a limited, but sufficiently expressive, subset of

Verilog expressions; nevertheless, we leave it as future work. In our example

processor implementations, we manually translate label comparison operations

into Verilog expressions and use a declassify statement to explicitly label the re-

sult as per the LABELCOMP rule.
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obs(τ) = τ′ obs(τ1 u τ2) = obs(τ1) u obs(τ2)

obs(τ1 t τ2) = obs(τ1) t obs(τ2)
obs(b1

c(~x)↗b2) = obs(b1)
obs(b) = b

Figure 4.8: The obs function defines the visibility of data with a given la-
bel. Erasure labels use their lower bound.

4.5 Security Guarantees

In this section, we formalize SpecVerilog’s security guarantees. First, we de-

scribe noninterference and end-to-end erasure, conditions that hold for all well-

typed SpecVerilog programs. Then, we define Transient Noninterference with

respect to an abstract processor model. Finally, we show how to use erasure

labels on a real processor design to statically guarantee that it satisfies Transient

Noninterference.

4.5.1 Noninterference and Erasure

SpecVerilog provides traditional IFC-style security guarantees, which we for-

mally describe in this section.

Observational Equivalence. First, we define how an observer (i.e., attacker)

can distinguish different executions. We assume that an observer can be defined

by a level, l. They can observe the value of any variable which may influence

data with level l. Additionally, since the labels of variables may change during

execution, we consider the set of variables that may influence l to be visible to the
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observer as well. We define an observation function in Figure 4.8 that translates

labels in a given environment into the corresponding observable lattice level.

The interesting part of this function is for erasure labels, which defines the lower

bound of the erasure label to be the observable level. Data marked by an erasure

label is considered visible at the lower bound until it must be erased.

Given this observation function, we can define observational equivalence.

When two program states are observationally equivalent with respect to some

level, l, any attacker that can observe l cannot distinguish the two states.

Definition 4.1 (Observational Equivalence). We define two states to be observation-

ally equivalent w.r.t level l (σ1 ≈l σ2) when:

∀x ∈ VARS. o = obs(Γ(x)) ∧ o σ1
v l ⇐⇒ o σ2

v l∧

o σ1
v l =⇒ σ1[x] = σ2[x]

Well-typed SpecVerilog programs exhibit noninterference. Simply put, non-

interference ensures that, if an attacker cannot distinguish two states, then the

attacker will not be able to distinguish the result of executing those states.

Definition 4.2 (Noninterference). A program is noninterfering if for an attacker de-

fined by an observation level l, observational equivalence is preserved during execution:

∀l ∈ L, i ∈ {1, 2}.σi −→ σ′i ∧ σ1 ≈l σ2 =⇒ σ′1 ≈l σ
′
2

These definitions of observational equivalence and noninterference are stan-

dard for IFC systems with dynamic labels and mirror those of SecVerilog.

End-To-End Erasure. All well-typed SpecVerilog programs also enforce end-

to-end erasure. Intuitively, erasure ensures that, once an erasure policy’s condi-
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tion is fulfilled, the labeled data must only have influenced state that can be

observed at or above the upper label. Our definition of erasure is inspired by

Hunt and Sands [58], but we modify it to account for our definition of observ-

ability, and also to incorporate dynamic labels and semantic erasure conditions.

While the following specification of end-to-end erasure is dense, it can be

summarized concisely. If, at any point, some variable will eventually need to

be erased, then replacing that variable with an uninterpreted value and contin-

uing execution results in a post-erasure state that is indistinguishable (for a low

observer) from an execution that uses the original value.

Definition 4.3 (End-To-End Erasure). Given an infinite trace of system states:

σ0 −→ σ1... −→ σn..., if for all variables x, the erasure policy of x in state σi is ever

satisfied in some future state, σ j, then replacing x in σi with an uninterpreted value (⊥)

results in a future state that is l-equivalent to σ j+1 for any l that the upper bound on x’s

erasure policy cannot observe.

∀i, j, x,c(~y), b, l. i ≤ j ∧ (c(~y), b) ∈ eraseTo(Γ(x)) ∧

~v = σi[~y] ∧ σ j � c(~v) ∧ σ′i = σi[x 7→ ⊥] ∧

σ′i −→
j−i+1σ′j+1 ∧ b σi

@ l

=⇒ σ′j+1 ≈l σ j+1

This definition relies on the eraseTo function, which returns a set of pairs of

erasure conditions and levels. When the condition evaluates to true, the variable

must be erased to the given level. For simple erasure labels, eraseTo is specified

in the obvious way, returning the erasure condition and the upper bound label.

Definition B.1 in the appendix describes the complete eraseTo function.

128



4.5.2 Speculative Security

Here we formalize a strong and usable definition of speculative security and

sketch how SpecVerilog can enforce this condition by applying Temporal

Ordering-based labels.

Attacker Model. Most prior models of speculative security [51, 50, 130] are

made with respect to an attacker that can make direct observations of microar-

chitectural state or actions (such as caches, branch predictors, or speculatively

loaded addresses). However, these models can both lead to unsoundness by

overlooking potential attacks or, conversely, overestimate the attacker’s power.

Instead, we model software-level timing side-channel attackers more real-

istically: attackers can observe the time at which each instruction completes

but they may not observe intermediate microarchitectural states. Our model

faithfully reflects an attacker that can execute code on the processor and make

deductions from the timing of its execution, but does not reflect the power of

attackers with physical access to the hardware (who might exploit other side-

channels such as power or EM radiation).

Transient Noninterference. As mentioned in § 4.2.4, Transient Noninterfer-

ence effectively enforces a security condition defined by prior work, transient

non-observability. However, in order to formally show that Transient Nonin-

terference is safe with respect to our strong attacker model, we use a definition

more similar to Unique Program Execution (UPE) [43], a baseline confidential-

ity condition for processors. UPE says that if secret architectural state (register

or memory contents) can be leaked to an attacker via timing channels, then that

129



state must also affect the values of attacker-visible architectural state4.

So far, we have argued that erasure labels can be used to enforce Temporal

Ordering. However, Temporal Ordering is not sufficient to enforce UPE (and

Transient Noninterference) on its own. Processors may pathologically leak in-

formation about arbitrary architectural state via timing channels even without

speculative execution. For instance, a processor satisfying Temporal Ordering

could use an arbitrary value in memory to pre-fetch cache lines, or to otherwise

delay instruction commit; implementations exhibiting these behaviors would

violate UPE. While these sorts of leaks do represent potential bugs, they are of

the kind that architects and functional verification tools are likely to find and

eliminate since they are likely to either break functionality completely or result

in noticeable performance regression in the common case, rather than in the

edge case. To get a verifiable guarantee that a processor is free of such bugs,

a designer would need to use a tool that concretely defines the ISA specifica-

tion and relates it to the generated circuit (e.g., PDL, our high-level hardware

description language described in Chapter 3) or they would need to manually

define the relationship themselves; both of these are out of the scope of SpecVer-

ilog.

Therefore, we prove a slightly weaker theorem by restricting our guarantee

to processors that only read architectural state associated with some transiently

executed instruction5. We formalize this assumption by defining an abstract

OoO processor semantics, which Figure B.1 in the appendix depicts.

The processor consists of the following components:

4 Secret here is defined with respect to an arbitrary architecture–level security policy. “Secret”
architectural state is simply an arbitrary partiion of the architectural state.

5 Note that most defenses to transient execution attacks provide similar guarantees, as it is
generally assumed processors do not exhibit these kinds of pathological vulnerabilities.
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Syntax Description

rob Reorder buffer for in-flight instruction metadata

A Architectural state (registers, memory, and pc)

µ Microarchitectural state

The processor can: speculatively fetch instructions, placing them into the

rob; execute instructions, updating µ based on the ISA–defined semantics that

instruction; commit instructions, removing them from the rob and updating A;

and rollback state upon discovering mispredictions. The processor has an abstract

scheduler that determines which operations to run each cycle and is a function

of µ and any architectural state read by instructions in the rob. We assume that

the scheduler respects registered hardware semantics (i.e., persistent state can

only be written once per clock cycle).

We use the ~·� notation to extract the (infinite) trace from executing a given

processor configuration:

~P1� = A0 A1 ... An ...

This trace contains the entire architectural state on every clock cycle during the

processor’s execution.

We also define observation functions to express both architectural and

timing-sensitive attackers.

Definition 4.4 (Low Architectural Observer). A low architectural observer (Ol) is

defined with respect to an arbitrary subset of the architectural state (Al ⊆ A). This

observer can view the time-independent sequence of low architectural states.

Ol(A0 A1 ...) = if (Al0 = Al1) then Ol(A1 ...) else Al0 Ol(A1 ...)
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Definition 4.5 (Timing-Sensitive Observer). A timing-sensitive low observer (Tl)

can observe the Al on every clock cycle.

Tl(A0 A1 ...) = Al0 Al1 ...

Lastly, we formally define Transient Noninterference, which can be enforced

via Temporal Ordering and SpecVerilog-checked erasure labels.

Definition 4.6 (Transient Noninterference). Processor P exhibits Transient Non-

interference if, for any partitioning of A, if executions are indistinguishable to a low-

architectural observer, then they are indistinguishable to a timing-sensitive observer.

∀i ∈ 1, 2. Pi = 〈robi, Ai, µi〉,

Ai = 〈Ali, Ahi〉, Al1 = Al2, µ1 = µ2, robi = pci

Ol(~P1�) = Ol(~P2�) =⇒ Tl(~P1�) = Tl(~P2�)

4.5.3 Enforcing Transient Noninterference

In this section, we briefly justify both why a processor that satisfies Temporal

Ordering must also satisfy Transient Noninterference, and also how properly

applied erasure labels enforce Temporal Ordering using the processor seman-

tics from Figure B.1. Note that this model assumes that the only source of spec-

ulation is next-instruction prediction; this assumption is simplifying for presen-

tation but not necessary. We discuss how to extend these results to more general

speculation in § 4.8.

Temporal Ordering enforces Transient Noninterference. The timing behav-

ior of any processor that refines the semantics in Figure B.1 is only a function of
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three things: data read by instructions that commit; data read by those that only

transiently execute; and the initial microarchitectural state.

Temporal Ordering restricts influence so that different paths of speculative

execution cannot influence each other; therefore, varying transiently read data

has no impact on timing. Furthermore, by assumption, execution results in the

same set of low-architectural observations. Since timing is therefore only a func-

tion of low-architectural state, time-sensitive observations of low-architectural

state are also independent of architectural secrets.

Erasure labels enforce Temporal Ordering. We use the ROB labels described

in § 4.3.4 to label our abstract processor. The ROB always contains a reference

to the oldest instruction that is currently executing and it is guaranteed to even-

tually commit; we call the index of this instruction in the ROB the head. We

label each entry in the ROB recursively based on its index, i, with the label:

SL(i, head). All committed state has the same label as head; effectively we stop

precisely tracking which instruction influenced architectural state once that in-

struction is guaranteed to commit. The rest of the processor is labeled such that

it type-checks in SpecVerilog (and thus is guaranteed to respect noninterference

and end-to-end erasure).

Here, we argue that noninterference and end-to-end erasure when using

these labels on an abstract OoO processor guarantees Temporal Ordering. All

state in the processor is a function of the architectural state accessed by some

set of instructions, therefore so is the time at which each instruction commits.

We write I(x) to denote the set of instructions that have influenced register x

at some point in the execution. We use the notation from Figure 4.1 to denote

133



instructions across speculative program orders. i[s1,...sn]
j denotes instruction j that

was the result of the (incorrect) speculative predictions s1 through sn.

Theorem 4.1 (Enforcing Temporal Ordering). For any two registers in a well-typed

P, x and y, if x may influence y according to SpecVerilog, then that influence obeys

Temporal Ordering.

∀x.y.i[s1,...,sn]
j ∈ I(x),i[p1,...,pn]

k ∈ I(y), σ.

Γ(x) σvΓ(y) =⇒ i[s1,...,sn]
j

T
=⇒ i[p1,...,pn]

k

The proof is relatively straightforward and relies on one main lemma; each

register is only influenced by instructions from one speculative program order.

Lemma 4.1. For any register, x, in a well-typed P,

∀i[s1,...,sn]
j , i[p1,...,pn]

k ∈ I(x), j ≤ k =⇒ [s1, ...sn] � [p1, ..., pn]

where � is prefix order.

Intuitively, Lemma 4.1 means that, following a misspeculation event, there

are no remnants of the misspeculated instructions; the processor is always ex-

ecuting down only one speculative road at a time. Lemma 4.1 follows from

end-to-end erasure, and induction on the OoO processor semantics. We include

a proof sketch in Appendix B.2. Here we sketch the proof for Theorem 4.1.

Proof Sketch. In any given state, if Γ(x) σvΓ(y), then x is ordered before y in some

speculative program order (by the processor semantics and ROB labels). By

Lemma 4.1, I(x) and I(y) must each only contain instructions from a single

speculation path; it must in fact be the same speculation path since they are

ordered. Therefore, we have I(x) ⊆ I(y), which directly implies Theorem 4.1.

�
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4.6 Case Studies

Case Study Annotation Burden (Lines) Register Solver Time

Labeled Changed Original Overhead (sec)

Reorder Buffer 22 5 86 None 0.247
Cache + GM 250 9 1527 None 1.43
Predictor 16 0 68 None 0.104
Predictor + GM 38 6 157 None 0.993
Renaming RF 117 26 366 1 label/replica 36.9

Case Study Mitigation Strategy SpecVerilog Features Used
Delay Rollback Partition

Reorder Buffer – X – Label comparisons, Input assertions,
Valid-entry labels

Cache + GM X X X Label comparisons, Valid-bit labels,
Explicit erasure

Predictor X – – Label comparisons or Input assertions
Predictor + GM X X X Label comparisons, Valid-bit labels
Renaming RF X X – Label comparisons, Input assertions,

Valid-bit labels

Table 4.1: A qualitative summary of secure hardware module case studies. An-
notation burden is relative to a secure design in plain Verilog. Labeled
counts the lines that needed explicit labeling. Changed includes mod-
ifications and additions needed to satisfy the typechecker. Original is
the total lines of the original Verilog description.

