Rounding Semidefinite Programming Hierarchies via Global Correlation

David Steurer
MSR New England

joint work with

Boaz Barak
MSR New England

Prasad Raghavendra
Georgia Tech

FOCS 2011, Palm Springs
Semidefinite Programming (SDP) Hierarchies

powerful algorithmic technique

Better approximations for combinatorial optimization problems?

Example: MAX CUT [Goemans-Williamson’94]

Unique Games Conjecture

strong implications for hardness of approximation

Is the conjecture true or false?

Constraint Satisfaction Problems (CSPs)

important class of optimization problems

What instances are hard / easy?

[e.g., works on dense or pseudo-dense instances]

[Sherali-Adams’90, Lovász-Schrijver’91, Lasserre’01]

[Khot’02,...]
2-CSP

Input: list of constraints on variable pairs \((x_i, x_j)\)

Goal: satisfy as many constraints as possible

Example

\[x_i - x_j = c \mod k \]
(UNIQUE GAMES)
2-Csp

Input: list of constraints on variable pairs \((x_i, x_j)\)

Goal: satisfy as many constraints as possible

Main Result: Algorithm for 2-Csp

Approximation

up to \(\varepsilon\) fraction satisfy maximum number of constraints

Running Time

exponential in \(\text{poly}(\varepsilon)\) and number of eigenvalues \(\geq \varepsilon'\)
in *constraint graph* (normalized adjacency matrix)

\textbf{Unique Games:} independent of alphabet
Algorithm for 2-CSP

- **approximation** up to ε fraction satisfy maximum number of constraints
- **running time** exponential in $\text{poly}(\varepsilon)$ and number of eigenvalues $\geq \varepsilon'$ in *constraint graph* (normalized adjacency matrix)

- iterative rounding procedure for SDP hierarchies *(framework)*

- **QPTAS** for all *canonical gap instances* of *Max Cut* and *Unique Games*

- simpler *subexponential algorithm* for *Unique Games* [Arora, Barak, S.’10]

 *Do SDP hierarchies capture the true time complexity of *Unique Games*?*

- new *characterization* of higher eigenvalues of graphs (Poincaré-type inequality)
Algorithm for 2-CSP

approximation up to ϵ fraction satisfy maximum number of constraints

running time exponential in $\text{poly}(\epsilon)$ and number of eigenvalues $\geq \epsilon'$ in *constraint graph* (normalized adjacency matrix)

Previous works

2-CSP
dense or pseudo-dense instances
[Arora-Karger-Karpinski’95, Fernandez de la Vega’96, …]

Unique Games
alphabet-independent approximation, stronger assumptions about instances
[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08, Kolla-Tulsiani’07, Kolla’10]
Algorithm for 2-CSP

approximation up to ε fraction satisfy maximum number of constraints

running time exponential in $\text{poly}(\varepsilon)$ and number of eigenvalues $\geq \varepsilon'$ in *constraint graph* (normalized adjacency matrix)

Subsequent works (using our framework)

better **3-COLORING** approximation on some graph families [Arora-Ge’11]

better approximations for **MAX-BISECTION** [Raghavendra-Tan’11]

Independent work [Guruswami-Sinop’11]

approximation schemes for quadratic integer programming with p.s.d. objective & few relevant eigenvalues
Unique Games

Input: list of constraints of form $x_i - x_j = c \mod k$

Goal: satisfy as many constraints as possible

What we want

$X_1, ..., X_n$ jointly distributed random variables over $[k]$

$\Pr(X_i - X_j \equiv c) \geq v_{OPT}$ for typical constraint $x_i - x_j \equiv c$
Goal: produce global random variables X'_1, \ldots, X'_n

$\{X'_i, X'_j\} \approx \{X_i, X_j\}$ for most constraints $x_i - x_j \equiv c$

\Rightarrow iterative procedure
Components of iterative procedure

Rounding

sample variables independently according to their marginals

Conditioning

pick a vertex \(j \) and sample \(X_j \)
condition \(X_1, \ldots, X_n \) on sample for \(X_j \)

Structure

use / extract *structural* properties of instance
(Pairwise) Correlation

\[
\text{Corr}(X_i, X_j) \text{ measures how much the distribution of } X_i \\
\text{changes when conditioned on } X_j
\]

Examples

\[
\begin{align*}
\text{Corr}(X_i, X_j) &= 0 \iff X_i \text{ and } X_j \text{ independent} \\
\text{Corr}(X_i, X_j) &= 1 \iff X_i \text{ determined after fixing } X_j
\end{align*}
\]
Important fact

Can approximate $\text{Corr}(X_i, X_j)$ by inner products of unit vectors (tensoring trick [Khot-Vishnoi'05])