In addition to our theoretical results, we have empirically evaluated the

utility of SpecVerilog through a number of case studies. Table 4.1 provides a

high-level summary of our case studies, the re-write effort required to satisfy

the type-checker, and the mitigation techniques demonstrated by the example.

Each of our case studies targets a component that is critical to the design of

speculative, OoO processors. Some are known to contribute to transient execu-

tion vulnerabilities, while we chose others to illustrate that SpecVerilog can still

accept complex, yet safe, designs. For each of these case studies we used the

ROB-based labels described in § 4.3.4 to label module inputs and outputs.
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4.6.1 Case Study Modules

Reorder Buffer. We implement the skeleton of a reorder buffer to illustrate

that our source of truth for labels can be implemented securely and with min-

imal assumptions about functional correctness. Our ROB supports insertion,

misspeculation and instruction commitment; we leave the data stored in each

ROB entry abstract for this example.

Discussion. In this module (and all of our case studies), in order to type-check,

we had to assume that the oldest entry in the ROB would never be misspecu-

lated; this follows directly from functional correctness and is essentially a min-

imal assumption. Another way to phrase this would be to say that we assume

that the first instruction ever executed is non-speculative and that the misspec-

ulation signal is computed correctly with respect to the ISA semantics.

To implement erasure, we used a dynamic label that only marked entries

between the head and tail of the ROB as valid; this enabled us to type-check

a normal ROB since resetting the tail pointer upon misspeculation effectively

“erased” misspeculated entries.

Cache. We implemented a blocking, direct-mapped L1 cache in SpecVerilog

and labeled its interface so that all requests and responses were associated

with some instruction. Responding to requests requires multiple cycles and

so the cache maintains state associated with the current request. We also built

a GhostMinion-like [3] module to store cache lines from speculative requests

which were promoted to the original cache on instruction commit.
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Discussion. Even with such a simple design, SpecVerilog forced us to im-

plement essentially all of the mitigation mechanisms described in the original

GhostMinion work: free-slotting, time-guarding, and leapfrogging. We did not

need to add extra state or dynamic checks beyond those needed for the above

mitigation techniques and SpecVerilog ensured that our they were implemented

safely.

Branch Predictor. We built a standard 2-bit history predictor. To ensure this

design was safe we had to insert a dynamic check that ignored speculative up-

dates to its state. Alternatively, this check can be established as an assumed pre-

condition on valid requests. In addition, we made a second version applying

the GhostMinion methodology to allow speculative updates to predictor state.

Discussion. Branch predictors can be the targets of speculative fetch redirect

vulnerabilities [74]; the usual method of defending against this is by delaying

updates to predictor state. Our design represents this delay mitigation by forc-

ing some dynamic check, either in the predictor or in an instantiating module.

Renaming Register File. Renaming register files are not typically vulnerable

to transient execution vulnerabilities; however, they do mix speculative and

committed state and their safety relies on invariants established by functional

correctness. We modify an existing implementation so that it type-checks in

SpecVerilog.

Discussion. This was the only module where SpecVerilog forced us to add ex-

tra state and/or dynamic checks to convince the solver that the implementation
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was secure. We needed to add explicit labels for name file replicas that are used

to reset the architectural-to-physical name mappings upon misspeculation. This

modification would only require a few hundred bits for a realistically sized im-

plementation. In a traditional processor these bits would typically be tracked

elsewhere (usually in the ROB), so this rename file overhead would not actually

imply any extra storage overhead for the complete processor implementation.

Additionally, we had to change some of the logic that updated the list of free

names; the original logic was safe but only due to invariants that could only be

established with gate-level reasoning (e.g., a tool like GLIFT [113]). However,

we were able to encode some invariants about valid usage of the rename file

as input assumptions to reduce the number of redundant dynamic checks that

would be established in the processor control logic.

4.6.2 Experience Report

While developing these case studies, we learned several key takeaways about

designing secure hardware in SpecVerilog:

• SpecVerilog frequently forced us to fix potential vulnerabilities. These bugs

included both forgetting to invalidate misspeculated data or metadata and

also incorrectly handling interactions between different speculative requests.

• We did usually have to syntactically alter designs for them to be accepted by

SpecVerilog, although this did not often change their functionality or require

extra state.

• Some designs are only secure under certain assumptions. These assump-
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tions often directly follow from functional correctness, and could be verified

separately, either using traditional hardware verification or by establishing

the necessary invariants via another hardware module. SpecVerilog required

us to make those assumptions explicit as input assertions when typechecking

our designs.

At a high level, many of the reported typechecking errors we encountered

were subtle and it was difficult to know whether pre-existing code was insecure

or if SpecVerilog was incorrectly rejecting a design due to imprecision; most of

the time it turned out to be the former. Usually, we discovered this by re-writing

the relevant logic from a blank slate, guided by the SpecVerilog type-checker; it

was much easier to build a secure design than fix an insecure one.

Annotation Burden. Most of the required design effort is from explicitly

defining and annotating labels. We wrote 21 lines of Z3 SMT constraints to

specify the definitions of dynamic labels and erasure conditions across all ex-

ample combined; these label definitions represents a one-time effort and can be

reused in other designs. Neither SpecVerilog nor its predecessor, SecVerilog,

have label inference, and therefore all registers and wires in the design must

have their labels annotated by the programmer. While standard IFC inference

algorithms [82] could be used to ease some of this burden, erasure labels and

per-element labels [46] complicate this problem and would require further in-

vestigation. The other primary source of changes we needed to make to assist in

type checking was translating some dynamic checks to use the “flows to” oper-

ator, instead of an equivalent logical formulation. Typically, these changes did

not alter functionality in any way but allowed SpecVerilog to prove the safety

of the design.
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Register and Logic Overhead. We almost never needed to add extra registers

to verify secure designs since the relevant valid bits or instruction identifiers

were often necessary to implement a secure design. However, in a few instances

we did need to add redundant dynamic checks that could lead to some unneces-

sary overhead in the final designs. This redundancy was caused by imprecision

in the static analysis used by SpecVerilog to prove relationships between dy-

namic labels; improving the precision of this analysis could enable removing

these redundant checks.

Compile Time Overhead. SpecVerilog imposed little compile-time overhead.

All of our examples compile and type-check in less than one minute and most

complete in less than one second, despite relying on an SMT solver. The vast

majority of the compile time was spent in the solver and Table 4.1 shows those

time for each case study. Even the most complex individual queries that relied

on the Z3 theory of arrays took no more than ten seconds. When a design is inse-

cure, Z3 provides a counterexample that violates the type-checking constraints.

4.7 Related Work

4.7.1 Architectural Mitigations

Since the discovery of Spectre and Meltdown, dozens of microarchitectural

mitigation mechanisms have been proposed (e.g., [129, 4, 3, 127, 74, 97]).

Xiong and Szefer [126] survey microarchitectural mitigation techniques. While

some designs come with formal security conditions [74, 129], or even security
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proofs [130], none of these designs (to our knowledge) are formally checked for

correctness at the RTL level. Most are implemented in the architecture simula-

tor gem5 [18], which does not accurately capture timing behavior and does not

describe synthesizable circuits.

SpecVerilog is an RTL-level language that can be used to implement and

verify the security of many of these mitigation mechanisms. Most of these mit-

igations rely on a combination of delaying potentially leaky operations, rolling

back speculative modifications, partitioning state, and taint tracking. SpecVer-

ilog’s information flow type system with erasure labels can be used to validate

defenses using all of these techniques. However, some defenses leverage ran-

domness [120, 123, 65]; SpecVerilog would likely consider them insecure since

it cannot reason about probabilistic security.

Orthogonally, some security-centric architectures [131, 47, 128] include an-

notations that enable software to specify fine-grained protection of specific pro-

cessor data. SpecVerilog could be used to check the security of speculative im-

plementations of these architectures.

4.7.2 Secure Hardware Design Tools

In this work, we extend SecVerilog [139, 45, 46], one of a few information flow

type systems for secure RTL design [71, 70, 47, 37]. While some of the above

allow dependent security labels, none of them have been used to defend spec-

ulative security conditions. In addition to type systems, there are a number of

other static analysis tools for secure hardware design.
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GLIFT [113, 57] tracks information flow at the gate level and leverages prop-

erties of boolean logic for high precision. RTLLIFT [7] applies similar techniques

but improves verification performance by working at the RTL level; both tools

lack scalability due to the inherent complexity of the approach.

Clepsydra [6] and Xenon [115] are designed to check RTL designs for timing

side-channels. Clepsydra verifies coarse-grained timing security polices such

as constant-time execution and timing isolation. Xenon, an interactive tool for

verifying constant-time execution, scales to more complex circuits, including

in-order processors. Neither tool has been applied to security of transient exe-

cution.

The only static analysis tool that can verify processor speculation security

properties is that of Fadiheh et al. [43], based on Unique Program Execution

Checking. Unlike SpecVerilog, their tool requires significant manual proof effort

from the user.

4.7.3 Information Flow Erasure Policies

Information flow erasure policies [29] were originally defined as part of a type

system for software. However, Chong and Myers assume that a run-time moni-

tor enforces erasure policies via dynamic clearing. Hunt and Sands [58] describe

a type system that statically enforces erasure, although when to erase data is

defined syntactically via scope rather than semantically. Stewart et al. [106] use

dependent types to support erasure within data structures.

Our erasure labels expand upon these systems through semantic erasure

142



conditions that specify when data should no longer be used, are statically en-

forceable, and that leverage dependent types to mix and reuse state across secu-

rity levels.

4.7.4 Speculation-Secure Software

There have been many efforts to verify the security of software given various

speculative hardware semantics [27, 50, 118, 25, 51, 81]. These all adopt abstract

processor semantics and leakage models. However, unlike the semantics we as-

sume in § 4.5.2, they often rely on more specific assumptions about processor

behavior and do not incorporate time explicitly into their attacker models. This

is a reasonable choice for these tools since the timing and speculative behav-

ior of processors is unspecified by the ISA. However, explicitly timing-sensitive

guarantees like Transient Noninterference and UPE provide more complete se-

curity and we believe should be the gold standard for secure processor imple-

mentations. Guarnieri et al. [51] have proposed hardware–software contracts

to bridge this abstraction gap. Transient Noninterference prevents leakage of

architecturally accessed state, corresponding to their ~·�seq
arch contract.

4.8 Discussion & Conclusion

SpecVerilog enables the verification of speculative security guarantees of RTL

designs via the incorporation of erasure labels into an IFC type system. Here,

we present a final discussion of some of the benefits, potential and limitations

of SpecVerilog with respect to secure processor design and verification.
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Processor Verification. Verification of Transient Noninterference or similar

conditions fundamentally requires reasoning about functional correctness since

the definition of speculation is relative to the ISA-specified behavior. SpecVer-

ilog provides a clean divide between functional verification and security anal-

ysis via erasure conditions. Erasure conditions abstract when misspeculation

occurs without having to reason about why it occurs. In this way, traditional

processor verification techniques and tools can be used to prove the assump-

tions needed by erasure labels (such as “the oldest instruction always commits”)

while SpecVerilog can handle vulnerability checking.

Generalizing Speculation. We have described a single methodology for OoO

processor labeling and speculation, but SpecVerilog is not limited to next-

instruction prediction or to the ROB labels we chose. SpecVerilog can be used to

check other erasure conditions that incorporate multiple sources of speculation,

such as branch prediction and value prediction; however, we have yet to imple-

ment and type-check such a design. A key subtlety in this case is that not all era-

sure labels are guaranteed to be ordered, so dynamic scheduling is more difficult

to implement securely. Furthermore, labels could be assigned per branch rather

than per instruction to achieve more precise reasoning about potential vulnera-

bilities; although this requires reasoning about the separation between “front-

end” speculation that applies to every instruction fetch, and branch speculation.

Erasure Expressivity. Modern processors also do not necessarily propagate

control signals globally in a single cycle, due to latency and power constraints.

Additionally, some misspeculation clean-up implementations take multiple cy-

cles and thus do not satisfy our definition of end-to-end erasure. SpecVerilog
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cannot represent the propagation or resolution of delayed misspeculation: era-

sure must happen synchronously and immediately. To support these feature,

we believe SpecVerilog could incorporate explicit temporal logic operators (e.g.,

“next”) into erasure conditions.
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CHAPTER 5

CONCLUSION

This dissertation has presented three different efforts to address timing chan-

nels and the construction of correct and secure hardware. We have shown how

IFC can be used to define a contract between hardware and software that can

prevent timing channels without completely exposing processor implementa-

tion details. We have also demonstrated two techniques for building processors

that refine such a secure contract: using a high-level HDL to construct proces-

sors whose behavior can easily be related to the software-visible semantics; and

leveraging IFC types to securely implement efficient processor modules that are

invulnerable to transient execution attacks.

Nevertheless, this dissertation addresses only a small part of the entire

hardware–software stack and there remain plentiful research opportunities to

expand upon this work. Not only can the solutions and ideas presented here

be expanded upon to improve their completeness and utility, but we can also

begin to reimagine the underlying design assumptions of the entire hardware–

software stack in the context of a new security contract and new hardware im-

plementations. To conclude, we highlight some of these high-level takeaways

and implications of this dissertation’s contributions.

5.1 Contracts for Timing-Channel Security

Both the ISA presented in Chapter 2 and the speculative security condition pre-

sented in Chapter 4 adopt IFC. This is in contrast to traditional ISAs, which only

define how instructions should behave, given the current processor state (e.g.,
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“a memory access to a privileged address should cause an exception if the pro-

cess status register is set to user mode”). These security conditions effectively

close the side-channel loopholes, or at least makes their leakage explicit, as op-

posed to completely undefined.

Going forward, we believe there are two key questions for exploring these

new kinds of hardware–software contracts:

1. What features do these contracts still need to support practical systems

and what vulnerabilities might these new features expose?

2. How can low-level software and operating systems leverage the ISA’s

stronger security guarantees to improve performance or provide finer-

grained isolation?

5.2 Secure ISA Features and Design

Chapter 2 describes some of the ISA features we need to support realistic sys-

tems software. In particular, it addresses key replacements for traditional sys-

tem call instructions necessary to implement the privileged–unprivileged soft-

ware boundary and the labeling instructions necessary for memory manage-

ment. In fact, as a demonstration, we have ported some of the core features

of the freeRTOS [13] operating system using our IFC ISA1. One property our

demonstration enforces (by using the appropriate labels) is that all access to

I/O must go through the OS network stack and is invulnerable to confused

deputy [53] attacks.

1 The code can be found at https://github.coecis.cornell.edu/HyperFlow/
freeRTOS-riscv/tree/labels
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However, a significant amount of engineering and security design remains

to securely support other ISA features needed to build a fully featured OS: mi-

croarchitectural flushing/performance management, interrupt handling, multi-

core architectures, synchronization primitives, and virtualization. Specifically,

label virtualization is going to be a key feature for realistic systems; the hardware

can only efficiently represent a small number of IFC labels concurrently, and it

is likely to be much smaller than the number of security domains real systems

need to represent.

Supporting virtualization for most hardware components is not likely to

pose too difficult a challenge; a trusted component of the operating system can

manage allocation of labeled hardware resources (e.g., physical memory). La-

bel virtualization itself is likely a much less trivial (though certainly possible!)

addition to these ISA, as it adds a further complication to the “label of labels”

problem discussed in prior chapters and in the dynamic IFC literature. With

virtualized labels, the hardware needs to maintain structures that translate soft-

ware labels to those supported natively by the ISA checks, while trusted soft-

ware needs to create and maintain those mappings.

Another direction worth investigating is how IFC–defined ISAs relate to ca-

pability architectures like CHERI [125]. CHERI solves some of the aforemen-

tioned challenges with tagged memory architectures, but also provides a very

different set of security guarantees.

Finally, many efforts to enable constant-time programming [25, 118] in the

face of Spectre assume that the ISA supports speculation fences to limit the influ-

ence of speculative execution. It would be interesting to incorporate such prim-

itives into our IFC–inspired ISA to provide even more flexibility to software. In
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this way, the influence of timing channels could be limited either based on se-

curity annotations, expected functional behavior, or some combination thereof.

5.3 Opportunities for Secure Software Stacks

Although speculative security conditions like the one described in Chapter 4

seek just to reclaim the sane hardware semantics we always thought we had,

our ISA from Chapter 2 inspires rethinking how to build the entire hardware–

software stack.

With strong, hardware-enforced physical memory protection (from both di-

rect access and side-channels), we can start to rethink decades-old assumptions

about how software security is enforced. For instance, memory management

is traditionally fully intertwined with address translation; in order to benefit

from memory protection, software has use virtual memory. For many applica-

tions, virtual memory can come at a significant price; a single memory access

can translate into five on a TLB miss, or up to 25 when running a virtual ma-

chine. We explored the potential benefits of directly accessing physical memory

and found that certain applications are likely to significantly benefit, while en-

abling much simpler hardware designs [132]. Other researchers have explored

separating translation and protection at the software level [109]; however, there

remains many opportunities to leverage novel hardware memory protection

mechanisms and architectures.

Another opportunity is improving the security of hypervisors and operating

systems, and enabling fast and efficient control transfer for system call–heavy

code. Typically, context switching between processes or switching between
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privileged and user modes is costly since hardware structures like the cache and

TLB must be explicitly flushed to prevent timing channels, and address spaces

must be switched as well. Our ISA highlights the opportunity that architec-

tures with stronger, microarchitecture-level, security guarantees afford; they can

support efficient and safe security domain switches.

In particular, such an ISA can enable efficient microkernel operating sys-

tems [35] that split the kernel into separate components for each feature. We

can use different IFC labels for different components, guaranteeing that each

has the minimal authority necessary to execute, while still providing efficient

communication between applications or components. Our ISA naturally lends

OS and application development to follow the principle of least privilege, po-

tentially without sacrificing any overhead for the increased number of security

domains. Even in traditional monolithic kernels, applications could make use

of security labels to implement efficient user level sandboxing.

5.4 Designing and Verifying Secure Hardware

While this thesis has made significant headway into verifying the security and

correctness of processor implementations, our contributions are only the begin-

ning. The ISA in Chapter 2 requires the processor to defend a condition called

microarchitectural noninterference. The efforts in Chapters 3 and 4 partially ad-

dress how to formally guarantee that a hardware implementation satisfied this

condition. To completely verify the correctness and security of real processor

implementations, we need to combine the functional guarantees of PDL with

the security guarantees of SpecVerilog.
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These two tools are in this way complementary; with the addition of IFC

labels, PDL can be used to verify that a processor design implements the ex-

pected behaviors of an IFC ISA; however it is still slightly unclear how one

would prove microarchitectural noninterference of the generated circuit. We

imagine this can be done in three parts: first, providing stronger guarantees

about the logical schedule that the PDL compiler generates; second, proving se-

curity properties about the linked RTL libraries used to implement locks and

external modules; and finally, guaranteeing that the composition of PDL with

secure libraries results in a secure overall design. Using this methodology, we

could potentially augment PDL and SpecVerilog to build provably secure out-

of-order processors.
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APPENDIX A

APPENDIX TO CHAPTER 2

A.1 Definitions

We begin by restating some definitions from §2.2. Here, li, i and c represent

elements of Lbl.

(i, c)→ , c

(i, c)← , i

l1 v l2
4

⇔ (l←1 v l←2 )(l→2 v l→1 )

l1 t l2 , ((l→2 t l→2 ), (l←1 u l←2 ))

l1 u l2 , ((l→2 u l→2 ), (l←1 t l←2 ))





J
JJ (i, c) , (c, i)

Call stack validity can be formalized as:

CST = ((pcl0, pcv0, tl0, tv0)...(pcln, pcvn, tln, tvn))

ISVALID(CST) , ∀i ∈ (0, n − 1).(pcli v pcli+1 or pcli+1 v pcli)

ISVALID(CST , pcl) , ISVALID(CST) and (pcl v pcl0 or pcl0 v pcl or CST = ∅)

ISVALID (CST ,pcl) can be read as “CST is valid for pcl”, meaning that the call stack

itself has ordered entries and the pcl is ordered with respect to the head of the

call stack. This restriction maintains the idea that call gates cannot be freely

mixed with moving the pcl around via raiselbl; call gates need to reflect the
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actual sequence of control transfer agreed upon when the gates are established

via dwncall or upcall.

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M′, L′, pc′, tl〉

¬INUPCALL L(M(pcv)) @ pcl ∨ pcl @ 



J
JJ (pcl)

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, (errorpc, pcl), tl〉
ALL PC ERROR

¬INUPCALL L(rs1) t L(rs2) @ pcl

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, (errorpc, pcl), tl〉
BRANCH ERROR

¬INUPCALL l′ = γ(Rs1) (L(rs1) @ pcl) ∨ (l′ @ 



J
JJ (pcl))

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, (errorpc, pcl), tl〉
UPLBL ARG ERROR

¬INUPCALL l′ = γ(Rs1) (L(rs1) @ pcl) ∨ (l @ 



J
JJ (pcl))

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, (errorpc, pcl), tl〉
RELBL ARG ERROR

¬INUPCALL L(rs1) t L(rs2) @ pcl

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, (errorpc, pcl), tl〉
RAISELBL ARG ERROR

¬INUPCALL L(rs1) t L(rs2) t L(rs3) t L(rd) @ pcl

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, (errorpc, pcl), tl〉
UPCALL ARG ERROR

(GR(Rs1) = ∅) ∨

(∅ , CST[head]) ∨ (L(rs1) @ pcl) ∨ (pc′l t t′l a pcl)

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, (errorpc, pcl), tl〉
DWNCALL ARG ERROR

¬INUPCALL

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, (pcv + 4, pcl), tl〉
OTHER ERROR

INUPCALL

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ,M, L, pc, tl〉
UPRET ERROR

Figure A.1: Operational semantics for error handling rules given a call-
gate registry GR.
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Definition A.1 (Call Stack Validity).

A call stack, CST , is valid with respect to the current pcl if it represents an uninter-

rupted sequence of call gate calls and returns.

A configuration is valid if it has a valid pcl, tl and CST :

Definition A.2 (Configuration Validity).

A configuration, C, is valid iff:

• pcl v 



J
JJ (pcl),

• pcl v tl,

• tl v 



J
JJ (tl),

• and CST is valid for pcl.

This validity condition captures the notion that the pcl and tl remain uncom-

promised, in addition to call stack validity.

Notation. Two low-equivalent configurations C1 and C2 contain state such as

pc or tl which may vary between them or be the same. When the values must

be equivalent in both configurations we omit subscripts. When they may differ,

we use subscripts to denote to which configuration they belong.

A.2 Proofs

Based on our attacker definition, all secret and untrusted labels are compro-

mised.
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Lemma A.1. For S andU sets induced by an attacker:

∀l ∈ Lbl. l ∈ S ∩U =⇒ l @ 



J
JJ (l)

Proof. Recall that attacker-induced sets are defined as upward-closed sets with

a minimum confidentiality cA and a maximum integrity iA. The label (iA, cA) is

itself compromised and by Definition 2.1, we have (iA, cA) @ (cA, iA).

The upward closure property implies ∀l ∈ S ∩ U.(iA, cA) v l. We show that

l v 



J
JJ (l) =⇒ (iA, cA) v (cA, iA) and by contrapositive, l must be compromised. We

represent l explicitly as (li, lc).

l v 



J
JJ (l) ≡ (li, lc) v (lc, li)

≡ (li v lc) ∧ (li v lc) (By definition of v )

=⇒ iA v lc (By (iA, cA) v l =⇒ (iA v li))

=⇒ iA v cA (By (iA, cA) v l =⇒ (lc v cA))

≡ (iA v cA) ∧ (iA v cA)

≡ (iA, cA) v (cA, iA) (By definition of v )

�

Lemma A.2 (No Compromised Call Stack Entries). No valid call stack will contain

any entries whose pcl is compromised.

Proof. Any instruction may only execute successfully if the pcl itself is valid. The

pcl validity condition requires that it is an uncompromised label. Therefore, any

time an upcall or dwncall succeeds and places an entry onto the stack, the

label of that entry (the current pcl) must be valid and uncompromised. �

155



Configuration validity is preserved under our instruction semantics.

Lemma A.3 (Validity of Configurations). If C is a valid configuration and C −→∗ C′,

configuration C′ is also valid.

Proof. We show that no instruction will step to an invalid configuration and by

induction, this lemma holds. Instructions upcall, dwncall, and raiselbl

check that the ISVALID (pcl,tl) condition holds for the new pcl and tl. If the new

labels would be invalid, then the current (and valid) labels are retained. Further-

more, when the upret-done or dwnret instructions execute, by Lemma A.2,

the resulting pcl and tl will be uncompromised (and a similar argument fulfills

the remainder of the ISVALID (pcl,tl) condition).

Therefore, the only validity condition we must check is call stack valid-

ity. The only instructions which change CST are upcall/upret-done and

dwncall/dwnret. Instructions upcall and dwncall explicitly require that

the current pcl is ordered with respect to the new pc (pc′l). For upcall, pcl v pc′l

and for dwncall pc′l v pcl. Since the new “head” of the call stack will

have an entry label of pcl, validity is preserved. Inductively, any dwnret or

upret-done instruction will also preserve call stack validity since the pcl of

CST’s first entry must either be ordered with respect to CST’s second entry or

CST has only one entry.

The raiselbl instruction is prohibited from changing pcl or tl whenever

CST is nonempty; therefore the only other instruction which changes the pcl

cannot violate the ordering relationship between CST [head] and pcl.

In particular, the dwncall and upcall restrictions require that pcl’ and pcl

are ordered, and then push pcl onto the call stack. The raiselbl restriction

156



ensures that pcl can only be raised when already in an upcall or when the call

stack is empty. In the latter case, validity is trivially preserved. In the former,

the upcall restrictions ensure that the label of CST[head] v pcl, which means

raising pcl will maintain that ordering. �

Lemma A.4 (Call Stack Upcall History). For any two valid configurations C1 and

C2, If C1 =L C2 and pcl ∈ L, then either both configurations are in an upcall region,

or neither is.

Proof. If either one of the call stacks is empty, then, by Definition 2.6, the other

must also be empty or all of its entries have a high pc label (which we’ll denote

pccs). If both are empty, then neither is in an upcall region.

If only one is empty, a dwncall from high to low must have generated the

head entry of that stack. An upcall could not have executed successfully since

upcall requires that the pc label of the executing context flows to the new pc

label. Since pcl is low and pccs is high, pccs @ pcl (by upward closure ofH). Fur-

thermore, since a dwncall can only be made when the call stack is empty, there

could have been no prior upcall executed without a corresponding return. In

this case, one configuration is inside a dwncall region and the other is inside

no call-gate region.

If both call stacks are nonempty, let CST i[head] = ((pcvi, pcli), (tvi, tli)). If pcli ∈

H then, by the same argument as before, both configurations must be inside a

dwncall region but not inside an upcall region. If pcli ∈ L, then pcl1 = pcl2.

This means that the most recent call gate instruction was either an upcall or a

dwncall, but it must be the same for both configurations. If it was a dwncall,

then CST i[tail] = ∅ and neither configuration is in an upcall region. �
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Lemma A.5 (Low Equivalence of Error Rules in Low Contexts). For any set of

low labels, L, and any two valid configurations C1, C2 and C1 −→ C′1 by applying an

ERROR rule, and insn . DWNLBL,DWNCALL,DWNRET

(C1 =L C2) ∧ (pcl ∈ L) =⇒ (C′1 =L C′2)

Proof. First, we show that this lemma holds for all of the error rules in Fig-

ure A.1. For any check in the form of L(var) v pcl
1, we can guarantee that the

result of that check is the same for low-equivalent configurations when pcl ∈ L.

If L1(var) ∈ L, then by the low equivalence of configurations, L2(var) =

L1(var). The evaluation of L(var) v pcl therefore results in the same outcome

in both configurations. If L1(var) ∈ H , then by the low equivalence of configu-

rations, L2(var) ∈ H . In both cases, the check will fail since H is upward closed

and pcl ∈ L. By Lemma A.4, either both configurations are in an upcall region,

or neither is. Therefore the INUPCALL check has the same result for C1 and C2.

All of the rules in Figure A.1 contain only checks of the form L(var) v pcl
2 and

INUPCALL checks. Since the outcome of the label checking must be the same

in both configurations, updating the pcv to errorpc does not violate low equiva-

lence in the resulting configurations.