Conditioning

- Statistical distance between $\{X_i, X_j\}$ and $\{X_i\}\{X_j\}$

$$\max_c \sum_a |\text{Cov}(X_{ia}, X_{j(a+c)})|$$

- Decrease in variance when conditioning on X_j

$$\sum_a (\text{Var}(X_{ia}) - \text{Var}(X_{ia} | X_j))$$

Structure

Similar to mutual information

$$I(X; Y) = H(X) - H(X | Y)$$
<table>
<thead>
<tr>
<th>Rounding</th>
<th>Conditioning</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
sample variables independently according to their marginals

If $\text{Corr}(X_i, X_j) \leq \epsilon$ then *independent sampling*
satisfies constraint with probability $\geq v_{\text{OPT}} - \epsilon$

Rounding fails $\Rightarrow \mathbb{E}_{i \sim j} \text{Corr}(X_i, X_j) > \epsilon$

$\text{Corr}(X_i, X_j) \approx$ statistical distance between independent and correlated sampling

Local Correlation (over edges of constraint graph)
pick a vertex \(j \) and sample \(X_j \)
condition \(X_1, \ldots, X_n \) on sample for \(X_j \)

Issue:

computationally expensive

\(r \)-local \(\rightarrow (r - 1) \)-local

Idea:

condition on vertex \(j \) only if \(\mathbf{E}_{i} \text{Corr}(X_i, X_j) > \frac{1}{r} \)
\(\Rightarrow \) can condition at most \(r \) times on such vertices

Conditioning fails \(\Rightarrow \) \(\mathbf{E}_{i,j} \text{Corr}(X_i, X_j) < \frac{1}{r} \)

Global Correlation
(over random vertex pairs)
Local vs Global Correlation and Higher Eigenvalues

If constraint graph has less than \(\delta \cdot r \) eigenvalues \(\geq \varepsilon - \delta \), then always either \textit{rounding} or \textit{conditioning} succeeds

\[E_{i,j} \text{Corr}(X_i, X_j) > \varepsilon \Rightarrow \text{constraint graph has at least } \delta \cdot r \text{ eigenvalues larger than } \varepsilon - \delta \]

\[E_{i,j} \text{Corr}(X_i, X_j) < 1/r \]

\Rightarrow \text{ good approximation for UNIQUE GAMES (and 2-CSP) on such graphs}
Local vs Global Correlation and Higher Eigenvalues

\[E_{i \sim j} \text{Corr}(X_i, X_j) > \varepsilon \]
\[E_{i,j} \text{Corr}(X_i, X_j) < 1/r \]

⇒ constraint graph has at least \(\delta \cdot r \) eigenvalues larger than \(\varepsilon - \delta \)

“Proof”

approximate correlations by *inner products* of unit vectors

high local correlation ⇒ vectors correlated with top eigenvectors

low global correlation ⇒ “vectors live in many dimensions”

⇒ many top eigenvectors necessary to accommodate vectors
Rounding

fails only if *local correlation high*
\[\mathbb{E}_{i \sim j} \text{Corr}(X_i, X_j) > \varepsilon \]

Conditioning

fails only if *global correlation low*
\[\mathbb{E}_{i, j} \text{Corr}(X_i, X_j) < 1/r \]

Small-Set Expansion

Local vs Global Correlation and Higher Eigenvalues

[uses Arora-Barak-S.'10, S.'11]

Small-Set Expansion

\[\mathbb{E}_{i \sim j} \text{Corr}(X_i, X_j) > \varepsilon \]
\[\mathbb{E}_{i, j} \text{Corr}(X_i, X_j) < n^{-\beta} \]

\[\Rightarrow \]

constraint graph contains set \(S \) with \(\leq n^{-\beta/2} \) fraction of vertices and \(\geq \varepsilon^{1/\beta} \) fraction of edges

Idea: round \(X_S \) and \(X_{V \setminus S} \) separately

\[\Rightarrow \]
subexponential algorithm for UNIQUE GAMES
Open Questions

What else can be done in subexponential time?
Better approximations for \textsc{Max Cut}, \textsc{Vertex Cover} on general instances?

\textit{Example:} $f(\varepsilon)$-approximation for \textsc{Sparsest Cut} in time $\exp(n^\varepsilon)$?

Towards understanding the Unique Games Conjecture

integrality gap instances with $\text{poly}(n)$ large eigenvalues?

\exists \text{ gap instances with } \text{qpoly}(n) = 2^{(\log n)^{\Omega(1)}} \text{ large eigenvalues}

\textit{Also:} gap remains for $\text{qqpoly}(n)$ levels of a (weak) SDP hierarchy

\textbf{Thank you! Questions?}