We now consider the label checks specific to various instructions.

Branch/Jump:

These label checks only contains checks of the form L(var) v pcl. By our

earlier argument, the BRANCH ERROR rule from Figure A.1 always results in

low-equivalent configurations.

1Or of the form L(var) @ pcl
2Or L(var) v 




J
JJ (pcl) which does not change our reasoning.
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Compute/Load/Store:

The checks for these instructions ensure that all of the labels of the operands

flow to the label of the destination. Wlog. we can analyze a check of the form

L(v1) v L(v2).

Let us consider the four possible cases that C1 can evaluate:

Case 1) L(v1), L(v2) ∈ L

In this case, by the low equivalence of configurations both L1(v1) = L2(v1)

and L1(v2) = L2(v2) and so the success or failure of the label check is the

same for both configurations.

Case 2) L(v1) ∈ L, L(v2) ∈ H

In this case, L1(v1) = L2(v1) and L(v2) is high in both configurations. It is

possible that this label check fails in C1 but succeeds in C2 or vice versa.

Case 3) L(v1) ∈ H , L(v2) ∈ L

In this case the check will fail in both configurations, since H is upward

closed and L(v1) is high in both configurations.

Case 4) L(v1) ∈ H , L(v2) ∈ H

Like case 2, this label check could fail in only one of the configurations,

since not all high values flow to one another.

In cases 1 and 3, both configurations will fail (this lemma considers only the

cases where C1 fails label checking) and therefore neither will update memory

or label state, which implies that low equivalence will be preserved. In cases 2

and 4, the L(v2) is a high label. This means that even if the operation succeeds
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in one configuration and not the other, the changes to memory happen only on

elements with high labels. Therefore, memory low equivalence is preserved.

Uplabel:

UPLBL(pcl, l, l
′) , (pcl v l v l′) ∧ (l′ v 




J
JJ (pcl))

As argued above, if the UPLBL ARG ERROR rule is matched, low equivalence

is preserved since both configurations will fail this check and step to the er-

ror program counter. Let us now consider the case where an UPLBL instruction

fails label checking but the UPLBL ARG ERROR rule does not apply. In this case,

L1(rs1) v pcl and is therefore low. This implies that Rs1 is equal in both config-

urations and therefore l′1 = l′2. The l′ v 



J
JJ (pcl) component of the label check will

therefore result in the same value for both configurations. Lastly, we consider

the requirement: pcl v l v l′.

Again there are 4 cases to analyze:

Case 1) l, l′ ∈ L

In this case, l1 = l2 by low equivalence, so the label-checking result will be

the same in both configurations.

Case 2) l′ ∈ L, l ∈ H

In this case, both l1 and l2 are in H by low equivalence and by upward

closure ofH , l v l′ will fail in both configurations.

Case 3) l ∈ L, l′ ∈ H

By low equivalence, we have l1 = l2 and both configurations compute the

same label-check result.
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Case 4) l, l′ ∈ H

In this case, l1 and l2 are both in the high domain of L. Even if this label

check succeeds in one configuration, it will only change the value of a

high label to another high label. This does not affect low equivalence so

L′1 =L L′2.

RaiseLbl:

If the RAISELBL ARG ERROR rule is not matched then the pcl, pc′l and t′l must

be the same in both configurations. The only two cases to consider are based on

the current value of tl. If tl ∈ L, then both configurations will fail the label check

and low equivalence is preserved. If tl ∈ H , then even if only one configuration

succeeds t′l1 =L t′l2 since both have high labels.

Upcall:

If the UPCALL ARG ERROR rule is not matched, then Rd, endpc, pc′l and t′l will

be the same in both configurations. Since both configurations are valid we know

that pcl v tl for both configurations. By the earlier argument, both configurations

will resolve the pcl v pc′l v t′l check the same way. If true then that implies the

restriction tl v t′l is true for both configurations as well. Therefore, if either

configuration passes the label checking process, then both configurations must

pass it. By contrapositive, if either configuration fails then both will fail label

checking.

Upret:

By Lemma A.4, both configurations will either be in an upcall region or

not, meaning that this instruction either causes an error or does not in both con-
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figurations. In the case where an error occurs, no state is updated, and therefore

the resulting configurations are low-equivalent.

�

Lemma A.6 (High PC Call Stack Noninterference). For any two valid configura-

tions C1 and C2, where neither configuration executes an UPRET-DONE step.

pcl ∈ H ,C1 =L C2,Ci −→ C′i =⇒ CST ′1 =L CST ′2

Proof. By the definition of call stack equivalence, both call stacks begin with

equivalent prefixes of entries with low pcl, or neither contains any entries with

a low pcl.

In the former case, the heads of these stacks must contain low-equivalent

entries, where the pc label of these entries (pclentry) is ∈ L. In both configurations,

pcl ∈ H and therefore this entry must have been produced by an upcall in-

struction. While in an upcall region, the only stack-modifying instruction that

can successfully return is UPRET-DONE. Since we are excluding that rule in this

lemma, the resulting call stacks in this case must always be low-equivalent, be-

cause they cannot be modified.

In the latter case, call stacks produced by these configurations are low-

equivalent. Popping off entries from the stack cannot introduce entries with

low pcl and pushing on entries uses the current pcl, which is high. Therefore any

call-stack modifying instruction will result in low-equivalent call stacks.

�

This also leads to a useful corollary: if two configurations have a high pcl and

neither is inside of a upcall with a low entry label, their call stacks are always
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noninterfering. As noted in Lemma A.6, if the entries on the call stack all have

high pcl, then no operation will place a low-labeled entry on the stack. Therefore

call-stack low equivalence is preserved.

Corollary A.1. For any two valid configurations C1 and C2, where CST i[head] = ∅ or

CST i[head] = ((pcvi, pcli), (tvi, tli)) and pcli ∈ H .

pcl ∈ H ,C1 =L C2,Ci −→ C′i =⇒ CST ′1 =L CST ′2

Now we show that configurations with high pcl cannot make any low-visible

changes to state without the use of downgrading instructions or call gates.

We then use this result to prove the more general noninterference of high pcs

lemma.

Lemma A.7 (Noninterference of High PCs Modulo Call Gates). For any two valid

configurations, C1 and C2, if insn . DWNCALL,DWNRET,UPCALL,UPRET-DONE

(pcl ∈ H) ∧ (Ci −→ C′i ) ∧ (C1 =L C2)

=⇒ 〈CST ′1,M
′
1, L

′
1, pc′1, t

′
l1〉 =L 〈CST ′2,M

′
2, L

′
2, pc′2, t

′
l2〉

Proof. First, we note that C1 and C2 may or may not be executing the same in-

struction; therefore, this proof must rely on reasoning about the visible effects

of any given single configuration.

Label Mappings:

We show that Li =L L′i to prove noninterference of label mappings since

(L1 =L L2) ∧ (Li =L L′i) =⇒ L′1 =L L′2. For each instruction we must show that

the low and high domains of L do not change, and that low labels are not mod-

ified at all. To show the former, we need to show that any label being changed
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remains in the same quadrant of the lattice after modification. In general, if any

label-modifying instruction fails, low equivalence is preserved since L cannot

change.

First, we consider the uplbl instruction, which sets some location’s label

from l to l′. Recall that the primary restriction for this instruction is:

UPLBL(pcl, l, l
′) , (pcl v l v l′) ∧ (l′ v 




J
JJ (pcl))

There are four cases to consider here: l ∈ L;H = S∧ l ∈ S∩T ;H = U∧ l ∈ P∩U;

l ∈ S ∩U.

Case 1) l ∈ L

UPLBL requires pcl v l, so this case cannot succeed.

Case 2)H = S ∧ l ∈ S ∩ T

UPLBL requires l v l′ ∧ l′ v 



J
JJ (pcl). We show by contradiction that if l′ ∈

S ∩ U and pcl ∈ S, this instruction cannot succeed. (And consequently,

l′ ∈ S ∩ T when the instruction does succeed.)

Assume: l′ v 



J
JJ (pcl)

≡ (l′← v pc→l ) ∧ (pc←l v l′→) (By definition)

=⇒ (A← v pc→l ) (l′ ∈ U =⇒ A← v l′←)

=⇒ (A← v A→) (pcl ∈ S =⇒ pc→l v A→)

≡ iA v cA ≡ (iA, cA) v 



J
JJ ((iA, cA))

This assumption contradicts our definition of attacker, so we have l′ @





J
JJ (pcl). In conclusion, if l′ ∈ S ∩U, the instruction will not succeed.

In the case where the instruction succeeds, l′ ∈ S ∩ T .
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Case 3)H = U ∧ l ∈ P ∩U

This follows the same logic as in case 2: we show by contradiction that, if

l′ ∈ S ∩ U, and pcl ∈ U, then l′ @ 



J
JJ (pcl). When the instruction succeeds,

l′ ∈ P ∩U.

Case 4) l ∈ S ∩U

Since l v l′, l′ ∈ S ∩U.

Next we consider the dwnlbl instruction, which modifies the label of some

location (l = L(rd)) to some new value (l′ = γ(Rs1)). The primary restriction on

executing this instruction is:

RELBL(pcl, l, l
′) , (pcl v l u l′) ∧ (l v 




J
JJ (l)) ∧ (l′ v 




J
JJ (pcl))

Again, there are 4 cases to consider: l ∈ L;H = S, l ∈ S ∩ T ; H = U, l ∈ P ∩ U;

l ∈ S ∩U.

Case 1) l ∈ L

RELBL requires pcl v l u l′, so this case cannot succeed.

Case 2)H = S, l ∈ S ∩ T

If the instruction succeeds, l′ < P since RELBL requires pcl v l u l′. Let

us assume l′ ∈ S ∩ U. In that case, by the same reasoning as for uplbl,

l′ @ 



J
JJ (pcl). Therefore, if the label check passes in this case, l′ ∈ S ∩ T .

Case 3)H = U, l ∈ P ∩U

This case has exactly the same reasoning as case 2. If label checks succeed,

then l′ ∈ P ∩U.
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Case 4) l ∈ S ∩U

By Lemma A.1, l @ 



J
JJ (l), and therefore this case will fail the label check and

not modify L.

Memories:

For all of the instructions which write to M, the pcl must flow to the label of

the modified memory location. Since no label modification instructions change

the low domains of memory this implies that neither configuration can make

low visible modifications to memory: (pcl ∈ H) ∧ (M1 =L M2) ∧ (Li ≈ L′i) =⇒

M′
1 =L M′

2

Program Counters and PC/Time Labels:

First we consider the raiselbl instruction. It requires pcl v pc′l and tl v

t′l , ensuring that pc′l and t′l are also high labels, and therefore pc′v will be low-

equivalent across the configurations.

If the executing instruction fails for any reason (thus triggering the ERROR

rule), the pcl and tl remain high and no other state is modified. �

Theorem 2.1 (Noninterference Modulo Downgrading and Call Gates). For

any two valid configurations, C1 and C2 and any low set of labels, L, if insn .

DWNLBL,DWNRET,UPCALL,UPRET-DONE,DWNCALL

Ci −→
∗ C∗i ∧C1 =L C2 =⇒ C∗1 =L C∗2

Proof. We prove this by structural induction over the −→ operator: Ci −→ C′i . By

Property 2.2, we know that µ and t are noninterfering, such that µ′1 =L µ′2 and
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t′v1 =L t′v2. When the STALL rule is applied, no architectural state changes and

therefore C′1 =L C′2.

Therefore, we now only need to consider the −→A function and the configu-

ration it produces.

As a reminder:

GR ` 〈CST ,M, L, pc, t〉 −→A 〈CST ′,M′, L′, pc′, t′l〉

We show that

〈CST ′1,M
′
1, L

′
1, pc′1, t

′
l1〉 =L 〈CST ′2,M

′
2, L

′
2, pc′2, t

′
l2〉

holds for all possible applications of −→A.

By Lemma A.7, when pcl ∈ H

〈CST ′1,M
′
1, L

′
1, pc′1, t

′
l1〉 =L 〈CST ′2,M

′
2, L

′
2, pc′2, t

′
l2〉.

Now we consider the case when pcl ∈ L. By Lemma A.5, we know that

in situations where one or more of the configurations fails label checking, low

equivalence of configurations is preserved. We now consider only scenarios

where both configurations pass label checking.

Both configurations must be executing the same instruction (by the ALL PC

rule which ensures that the instruction itself is located in low-labeled memory).

Label Mappings:

Unlike in Lemma A.7 we can allow labels to change their current quadrant,

as long as the change results in low-equivalent label maps. Again, UPLBL is the
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only instruction which modifies L. This instruction updates label l ≡ L(rd) to

l′ ≡ γ(Rs1) and requires l v l′.

rd and rs1 must both have the same respective value across configurations

since they are part of the instruction.

l′1 = l′2 since L(Rs1) v pcl =⇒ Rs1 has the same value in both configurations.

The three possible cases are: l, l′ ∈ L; l ∈ L and l′ ∈ H ; and l, l′ ∈ H . Since

there is only 1 case where l ∈ H , l′1 = l′2 and L1 =L L2, both configurations must

execute the same case.

Case 1) l, l′ ∈ L

Since the only mapping updated in L′ is rd 7→ l′ and it is changed equiva-

lently in L1 and L2, L′1 =L L′2.

Case 2) l ∈ L, l′ ∈ H

In this case, the low and high domains of L1 and L2 change, but they will

still both change in the same way (L(rd) goes from L toH in both configu-

rations).

Case 3) l, l′ ∈ High

The domains of L1 and L2 do not change and none of the labels in the low

domains change, so this does not change the low equivalence of L1 and L2.

Memories:

All of the compute instructions require that the labels of the operands flow

to the labels of the destination. Furthermore, the location in memory to be up-

dated is part of the instruction and therefore is equivalent in both configura-
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tions. Therefore, if the label of the destination is low, the operands will have

low labels and be equivalent. This ensures that changes to low memory happen

the same way in each configuration. Additionally, the proof that L′1 =L L′2 im-

plies that the new low domains of memory will be equivalent as well (L′1 ≈ L′2).

Program Counters and PC/Time Labels:

All branch/jump instructions require that their operands flow to pcl. There-

fore, with a low pcl all of the operands will have low labels and be equivalent in

successful configurations: pc′v1 = pc′v2.

The raiselbl instruction can raise the pcl and tl. This is analogous to the

UPLBL rule for memory locations and for similar reasons ensures that pc′1 =L pc′2

and t′l1 =L t′l2.

�

Corollary A.2 (Timing-Sensitive Noninterference Modulo Downgrading and

Call Gates). For any two valid configurations, C1 and C2 and any low set of labels,

L, if insn . DWNLBL,UPCALL,UPRET,DWNCALL,DWNRET and, for all configura-

tion steps pcl ∈ L =⇒ tl ∈ L,

Ci −→
∗ C∗i ∧C1 =L C2 =⇒ C∗1 =L C∗2

Proof. This follows directly from the previous theorem and Property 2.2. If tl ∈

L, then low equivalence of t ensures that their values will be equal after each

transition (tv1 = tv2 and t′v1 − tv1 = t′v2 − tv2 implies t′v1 = t′v2). Essentially, the two

configurations must execute in lock step. In this scenario the only instruction

which can raise tl is RAISELBL, so as long as tl ∈ L and no RAISELBL instruction

raises the tl above pcl, timing sensitivity is preserved. �
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Executing a complete upcall region from a low context will preserve low

equivalence. Since the end state of the upcall is determined a priori by low-

equivalent configurations, it ensures that both configurations will reach a state

where they are again low-equivalent and have exactly the same call stack state

as they did initially.

Lemma A.8 (High Upcall Noninterference). For any two valid configurations, C1

and C2, if pcl ∈ L, C1 =L C2, insn ≡ upcall, Ci −→ C′i and pc′l ∈ H , then:

(Ci −→
∗ C′′i ≡ 〈CST i,M′′

i , L
′′
i , µ

′′
i , (endpc, pcli), (t

′′
vi, tli)〉) ∧ (C′′1 =L C′′2 )

Proof. Ci −→ C′i and C1 =L C2.

By Lemma A.5 either both configurations execute the UPCALL or neither

does.

If they execute the UPCALL, the labels of rs1, rs2, rs3 and rd flow to pcl, which

implies that pc′l , t
′
l , endpc and Rd have equal respective values in both configura-

tions. Additionally, both configurations will add a new call stack entry with

the following form: ((endpc, pcl), (endti, tli)). These call stack entries are low-

equivalent: pcl and endpc are the same in both traces. If tl ∈ H , then endt1 , endt2

but their values need not be equal for low equivalence. If tl ∈ L, then tv1 = tv2

and by low equivalence of Rd, endt1 = endt2.

Pushing low-equivalent entries onto low-equivalent call stacks preserves

low equivalence: CST ′1 =L CST ′2.

Additionally, since pc′l and t′l are low-equivalent across configurations, pc′1 =L

pc′2 Therefore, C′1 =L C′2.

Once the upcall is executing, no dwncall or upcall instructions can exe-
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cute. Therefore, by Lemma A.7, we can conclude that these configurations will

only step to other low-equivalent configurations. Additionally, their call stacks

will not be modified until they return from the upcall region via the UPRET-

DONE rule.

At some point (when tvi = endti) each configuration executes the UPRET-

DONE rule. This may not happen after the same number of transition steps,

and if tli ∈ H , it may not even happen at the same wall-clock time for each con-

figuration.

When each configuration executes the UPRET-DONE rule, it pops the head

of its call stack. We know that the original call stacks were low-equivalent, so

popping off the heads results in the original call stacks.

Additionally, they will restore the original pcl and tl values, which were low-

equivalent in the original configuration and both will set pcv = endpc. Therefore,

the upcall region executes without making any changes to state that violate

low equivalence and the call stacks, pc and tl restored by the UPRET-DONE are

also low-equivalent.

Note that, if tl ∈ L, then endt is also low-equivalent and these two configu-

rations must execute the UPRET-DONE instruction at the same time. They may

have executed a different number of instructions while in the call-gate region,

but the wall-clock time will be identical. �

Theorem 2.2 (Noninterference Modulo Downgrading and Dwncalls). For any

two valid configurations, C1 and C2, and any low set of labels, L, where no instruction

is a dwnlbl, dwncall or dwnret.

(Ci −→
∗ C′i ) ∧ (C1 =L C2) =⇒ C′1 =L C′2
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Proof. This follows naturally from Theorem 2.1 and Lemma A.8.

As long as the current instruction is not an upcall or upret-done, both

configurations will step (−→) to low-equivalent configurations, by Theorem 2.1.

If the current instruction is an upcall or the UPRET-DONE rule applies, then

we must consider both the high and low pcl cases.

pcl ∈ L. By Lemma A.5, upcall will fail or succeed in both configurations.

Let us first consider what happens when upcall executes successfully.

If pc′l ∈ H then by Lemma A.8, both configurations will only step to low-

equivalent states while in the upcall and will exit the upcall in low-equivalent

states.

If pc′l ∈ L, then by Theorem 2.1 as long as no more upcall instructions exe-

cute, low equivalence is preserved. It is important to note that, by the UPCALL

rule, pcl t tl v pc′l . In this case, it implies that tl ∈ L and therefore the end time

of the call gate will be exactly the same time in both configurations (same start

and end, not just duration). If another UPCALL is executed while the upcall is

running, it will fail in both configurations since they cannot be nested.

When the UPRET-DONE rule is applied, both configurations will step to low-

equivalent configurations with equal pcv and tv. Since the implementation is

deterministic (Property 2.1), the initial configurations are low-equivalent and

the tl in the call gate is exactly the same between both configurations, we are

guaranteed that the same number of −→A steps execute in both configurations

before the call gate expires at time endt. Without this guarantee, it would be

possible for one upcall to exit having completed fewer instructions than the
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other and in that case their end states would not necessarily be low-equivalent.

pcl ∈ H . Either both configurations are inside a low-pc-originating upcall or

neither is (by the same argument as in Lemma A.6, regarding call stack low-

equivalent prefixes). If they are executing inside an upcall region, then this

reduces to a case in Lemma A.8, which ensures they will eventually return out-

side of the upcall and will maintain low equivalence.

If neither one is in a low-pc-originating upcall, then their call stacks may dif-

fer: one of them may be in a upcall while the other configuration is not. How-

ever, we can apply both the corollary to Lemma A.6 and Lemma A.7 here to

show that these configurations will step to low-equivalent configurations. The

corollary states exactly the condition we have: if neither configuration is in a

low-pc-originating upcall, and pcl ∈ H , then the resulting call stacks are low-

equivalent. Lemma A.7 ensures that all other state is noninterfering for high

pcs. Therefore, high pcs are always noninterfering as long as the configuration

is valid.

�

Corollary A.3 (Timing-Sensitive-Noninterference Modulo Downgrading and

Dwncalls). For any two valid configurations, C1 and C2, and any low set of la-

bels, L, where no instruction is a dwnlbl, dwncall or dwnret and for all pc,

pcl ∈ L =⇒ tl ∈ L.

(Ci −→
∗ C′i ) ∧ (C1 =L C2) =⇒ C′1 =L C′2

Proof. This is a direct corollary to Theorem 2.2 and is strictly stronger than
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Corollary A.2 since it also allows the use of low-deterministic UPCALL instruc-

tions (i.e. no timing mitigation). �

Theorem 2.3 (Nonmalleable Information Flow). For attacker induced high label

sets S and U and their respective complements, P and T , and valid configurations,

∀{s, u} ∈ {1, 2},Csu

Csu −→ C′su ∀u ∈ {1, 2}.C1u =P C2u ∀s ∈ {1, 2}.Cs1 =T Cs2

=⇒

C′11 =P C′21 =⇒ C′12 =P C′22 ∧ C′11 =T C′12 =⇒ C′21 =T C′22

Proof. For all of the instructions other than dwncall/dwnret and dwnlbl,

Theorem 2.2 implies the nonmalleability condition. Therefore, we only need

to consider how the new instructions affect processor state.

Additionally, since the conditions are exactly dual we only prove the first of

the two requirements:

C′11 =P C′21 =⇒ C′12 =P C′22

First we consider the dwnlbl instruction. We have already proven that this

instruction results in low-equivalent configurations for high pcs in Lemma A.7.

Therefore, if pcl ∈ S ∪ U, dwnlbl results in low equivalent configurations for

both L = P and L = T .

Therefore, we now consider the case where pcl ∈ P ∩ T . The dwnlbl in-

struction modifies the label of rd (l = L(rd)) to a new label value (l′ = γ(Rs1)).

In the case where RELBL ARG ERROR rule matches, all configurations will step

to the error pc and not modify any other state (by the same argument as for
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UPLBL ARG ERROR in Lemma A.5). If that error rule does not match, l′ is equiv-

alent in all four configurations since L(rs1) flows to pcl and pcl ∈ P ∩ T .

Since l′ is equivalent in all configurations, then the label checks: pcl v l′ and

l′ v 



J
JJ (pcl) will both succeed or fail in all four configurations. If they fail, then all

four new configurations still maintain low equivalence since Lsu is not modified

in any of them.

Next let us consider the label check l v 



J
JJ (l).

L1 =L L2 =⇒ L1 ≈ L2 for any set of low labels, L. Additionally, domain

equivalence (≈) is transitive. Therefore, all four starting configurations agree on

the domain of all locations (L11 ≈ L21 ≈ L12 ≈ L22). We will now consider the

four possible quadrants in which l can reside:

Case 1) l ∈ P ∩ T

In this case, l is exactly the same in all four configurations. Therefore, label

checking will succeed or fail in all four configurations and result in the

same modifications to L (l′ and rd are also equal in all four configurations).

The low equivalence relations between configurations will be maintained.

Case 2) l ∈ P ∩U

For any two public equivalent (=P) configurations then this will also result

in the same label checking result and the same modifications to L. Any

configurations which were public equivalent before this instruction are

still public equivalent.

C1u =P C2u =⇒ C′1u =P C′2u

Case 3) l ∈ S ∩ T
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For any two trusted equivalent (=T ) configurations then this will result

in the same label checking result and same modifications to L. Any con-

figurations which were trusted equivalent before this instruction are still

trusted equivalent.

Cs1 =T Cs2 =⇒ C′s1 =T C′s2

In this case, we know that L′s1 =T L′s2 and we assume in the premise that

L′11 =P L′21. Therefore, L′12 ≈ L′11 ≈ L′21 ≈ L′22.

Next, we will consider the four possible quadrants for l′:

Case 1) l′ ∈ P ∩ T

In this case, l′ has the same value in each resulting configuration by

transitivity of low-equivalent labels (L′12 =P∩T L′22). Regardless of

whether or not configurations C12 and C22 both successfully executed

the dwnlbl instruction, they resulted in updating the same location

to the same label value. Therefore, C′12 and C′22 are public equivalent.

Case 2) l′ ∈ P ∩U

If this instruction succeeds in C12 it will modify both the T domain

and the P domain (i.e. a label is going from high to low in confiden-

tiality and low to high in integrity). However, if it fails then it will not

modify either set of domains. Since L′12 ≈ L′22 this success or failure

must be the same in both of these configurations (failure in one but

not the other would imply L′12 0 L′22). Therefore it must either suc-

ceed or fail in both of these configurations. If it fails, L′12 and L′22 are

trivially low-equivalent. If it succeeds, L′12 and L′22 are modified in the

same way (since l′ has the same value across all four configurations)

and are still public equivalent.
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Case 3) l′ ∈ S ∩ T

In this case, whether or not each configuration successfully executed

the dwnlbl instruction has no bearing on the public equivalence of

L′12 and L′22. Since l′ is a secret label, its exact value may differ in these

two label mappings. Therefore, C′12 and C′22 remain public equivalent.

Case 4) l′ ∈ S ∩U

By the same logic as in case 3, C′12 and C′22 remain public equivalent

in this case as well.

Case 4) l′ ∈ S ∩U

By Lemma A.1, if l ∈ S ∩ U, then l is compromised and the label check

does not pass. Therefore, L is not updated in any configuration and the

resulting configurations remain low-equivalent.

Dwncalls:

Now we show that the dwncall and dwnret instructions maintain nonmal-

leability.

Based on the pcl of the starting configurations, there are 3 cases to prove,

based on its quadrant (since pcl is valid it cannot be in S ∩U, by Lemma A.1).

Case 1) pcl ∈ P ∩ T

First, if the L(rs1) v pcl check fails then this will fail in all configurations

and low equivalence is preserved. Similarly, if the check that this call is

going down in the lattice (pc′l t t′l @ pcl) fails, this will fail in all four con-

figurations.
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Otherwise, pc′ and t′ will be the same in all four configurations, since they

reference the same entry in the gate registry.

If the dwncall executes successfully in C12 because CST12 is empty, then

CST11 must either also be empty or contain only public entries. By Lemma

A.2, it cannot contain any secret-untrusted entries and by trusted equiv-

alence with CST12, it cannot contain any secret-trusted entries. By the

premise (C′11 =P C′21) CST21 must be empty if CST11 is empty and must

otherwise contain public entries. By trusted equivalence, CST22 must also

be either empty or contain only public entries. Since CST12 =P CST22, the

latter must also be empty.

This argument is symmetric (we could have started reasoning with CST22

and concluded that CST12 must be empty), the dwncall succeeds in C12 if

and only if it succeeds in C22.

In the case where the instruction succeeds, both of the configurations will

push on public equivalent call stack entries and will jump to the same new

pcl and pcv based on the gate registry entry.

In any case where the instruction fails in both configurations, no state

changes other than the pcv and they will therefore remain low-equivalent.

Case 2) pcl ∈ P ∩U

If the L(rs1) v pcl check fails in C12 then it will also fail in C22. Similarly, if

the check that this call is going down in the lattice (pc′l t t′l @ pcl) fails in C12

it will also fail in C22.

Otherwise, pc′ and t′ will be the same in both configurations, since they

reference the same entry in the gate registry.

The reasoning from Case 1 about call stack equivalence holds in this case
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as well since it does not depend at all on the current pcl of the configura-

tions. Therefore, C12 and C22 will either both fail or both succeed on this

dwncall instruction. In the event the instruction succeeds, since their pcl

are public equivalent, the call stack entries that are pushed will be public

equivalent as well, resulting in public equivalent configurations.

Case 3) pcl ∈ S ∩ T

In this case, if either C12 or C22 successfully executes a dwncall, and the

resulting pc labels (pc′l) are both secret, then the resulting configurations

are public equivalent. By Lemma A.6 (with L = P and H = S), the re-

sulting call stacks are public equivalent. Similarly, the pc and tl are public

equivalent, since they remain secret.

Alternatively, either configuration may execute a dwncall such that pc′l ∈

P∩T . It is impossible for pc′l to be untrusted, since dwncall requires that

pc′l v pcl.

In this case, C11 must also be empty. Since CST11 is valid, the label of its

first entry must be ordered with respect to pcl. Since no label in S ∩ T

flows to any label in P ∩ U and no label in P ∩ U flows to any label in

S ∩ T , that first entry must not be public and untrusted. However, by

trusted equivalence with CST12, it cannot contain any secret entries either,

and must therefore be empty.

By combining this with the call stack equivalence reasoning used in cases

1 and 2, this means that either all four call stack configurations are empty,

or they all contain public, trusted entries.

Therefore, if C12 executes a dwncall successfully, then so must C11, since

all other arguments to the instruction flow to the pcl and are equal between
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the two configurations, and as reasoned above, both must have empty call

stacks.

Since the call gate entries will be the same across C12 and C11 they will both

end up with the same pcv and pcl in their new configurations. Similarly,

they will push trusted equivalent call stack entries (whose labels are secret

and trusted) and C′12 =T C′11.

Furthermore, pc′l ∈ P∩T , which implies that C′21 will have the same pc′l and

pc′v as configuration C′12, and will also have a secret, trusted call stack entry.

Since C21 must have successfully executed the same dwnlbl instruction to

end up in this state, by trusted equivalence C22 also must execute the same

dwnlbl instruction and will also end up with the same new pc′l and pc′v

as the other configurations. Lastly, since the new call stack entries are all

secret and trusted, CST ′12 =P CST ′22 because neither contains any public

entries.

Dwnret:

This is essentially analogous to dwncall instruction, except we are restoring

saved pcv and pcl from the stored call stack entries. Since the reasoning is so

similar we will omit a full proof and include only a sketch.

Case 1) pcl ∈ P

In this case both C12 and C22 will either execute the dwnret or not, since

the INUPCALL check must have the same result in both cases; if either

configuration executes a dwnret successfully, then all four configurations

must successfully execute a similar dwnret.
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In the case where the call stack entry is public, then both configurations

must have the same call stack entry and will end up in public equivalent

configurations. If the call stack entry is secret and trusted, then by similar

transitive arguments for dwncall, all four configurations will execute a

dwnret to secret, trusted pcs and will all have empty call stacks.

Case 2) pcl ∈ S ∩ T

If C12 executes a dwnret successfully, the resulting pc′l must also be secret

and trusted. Similarly, its new call stack is empty and therefore still public

equivalent to the call stack of C22 (which must have only contained secret

entries, or no entries at all). In this case, C′12 =P C′22 since it must also have

a secret pc (the only instruction for lowering the pcl is dwncall and by

the earlier portion of this proof, it could not have executed a successful

dwncall).

Similarly, if C12 executes a dwnret which does not pass label checking, the

result will remain public equivalent with C′22.

�
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APPENDIX B

APPENDIX TO CHAPTER 4

B.1 Definitions

Definition B.1 (Erase-To Function). Each label implies a particular erasure policy.

For lattice levels and label functions, no erasure is required. For erasure labels, the

accompanying condition implies a minimum label of erasure. Meets and joins of erasure

labels imply multiple required erasure conditions; therefore this function returns a list

of conditions, with their accompanying label.

eraseTo(τ) a L

LABEL

eraseTo(l) a [ ]

FUNCTION

eraseTo( f (x)) a [ ]

ERASE

eraseTo(b1
c(~x)↗b2) a [(c(~x), b2)]

JOIN

Ll = eraseTo(τ1) Lr = eraseTo(τ2) ∀(cl, ll) ∈ Ll, (cr, lr) ∈ Lr.

(cl, ll t τ2) ∈ L (cr, lr t τ1) ∈ L (cl ∧ cr, ll t lr) ∈ L

eraseTo(τ1 t τ2) a L

MEET

Ll = eraseTo(τ1) Lr = eraseTo(τ2) ∀(cl, ll) ∈ Ll, (cr, lr) ∈ Lr.

(cl, ll u τ2) ∈ L (cr, lr u τ1) ∈ L (cl ∧ cr, ll u lr) ∈ L

eraseTo(τ1 u τ2) a L
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P = 〈rob, A, µ〉

FETCH

rob = :: x
rob′ = rob :: x′

x′ = predict(arch(x, A), µ)
µ′ = update(arch(x, A), µ)

P −−−−→
fetch x

P′
EXEC

rob = :: x ::
µ′ = compute(arch(x, A), µ)

P −−−−→
exec x

P′

COMMIT

rob = x :: rob′

A′ = commit(arch(x, A), µ)

P −−−−−−→
commit x

P′
MISS

rob = rob′′ :: x ::
rob′ = rob′′ :: x :: x′

x′ = real-npc(arch(x, A), µ)
µ′ = miss-upd(arch(x, A), µ)

P −−−−→
miss x

P′

CLOCK

P
A
−−−→
clock

P

d = sched(arch(rob, A), µ) P −→
d
P′

P → P′
SCHEDULE

Figure B.1: Semantics for Abstract Out-of-Order Processors

B.2 Proofs

B.2.1 Processor Guarantees

The preservation of Temporal Ordering in a speculative processor relies on the

fact that all trace of a given speculative program order is removed once that mis-

speculation is discovered. This property translates in to the following lemma:

Lemma 4.1. For any register, x, in a well-typed P,

∀i[s1,...,sn]
j , i[p1,...,pn]

k ∈ I(x), j ≤ k =⇒ [s1, ...sn] � [p1, ..., pn]

where � is prefix order.
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τ v τ′

LABELS
l1 vl l2

l1 v l2
TRANSITIVE

τ v τ′′ τ′′ v τ′

τ v τ′
REFLEXIVE

τ v τ

JOIN-INTRO
τ v τ1 ∨ τ v τ2

τ v τ1 t τ2
JOIN-ELIM

τ1 v τ τ2 v τ

τ1 t τ2 v τ

MEET-INTRO
τ v τ1 τ v τ2

τ v τ1 u τ2
MEET-ELIM

τ1 v τ ∨ τ2 v τ

τ1 u τ2 v τ

ERASE-ELIM
τ2 v τ′

τ1
c(~v)↗τ2 v τ′

ERASE-INTRO
τ v τ1

τ v τ1
c(~v)↗τ2

ERASE-WEAKEN
τ1 v τ′1 τ2 v τ′2 ∀σ.σ � c(~v) =⇒ σ � c′(~v′)

τ1
c(~v)↗τ2 v τ′1

c′(~v′)↗τ′2

Figure B.2: The complete environment-independent may-flow-to relation.
vl is the ordering relation of the lattice of basic security labels.

Proof Sketch.

Base Case. At first, this vacuously holds since no state is yet influenced by an

instruction.

Fetch. Each newly fetched instruction has a larger instruction index than any

prior instruction, and either keeps the same speculative path or adds a new

prediction:

pc ≈ i[s1,...,sn]
j I(pc′) = I(pc) + i[s1,...,sn]

j+1 ∨ I(pc′) = I(pc) + i[s1,...,sn,sn+1]
j+1

fetch pc
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In the above, pc ≈ i[s1,...,sn]
j denotes the logical instruction associated with the

current instruction address pc.

Exec & Commit. Interim execution cannot introduce new speculative paths or

instructions and thus cannot affect this invariant.

Miss. The miss case is similar to the Fetch case, in that the new instruction x′

has the same influence set as instruction x, with a higher instruction index and

does not extend x’s speculative path.

In this case, µ and the ROB may now contain registers influenced by x′ and

instructions along the misspeculated path, violating our invariant. However,

end-to-end erasure effectively allows us to remove the influence of erased in-

structions from influence sets (since their values have no impact on future exe-

cution).

All instructions ordered after x in ROB order (i.e., j ≤ k) are erased since

they must all have labels l such that S L(x, head) σv l; this is exactly the set of all

instructions whose speculation paths are not prefixes of instruction x’s.

After this influence removal, all registers’ influence sets now contain only

instructions that satisfy our invariant. �
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B.2.2 Noninterference Guarantees

Ordered label comparisons can be typed more permissively than arbitrary dy-

namic label comparisons. The lower of the two labels gives a safe visibility

bound of the comparison instead of the higher.

Theorem B.1 (Safety of Ordered Label Comparisons). The result of any label com-

parison (on ordered labels) is guaranteed to be low equivalent at or above the meet of the

labels of the labels.

∀l.x, y ∈VARS.

σ1 ≈l σ2 ∧ (∀σ.Γ(x) σvΓ(y) ∨ Γ(y) σvΓ(x))

∧ Γ(x) u Γ(y) σ1
v l =⇒

Γ(x) σ1
vΓ(y) = Γ(x) σ2

vΓ(y)

Proof. By the definition of observational equivalence, both σ1 and σ2 agree on

whether Γ(x) and Γ(y) are in the high (H) or low (L) sets: any label which flows

to l is in the low set, everything else is in the high set. There are four possible

cases which correspond to the sets that contain Γ(x) and Γ(y) respectively:

L, L. In this case, by observational equivalence and the well-formedness of

labels, any free variables that occur in either Γ(x) or Γ(y) have the same values

in both σ1 and σ2. The result of the flows to check is decided only by the syntax

of the labels (which is static) and these free variables; thus the result will be the

same regardless of which σ is used.

L,H . In this case, Γ(y) σ@Γ(x) by the definition of L. Therefore, the expression

must return true in bothσi since either Γ(y) σvΓ(x) or Γ(x) σvΓ(y) by the ordering
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assumption.

H , L. This is symmetric to the prior case, except the expression must return

false.

H , H . In this case we cannot be sure that the result is equivalent in both σi

since there are no equality constraints on x or y. However, Γ(x) u Γ(y) must

be exactly equal to either Γ(x) or Γ(y) since they are ordered; therefore Γ(x) u

Γ(y) ∈H(i.e., Γ(x) u Γ(y) σ@ l). �

Noninterference. We primarily rely on SecVerilog’s semantics for Verilog and

their proof of Noninterference [138]. However, we do not include dynamic clear-

ing semantics in assignments and have slightly different type well formedness

assumptions (see Figure 4.3). Here, we present a modified version of their se-

mantics and amendments to any lemmas and proofs from their report needed

to accommodate those modifications.

The main difference between their work and ours is the differentiation be-

tween combinationally assigned variables and sequentially assigned variables,

which we adopt from Ferraiulolo et al. [45]. We associate all variables with ei-

ther a seq or com annotation and check the following:

• All seq variables are assigned in a sequential (clock-triggered) thread, via

non-blocking assignment.

• All com variables are assigned in any thread via blocking assignment.
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〈σ, c,AS,NB〉 ⇓ 〈σ′,AS′,NB′〉

SKIP
〈σ,skip,AS,NB〉 ⇓ 〈σ,AS,NB〉

SEQ
〈σ, c1,AS,NB〉 ⇓ 〈σ′′,AS′′,NB′′〉 〈σ′′, c2,AS′′,NB′′〉 ⇓ 〈σ′,AS′,NB′〉

〈σ, c1; c2,AS,NB〉 ⇓ 〈σ′,AS′,NB′〉

ASSIGN
〈σ, e〉 ⇓ n σ′ = σ{v 7→ n} Γ(v) ↓σ′ τ AS′ = AS ∪ {(v, n, τ)}

〈σ, v = e,AS,NB〉 ⇓ 〈σ′,AS′,NB〉

ASSIGN-NB
〈σ, e〉 ⇓ n Γ(v) ↓next σ τ NB′ = NB ∪ {(v, n, τ)}

〈σ, v⇐ e,AS,NB〉 ⇓ 〈σ,AS,NB′〉

IF
〈e, σ〉 ⇓ n i = (n , 0) ? 1 : 2 〈σ, ci,AS,NB〉 ⇓ 〈σ′,AS′,NB′〉

〈σ, if (e) c1 else c2,AS,NB〉 ⇓ 〈σ′,AS′,NB′〉

Figure B.3: Big-step operational semantics of commands.

STEP
~c , ∅ ~c′ = (~c − {c1}) ∪ B �AS 〈σ, c1, ∅,NB〉 ⇓ 〈σ′,AS,NB′〉

〈t, σ,~c,B,NB〉 → 〈t, σ′, ~c′,B − B �AS,NB′〉

TICK
~c = B �NB ∪S σ′ = apply(σ,NB)

〈t, σ, ∅,B,NB〉
(t,σ)
−−−→ 〈t + 1, σ′, ~c,C − B �NB, ∅〉

Figure B.4: Big-step operational semantics of threads. S is the set of se-
quential threads, and C is the set of combinational threads.
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M,Γ, pc ` c

COMASSIGN
Γ ` e a τ Γ(x) = τ′ x < FV(τ′) C(•η) =⇒ pc t τ σv τ

′

M,Γ, pc ` x =η e

COMASSIGN-REC

Γ ` e a τ Γ(x) = τ′ x ∈ FV(τ′)
x′ < Γ τ′′ = τ′{x′/x} if x <M,C(•η) =⇒ pc σv τ

′

C(•η), x′ = beca =⇒ pc t τ σv τ
′′

M,Γ, pc ` x =η e

SEQASSIGN
Γ ` e a τ Γ(x) = τ′ x < FV(τ′) C(•) =⇒ pc t τ σvnext τ

′

M,Γ, pc ` x⇐η e

SEQASSIGN-REC

Γ ` e a τ Γ(x) = τ′ x ∈ FV(τ′)
if x <M,C(•) =⇒ pc σv τ

′ C(•η) =⇒ pc t τ σvnext τ
′

M,Γ, pc ` x⇐η e

IF
Γ ` e a τ M∩ DA(η),Γ, pc t τ ` c1 M∩ DA(η),Γ, pc t τ ` c2

M,Γ, pc ` ifη(e) c1 else c2

Figure B.5: Typing rules for commands.

We also have a special typing rule for programs which ensures that all se-

quential variables are not implicitly downgraded. If a variable is not assigned,

then its label this cycle must flow to its label next cycle:

Definition B.2 (No Implicit Downgrades). A program, prog, is well-typed if, for all

variables, v:

v ∈ seq ∧ 〈t, σ〉
(t,σ)
−−−→ 〈t + 1, σ′〉 ∧Not Assigned(v) =⇒ Γ(v) ↓σv Γ(v) ↓σ′
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Lastly, we also assume the same well-formedness assumptions as prior

work:

• No combinational (com) variables generate inferred latches.

• There are no combinational loops.

• There are no race conditions on any assignments (so the non-deterministic

semantics leads to deterministic updates to registered state).

Figures B.3 and B.4 depict the stepping rules for commands and threads.

Commands generate a new variable environment, a set of combinationally as-

signed variables (AS), and pending non-blocking assignments (NB). To aid the

proof, we annotate combinational assignments with the new labels of the vari-

ables after the assignment; these are not actually compiled into the circuits, nor

necessary for execution.

Threads execute (combinational) commands non-deterministically, which

causes other commands to become unblocked. Once no more unblocked com-

mands remain, the clock ticks and all pending non-blocking assignments are

applied. The TICK step also increments a counter that corresponds to real-time

clock ticks.

Figure B.5 depicts the complete typing rules for commands. First, we briefly

describe notation and rules that were not included in the main chapter.

Like the original SecVerilog type system [138], we use a definite assignment

analysis to remove unnecessary checks for sensitive upgrades. For each If

statement, the definite-assignment analysis is used to determine the set of vari-

ables that can be assigned to without a traditional no-sensitive-upgrade check.
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In most of the rules, we rely on an abstract program analysis, C, which con-

tains facts about program variables that are either invariants,C(•) or true before

a given program statement, η, executes, C(•η). The analysis used in the SpecVer-

ilog compiler is based on the one presented in the original SecVerilog work.

For the following proofs, we omit notation when irrelevant. For instance,

we may use the shorthand 〈σ, c〉 ⇓ σ′ for command execution when the set of

assigned variables is unnecessary.

Proof of Noninterference. We proceed by following the proofs by Zhang

et al. [138] with modifications where necessary to account for our language

changes. We use some of their lemmas (restated here) without proof since the

proofs remain unchanged. In those cases we use the same lemma numbering to

facilitate reference to the original proofs.

First, we consider noninterference from executing a single command:

Theorem B.2 (Single-Command Noninterference).

∀l ∈ L, i ∈ {1, 2}. (` Γ) ∧ (` Γc) ∧ (σ1 ≈l σ2) ∧ (〈σ, ci〉 ⇓ σ
′
i) =⇒ σ′1 ≈l σ

′
2

For the purpose of the proof, we extend Single-Command Noninterference

to include the low-equivalence of the compiled combinational assignments, AS.

The projection up to level l (�l) is the longest subsequences of AS such that,

∀(x, v, τ) ∈ AS �l . τ v l. We define low-equivalence of these accumulated as-

signments using this projection: AS1 ≈l AS2 ⇐⇒ AS1 �l = AS2 �l.

We define the same operations on non-blocking assignments, NB. Note that

the label in NB represents the next-cycle evaluation of the label (and not the la-

bel of the variable immediately after the assignment, since the assignment is
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delayed). The next-cycle function is defined by the next environment returned

from the execution trace via the TICK rule in Figure B.4.

Theorem B.2 (Single-Command Noninterference).

∀l ∈ L, i ∈ {1, 2}. (` Γ) ∧ (` Γc) ∧ (σ1 ≈l σ2) ∧ (〈σ, ci〉 ⇓ σ
′
i) =⇒ σ′1 ≈l σ

′
2

Proof. By induction on the structure of c.

Assign: v = e.

Let Γ ` e a τ and (v, ni, τi) be the assignment generated for ASi.

First, consider the case when τ1 v l:

By the typing rules, τ σ1
v τ1 v l. By Lemma 8, n1 = n2. So σ′1[v] = σ′2[v].

Next, we show that τ2 v l. The only variables that may appear in Γ(v) are

either of seq type or are v itself and must be equivalent in both configurations:

For each variable u ∈ FV(Γ(v)), Γ(u) σvΓ(v). Since Γ(v) σ1
v l, Γ(u) σ1

v l, and by

the inductive hypothesis, Γ(u) σ2
v l ∧ σ1[u] = σ2[u]. Since σ′1[v] = σ′2[v], τ2 = τ1 v

l. Therefore AS′1 ≈l AS′2.

By well-formedness, v ∈ com and by well-formedness of the typing environ-

ment (` Γ), the only variable whose label could change after the assignment is

v, if v ∈ FV(Γ(v)). Therefore, ∀u , v. (Γ(u) ↓σ) = (Γ(u) ↓σ′). Additionally, no other

variables are modified by the assignment: ∀u , v. σi[v] = σ′i[v].

Thus, σ′1 ≈l σ
′
2.
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Second, consider the case when τ1 @ l:

In this case, τ2 @ l as well (otherwise, τ1 v l). Therefore, AS′1 ≈l AS′2.

By the same argument as above, the environments otherwise preserve low-

equivalence as no other variables or their labels change.

In both cases, NB′1 ≈l NB′2 is trivial since NBi = NB′i .

Assign-NB: v⇐ e.

Since non-blocking assignment does not change σ or AS, σ′1 ≈l σ
′
2 and AS′1 ≈l

AS′2 trivially.

Let Γ ` e a τ and (v, ni, τi) be the assignment generated for NBi.

First, consider the case when τ1 v l.

By the typing rule for assignment, τ σ1
v τ1 v l. By Lemma 8, n1 = n2. So

σ′1[v] = σ′2[v]. Similar to blocking assingment, we can prove τ2 v l. Therefore

NB′1 ≈l NB′2.

Second, consider the case when τ1 @ l.

It must be that τ2 @ l as well (otherwise, τ1 v l). Therefore NB′1 ≈l NB′2.

Seq: c1; c2.

This holds by the induction hypothesis and transitivity of low-equivalence.

193



If: if (e) c1 else c2.

Let Γ ` e a τ.

First, consider the case where τ σ1
v l ∧ τ σ2

v l.

In this case, both configurations execute c1 and by the induction hypothesis

σ′1 ≈l σ
′
2.

Next, consider the case where τ σ1
@ l∧τ σ2

@ l and each configuration executes

a different branch (i.e., 〈σi, e〉 ⇓ ni ∧ n1 , n2).

Let assign(ci) = (AS′i − ASi) ∪ (NB′i − NBi).

Consider the typing rule for if statements: M,Γ, pc ` c. By confinement

(Lemma 11), ∀(vi, ni, τi) ∈ assign(ci), pc t τ σi
v τi. Since τ σ@ l, τi σi

@ l, and thus

any new assignments from ci are low-equivalent, thus AS′1 ≈l AS′2. Simiarly, for

all variables assigned in both executions (assign(c1) ∩ assign(c2)), σ′1 and σ′2

are low-equivalent.

Any (v, n, τ1) ∈ assign(c1) − assign(c2) must not be definitely-assigned,

and by the typing rule for assignments: pc t τ σ1
vΓ(v). Therefore, Γ(v) σ1

@ l and

by low-equivalence, Γ(v) σ2
@ l. Since v is not assigned to in c2, σ2[v] = σ′2[v] and

Γ(v) σ2
@ ′l. Therefore, σ′1 and σ′2 agree on these variables. The reverse case is

symmetric.

For any variables not assigned in either ci, low-equivalence is also preserved.

Lastly, when τ σ1
@ l ∧ τ σ2

@ l but both execute the same branch, the induction

hypothesis still proves preservation of low-equivalence. Note (by previously

described logic) that τ σ1
v l ⇐⇒ τ σ2

v l so there are no other cases.
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Timing-Sensitive Noninterference. Next, we state timing-sensitive form of

noninterference at the thread-level semantics for well-formed circuits.

We write 〈σ,Prog〉 ↪→ T as shorthand for: 〈0, σ, ∅, ∅, ∅〉 producing the se-

quence of observations T .

Traces are low-equivalent if they are element-wise low-equivalent; the times-

tamps must be equal and the environments must be low-equivalent.

Theorem B.3 (Timing-Sensitive Noninterference).

` Γ∧ ` Prog =⇒ σ1 ≈l σ2 ∧ 〈σ1,Prog〉 ↪→ T1 ∧ 〈σ2,Prog〉 ↪→ T2 =⇒ T1 ≈l T2

The proof of this theorem exactly follows that of Zhang et al. [138], except

for an intermediate lemma (Lemma 15), which we prove below.

First, we extend the apply function to clear the values of combinational state.

Since we only use apply when register values are updated and we know the

design is free of inferred latches (by well-formedness), no “unknown” values

are ever read in a command. This is equivalent to saying that all combinational

values are written before they are read in any given clock cycle.

Definition B.3 (Delayed Assignment Application).

∀vc ∈ com . σ
′[vc] = ⊥

∀vs ∈ seq . σ
′[vs] = foldLeft(σ[vs],NB)(λ((v, n), o) . v = vs ? n : o)

apply(σ,NB) = σ′

This is the same as the definition of apply from the original paper for sequen-

tial variables: a variable’s value remains unchanged unless there is a pending
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write and, in the case of multiple writes to a given register, the final write in

the list is used as the new value. write to a register), except all combinational

values are overwritten with an empty value. For combinational variables, we

overwrite their value with an empty or unknown value, ⊥.

Finally, we prove that register assignments preserve low equivalence of en-

vironments.

Lemma B.1 (Delayed Assignment (Lemma 15)).

NB1 ≈l NB2 ∧ σ1 ≈l σ2 =⇒ apply(σ1,NB1) ≈l apply(σ2,NB2)

For simplicity of this proof, we assume there are no duplicate writes to the

same location as the determinism assumption guarantees that race conditions

should not influence which write will be last in the sequence.

Proof. Let the first entry in NBi be denoted (vi, ni, τi). Let apply(σi,NBi) = σ′.

Note that the original low-equivalence of updates, NB1 ≈l NB2, is defined with

respect to which variables will have low labels after application (i.e., with respect to

σ′i).

By induction on the length of NB1 and NB2 we first show that σ′1 and σ′2 agree

on the values of all low variables.

First, when τ1 v l and τ2 v l, it must be true that v1 = v2 and n1 = n2 by

the definition of low-equivalence. Thus σ′[v1] = σ′[v2]. By induction, all other

writes to low variables agree on their new values.

Second, when τ1 @ l, the write does not affect the value of any low variables

by definition.
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Third, when a variable is not written it retains its old value. By our program

typing constraint, Definition B.2, any sequential variables which are not written

will have a new label that is no less restrictive than its label before the other

non-blocking writes are applied.

Let τv = Γ(v) ↓σ and τ′v = Γ(v) ↓σ′ . For sequential variables not written by

any non-blocking write, it must be that τv v τ′v in any environment and thus

τ′v v l =⇒ τv v l. Finally, low-equivalence of the starting environments implies

that both new environments agree on the value of these low variables.

Lastly, combinational variables (which are not written by any non-blocking

event) are all set to ⊥ by the semantics of apply and thus both environments

agree on the values of all combinational variables.

Agreement on Low Labels. We have shown that σ′1 and σ′2 agree on the values

of all low variables. It immediately follows, by the well-formedness assumption

that all free variables in a variable’s type must flow to the variable itself, that all

variables with low labels also have exactly the same label values.

�
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B.2.3 Erasure Guarantees

The main novel result for SpecVerilog is erasure.

We use the notation σi to refer to the ith environment of the trace T .

Theorem B.4 (End-To-End Erasure).

` Γ∧ ` Prog ∧ 〈σ,Prog〉 ↪→ T =⇒

∀i, j, l.Let σ′i = { v 7→ n | n =

(∀(e(~y), b) ∈ eraseTo(Γ(v)). b σi
@ l ∧ σ j � e(σi[~y])) ?⊥ : σi[v] }

i ≤ j ∧ 〈σ′i ,C ∪ S, ∅, ∅〉
...( j+1,σ′j+1)
−−−−−−−−→

j−i+2

〈...〉 =⇒ σ′j+1 ≈l σ j+1

Note that environments produced by the trace are end of cycle values and thus

we have a complex stepping rule in the above definition. If, by the end of cycle j,

we have discovered that a variable from cycle i must be erased, then we can re-

execute cycle i and any intermediate cycles, execute cycle j and then we should

see no influence from the variable below the erasure level, l. We slightly abuse

the notation for thread operational semantics to indicate that enough steps are

taken to produce j − i + 2 trace events, the last of which is ( j + 1, σ′j+1).

We need ( j + 1) − i + 1 = j − i + 2 events since the first event produced will

be for cycle i. Consider the case where i = j; we need to produce 2 events to

capture the new register values computed in cycle i and applied in cycle i + 1.

Definitions and Lemmas. We prove a few useful lemmas before tackling end-

to-end erasure.

A key lemma is the relationship between the eraseTo function and the may-
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flows-to relation. If any label must be erased above a given level, then any label

which that one flows to also must be erased, or is already above the erasure

level.

Lemma B.2 (Erasure Monotonicity).

∀τ1, τ2. τ1 v τ2 ∧ (e(~y), b) ∈ eraseTo(τ1) =⇒

b v τ2 ∨ (e′(~y′), b′) ∈ eraseTo(τ2) ∧ (e(~y) =⇒ e′(~y′)) ∧ b v b′

Proof. By induction on the structure of τ1,τ2.

For τ1 the only cases of interest are when it has an erasure condition:

First, τ1 = b1
e(~y)↗b and its erasure conditions are (c, b) ∈ eraseTo(τ1) where

c = e(~y).

τ2 = l.

The only typing rule allowing τ1 v τ2 requires that b v τ2.

τ2 = f (n).

By the same reasoning as above.

τ2 = b′1
e′(~y′)↗b′.

By the typing rule for two erasure policies, c =⇒ e′(~y′) ∧ b v b′. (e′(~y′), b′) ∈

eraseTo(τ2), and therefore satisfies our lemma.
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τ2 = τl t τr.

By the typing rule for join, τ1 v τl ∨ τ1 v τr.

If τ1 v τl, by induction either b v τl, in which case b v τ2, or τl must have

an erasure condition satisfying the lemma: (c′, b′). By the definition of eraseTo,

(c′, b′tτr) ∈ eraseTo(τ2). This erasure condition also satisfies the lemma require-

ments since b v b′ v (b′ t τr).

The case where τ1 v τr is symmetric.

τ2 = τl u τr.

By the typing rule for meet, τ1 v τl ∧ τ1 v τr. By the induction hypothesis

both τl and τr must indiviually satisfy the lemma.

If neither τl nor τr have erasure conditions, then it must be that b v τl∧b v τr,

which implies that b v τl u τr = τ2.

If τl has an erasure condition, (c′, b′), but τr does not, then τ2 has (c′, b′ u τr).

By the above logic, b v τr and b v b′ therefore b v b′ u τr.

The reverse case is symmetric.

If both τl and τr have erasure conditions, (ci, bi), then b v bi ∧ c =⇒ ci. In

this case c =⇒ c1 ∧ c2 and b v b1 u b2.

Next, we consider when τ1 = τl t τr which has potential erasure conditions:

(cl, bl t τr), (cr, br t τl), (cl ∧ cr, bl t br)
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τ2 = l.

By the typing rule for join, τl v τ2∧ τr v τ2; therefore by induction bl v l and

br v l. Furthermore, since bl v l ∧ br v l it is also true that bl t br v l.

τ2 = f (n).

Same reasoning as above.

τ2 = τ2l t τ2r.

Either τl v τ2l or τ1 v τ2r.

By the induction hypothesis, if τ1 v τ21, then for any (c, b) ∈ eraseTo(τ1),

there exists (c′, b′) ∈ eraseTo(τ21) such that c =⇒ c′ ∧ b v b′ or b v τ21. It must

be the case that (c′, b′ t τ2r) ∈ eraseTo(τ2) (which satisfies our lemma statement)

or b v τ2 (by the typing rule of join).

The reverse case (τ1 v τ2r) is symmetric, and since at least one case must be

true the lemma holds.

τ2 = τ2l u τ2r.

By the typing rule for meet, τl v τ21 ∧ τ1 v τ2r.

By the induction hypothesis, if τl v τ2l, then we have the same assumptions

as in the previous case: (c′, b′) ∈ eraseTo(τ2l) ∧ c =⇒ c′ ∧ b v b′ or b v τ2l.
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The same holds for τ2r: (c′′, b′′) ∈ eraseTo(τ2r) ∧ c =⇒ c′′ ∧ b v b′′ or b v τ2r.

If there is an erasure condition in τ2l, but not in τ2r, (c′, b′ u τ2r ∈ eraseTo(τ2)

and this satisfies our lemma since b v b′ and b v τ2r so b v b′ u τ2r.

The reverse case is symmetric.

If there is an erasure condition in both τ21 and τ2r, then (c′ ∧ c′′, b′ u b′′) ∈

erasetTo(τ2), which satisfies our lemma since c =⇒ c′ ∧ c =⇒ c′′ and b v

b′ ∧ b v b′′.

Next, we consider when τ1 = τl u τr, and has erasure conditions (cl, bl u

τr), (cr, br u τl), (cl ∧ cr, bl u br).

τ2 = l.

By the typing rule for meet, τl v l ∨ τr v l.

If τl v l then, by the induction hypothesis, bl v l. Therefore: bl u τr v l and

br u τl v l and b1 u br v l.

The other case is symmetric.

τ2 = f (n).

This is the same as above.

τ2 = τ2l t τ2r.

By the typing rule for join: τ1 v τ2l ∨ τ1 v τ2r.
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If τ1 v τ2l then, by the induction hypothesis, for each erasure condition in τ1

either b v τ2l or (c′, b′) ∈ eraseTo(τ2l) where c =⇒ c′ ∧ b v b′.

If b v τ2l then b v τ2 and so that case satisfies the lemma. If (c′, b′) ∈

eraseTo(τ21) then (c′, b′ t τ2r) ∈ eraseTo(τ2), which also satisfies the lemma, since

b v b′ v b′ t τ2r.

The reverse case is symmetric.

τ2 = τ2l u τ2r.

By the typing rule for meet introduction: τ1 v τ21 ∧ τ1 v τ2r.

By the induction hypothesis, for each of τ2i either: b v τ2i or (ci, bi) ∈

eraseTo(τ2i) ∧ c =⇒ ci ∧ b v bi.

If neither τ2i has an erasure condition, then b v τ2l ∧ b v τ2r and therefore

b v τ2.

If only one has an erasure condition (say τ2l), then b v τ2r and (cl, bl u τ2r) ∈

eraseTo)(τ2). c =⇒ cl and b v bl u τ2r so we satisfy the lemma.

If both have an erasure condition, then (cl ∧ cr, bl u br) ∈ eraseTo)(τ2) which

satisfies our lemma. �

Next, we define a weaker notion of observational equivalence, that allows

disagreement on some variables. We define a general notion of projection equiv-

alence to capture agreeing on the values of a set of variables:

Definition B.4 (Projection Equivalence). Let σi|
V = { v 7→ σi[v] | v ∈ V }

σ1 ≈
V

l σ2 ⇐⇒ σ1|
V ≈l σ2|

V
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We extend the definition of projections and projection equivalence to write

sets (AS and NB) in the obvious way. The projections erase entries from the lists

for variables that are not included in the projection.

We consider permanent projections, the set of variables that will never be

erased above a given observation level in a trace of environments.

Definition B.5 (Permanent Projection). The permanent projection of an environment

up to a level l, σ|Pl:T , is the subset of the environment for which variables do not have an

erasure policy specifying erasure above level l, or whose erasure conditions are not ever

fulfilled in a given trace.

σ|Pl:T = { v 7→ σ[v] | ∀(e(~y), b) ∈ eraseTo(Γ(v)).b σv l ∨ (∀σi ∈ T , σi 2 e(σi[~y])) }

For the sake of simplifying the following proofs, we assume that erasure con-

ditions only contain sequential variables so that the set of erased variables does

not change within a given cycle; however, we do not believe this is necessary

for the following theorems to hold.

Executing commands preserves equivalence of permanent projections.

Lemma B.3 (Single-Command Permanent Equivalence).

σ1 ≈
P1:(σ1)
l σ2 ∧ σi ⇓ σ

′
i =⇒ σ′1 ≈

P1:(σ1)
l σ′2

Proof. By induction on the structure of commands.

Assign: v = e.

Let Γ ` ei a τ
′′
i ∧ τ

′′
i ↓σi= τi. Let Γ(v) ↓σ′i = τ′i .
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First, if e only contains variables from the permanent projection, then the

value in v will be low-equivalent, by Theorem B.2, single-command noninter-

ference.

Additionally, whether v is in the permanent projection ofσ′i is only a function

of σ′i[v], Γ(v), and variables that must have been equivalent in σ1 and σ2, since

they had equivalent permanent projections before the assignment.

Otherwise, the value, ni, assigned into v may differ in each environment; to

preserve permanent equivalence the label of v in both environments must be

above l, or must also be outside of the permanent projections.

By the typing rule for assignment τi v τ′i ; therefore by Lemma B.2, when

evaluated in the final environments, v, is either outside the permanent projec-

tion (( , b′) ∈ eraseTo(Γ(v)) ∧ b′ @ l) or is in the high set (Γ(v) @ l). Which of

these two statements hold must be the same in both environments since it is a

function only of Γ(v).

By the above logic, the accumulated write sets (AS′1 and AS′2) will also be per-

manent equivalent. The nonblocking write sets are unchanged and thus trivially

equivalent.

Assign-NB: v⇐ e.

This follows exactly the same logic as in blocking assignment, except we are

only arguing about the permanent equivalence of NB since neither σ nor AS

change.
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Seq: c1; c2.

By the induction hypothesis and transitivity of permanent equivalence.

If: if (e) c1 else c2.

First, as with assignment, if all of the variables referenced in e are in the

permanent projection, then both configurations will execute the same branch

and by the induction hypothesis will be permanent equivalent. This logic also

holds if the two configurations happen to execute the same branch.

Otherwise, the two environments diverge and the configurations execute

different branches.

The typing rule for assignment ensures that the label of e is captured by the

pc, and by the typing rules for assignment, we can appeal to the same logic as

above. All writes that occur in either configuration and in either branch must

be to variables that will be erased or in the high set of labels. Therefore, erasure

equivalence is still preserved. �

Permanent equivalence straightforwardly extends to threads (the traces are

element-wise permanent equivalent). Essentially, this relies on the same logic as

preserving non-interference across clock cycle boundaries when applying reg-

ister updates. Thus, we omit a detailed proof:

Lemma B.4 (Thread Permanent Equivalence).

σ1 ≈
P1:(σ1)
l σ2 ∧ 〈σi,Prog〉 ↪→ Ti =⇒ Tl ≈

P1:(σ1)
l T2

206



Now we move on to actually erasing variables; we show that, if a variable’s

erasure condition is fulfilled in the current cycle, then it has no impact on the

set of variables in the next cycle which are below its erasure level.

We define this with a new projection, which we call the retained projection and

it consists of all variables that don’t need to be erased this cycle:

σ|Rl = { v 7→ σ[v] | ∀(e(~y), b) ∈ eraseTo(Γ(v)). b σv l ∨ σ 2 e(~y) }

Now we define erasure equivalence: when two environments have equiva-

lent retained projections, they will preserve that equivalence and will only ac-

crue low-equivalent updates to registers.

Lemma B.5 (Single-Cycle Command Erasure Equivalence).

∀σ1, σ2, l. σ1 ≈
R1
l σ2 ∧ AS1 ≈

R1
l AS2 ∧ NB1 ≈l NB2 ∧ σi ⇓ σ

′
i =⇒

σ′1 ≈
R1
l σ′2 ∧ AS′1 ≈

R1
l AS′2 ∧ NB′1 ≈l NB′2

Proof. By induction on the structure of commands.

Assign: v = e.

The only case not covered by Lemma B.3 is when e has an erasure condition

in its type and b σ@ l∧σ 2 e(~y); in this case the two assignments have to agree on

the result, but they will also agree on the value of e and therefore the new label

and value of v.

For NB this is trivial. This statement has no effect on the accumulated non-

blocking writes.
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Assign-NB: v⇐ e.

Let Γ ` e a τ.

This only updates NB and so retained equivalence is maintained on σ and

AS.

First, when the two configurations agree on the value of e, (i.e., all of its vari-

ables are in the retained projection), then low-equivalence of NB is maintained

by noninterference.

Otherwise, it must be the case that (e(~y), b) ∈ eraseTo(τ) ∧ σ � e(~y) ∧ b σ@ l:

at least some variable in e has its erasure condition fulfilled and thus the two

configurations may compute different values of e.

If (e′(~y′, ) ∈ Γ(v), by the typing rules from non-blocking assign, the erasure

condition must not be fulfilled. By Lemma B.2, σ � e(~y) =⇒ σ � e′(~y′) and

therefore v must not have an erasure condition if the assignment is well-typed.

The only other way for this to be well-typed is if Γ(y) = τ′ ∧ b σvnext τ
′, which

implies τ′ ↓σ′@ l. This in turn implies low-equivalence of the update to NB′.

Seq: c1; c2.

By the induction hypothesis and transitivity of equivalence.

If: if (e) c1 else c2.

As with the other theorems, the only case that need be considered is when e

needs to be erased to a level above l, and the two configurations execute different
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commands.

Since the pc captures the erasure condition that must be present in the type

of e (as argued above), there will be no non-blocking writes to any level below l

and no blocking writes to the retained projections of σ. �

This straightforwardly extends to threads as well:

Lemma B.6 (Single-Cycle Thread Erasure).

∀σ1, σ2, l. σ1 ≈
R1
l σ2 ∧ 〈t, σi,Prog, ~c,B, ∅〉 ↪→:: (t + 1, σ′i) :: Ti =⇒ σ′1 ≈l σ

′
2

We omit a complete proof since this follows almost directly from Lemma B.5

and the well-formedness assumptions of race-freedom for programs.

We only prove the equivalent of Lemma B.7 for erasure:

Lemma B.7 (Delayed Assignment After Erasure).

NB1 ≈l NB2 ∧ σ1 ≈
R1
l σ2 =⇒ apply(σ1,NB1) ≈l apply(σ2,NB2)

Proof. This follows almost directly from the same logic as Lemma B.7, the only

change is for unwritten sequential variables.

In this case, the only unwritten sequential variables whose values are not

low-equivalent are those with an erasure condition that is fulfilled in the current

cycle.

By the typing constraint in Definition B.2, the label of these variables must

flow to their next cycle label. If their erasure condition is fulfilled, then,
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by Lemma B.2 their next cycle label is either in the high set (and thus low-

equivalence is preserved) or its erasure condition is also fulfilled (and thus is

not well-typed). �

Finally, we prove that well-typed programs provide end-to-end erasure.

Theorem B.4 (End-To-End Erasure).

` Γ∧ ` Prog ∧ 〈σ,Prog〉 ↪→ T =⇒

∀i, j, l.Let σ′i = { v 7→ n | n =

(∀(e(~y), b) ∈ eraseTo(Γ(v)). b σi
@ l ∧ σ j � e(σi[~y])) ?⊥ : σi[v] }

i ≤ j ∧ 〈σ′i ,C ∪ S, ∅, ∅〉
...( j+1,σ′j+1)
−−−−−−−−→

j−i+2

〈...〉 =⇒ σ′j+1 ≈l σ j+1

Proof.

Base case: i = j.

In this case, end-to-end erasure reduces to single-cycle thread erasure

(Lemma B.6), since σ j ≈
R1
l σ′j.

Otherwise: i < j. Without loss of generality, consider an i such that ∀k. i ≤ k <

j ∧ σk 2 e(σi[~y]) (i.e., there is no intermediate cycle between i and j when the

erasure condition holds).

Let Ti j be the subset of the execution trace between σi and σ j (inclusive).

In this case, σi ≈
P1:Ti j

l σ′i , which by Lemma B.4 is preserved across cycles, so

σi+1 ≈
P1:Ti j

l σ′i+1: inductively, σ j ≈
P1:Ti j

l σ′j.
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At this point, since the erasure condition is true in cycle j, permanent equiv-

alence in cycle j implies retained equivalence, which again reduces to single-

cycle thread erasure. �
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