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Abstract

Tree structured models have been widely used for de-

termining the pose of a human body, from either 2D or

3D data. While such models can effectively represent the

kinematic constraints of the skeletal structure, they do not

capture additional constraints such as coordination of the

limbs. Tree structured models thus miss an important source

of information about human body pose, as limb coordina-

tion is necessary for balance while standing, walking, or

running, as well as being evident in other activities such as

dancing and throwing. In this paper we consider the use of

undirected graphical models that augment a tree structure

with latent variables in order to account for coordination

between limbs. We refer to these as common-factor models,

since they are constructed by using factor analysis to iden-

tify additional correlations in limb position that are not ac-

counted for by the kinematic tree structure. These common-

factor models have an underlying tree structure and thus

a variant of the standard Viterbi algorithm for a tree can

be applied for efficient estimation. We present some experi-

mental results contrasting common-factor models with tree

models, and quantify the improvement in pose estimation

for 2D image data.

1. Introduction

Human pose estimation from a single viewpoint is a

challenging and important problem in computer vision. As

cameras become standard computer peripherals there are

many possible applications for “looking at people” (e.g.,

see [10]). There has been substantial progress on estimating

human pose from a single viewpoint, however the problem

remains quite difficult. Many recent approaches are based

on using a tree-structured model that captures the kinematic

relations between parts such as the torso and limbs (e.g.,

[4, 6, 9, 11]). In such kinematic tree models each body

part corresponds to a node in a graph, and two nodes are

connected by an edge when there is a joint connecting the

corresponding body parts.

Kinematic tree models are powerful because they enable

pose estimation to be done efficiently, in time linear in the

number of body parts, while capturing what is arguably the

most important source of constraint on human body pose,

the joints connecting the limbs. However such models are

also limited by the fact that they do not represent informa-

tion about relations between limbs that are not connected

by joints. Thus important sources of constraint such as bal-

ance and coordination are not captured. It is not a simple

matter to add more constraints, because the computational

complexity of estimation is exponential in the size of the

largest clique in the graph. Thus for example, adding con-

straints between the arms and legs to account for balance

would result in a nearly fully connected graph, and quickly

make the estimation problem intractable.

In this paper we investigate a technique for adding con-

straint to the model while not greatly increasing the compu-

tational cost of estimation. The key idea is to introduce a

small number of latent variables to represent residual corre-

lations between parts that are not captured by a tree model.

This kind of approach has recently been investigated in

more general graphical models (e.g., [12]). In a bit more de-

tail, we start with a kinematic tree model and identify parts

where correlation in their locations violates the conditional

independence assumption of the tree model. We then use

factor analysis to find the best common factor that accounts

for these correlations. This common factor is added to the

tree model as a latent variable. The resulting common-

factor model preserves the underlying tree structure, which

allows a variant of the Viterbi algorithm to be used for effi-

cient pose estimation. Intuitively, the tree captures the kine-

matic constraints and the common-factor model then seeks

additional constraints that can be represented by augment-

ing the tree structure in a manner that does not substantially

change the computational tractability.

To demonstrate the approach we compare a standard

kinematic tree model with a model that has a single addi-

tional latent variable to account for coordination of the up-

per arms and legs. Intuitively this corresponds to the sym-

metry in the orientations of the upper limbs with respect

to the torso that is used to maintain balance (note that the

constraint is determined automatically from training data

as briefly described above and discussed in more detail in



subsequent sections). The addition of this single constraint

leads to substantial improvement in the accuracy of pose

estimation when compared with a tree model. We show

this qualitatively as well as quantitatively using a sequence

from [13] where data from motion capture markers serves

as ground truth. The common-factor model provides sub-

stantially better performance, more than halving the average

localization error compared to the tree model.

2. Related Work

There are a wide range of approaches to human pose

estimation. Much of the work uses 3D models and multi-

ple image sources (e.g. see the recent paper by [13]). In

contrast our focus is on the use of 2D models and a single

viewpoint. Another popular class of approaches is based on

active contour models (e.g., [15]) and tracking edge con-

tours over time. In contrast our approach uses a genera-

tive model consisting of parts and relations between parts.

Our method works on a single frame, whereas the contour

tracking approaches generally require motion between suc-

cessive frames.

The approaches most closely related to ours are those

which model the 2D projection of the human form in terms

of rectangular parts with spring-like constraints between

those pairs of parts that are connected by joints. The card-

board people model of [7] uses a kinematic chain, and sub-

sequent work by [4, 6, 9, 11] uses a full kinematic tree. Such

tree-based methods often use statistical sampling methods

to esimate mulitple possible poses, and then select among

hypotheses based on other criteria. While sampling tech-

niques could be used with the model developed here, in-

stead we investigate the power of a more constrained model

to find the best pose via MAP estimation.

The work of [14] is similar to ours in that it considers

graphical models with more constraint than a tree model,

but which still allow for efficient estimation algorithms.

Their approach is to use a form of triangulated graph that

has cliques of size at most 3 (as recall the complexity of es-

timation is exponential in the clique size). In contrast, we

stay with a tree-structured model where estimation can be

done in linear time, but then augment that tree with latent

variable(s) that must be explicitly optimized over. Another

difference in the approaches is their work uses local point

feature detectors as opposed to the limb-sized part models

that we employ.

3. Trees and their Limitations

Consider an object with n parts, where each part is rep-

resented by a vertex vi ∈ V , and there is an undirected

edge eij = (vi, vj) between each pair of vertices that has

an explicit spatial dependency. Let li be a random variable

representing the location of part vi, and L = (l1, . . . , ln)
be the overall spatial configuration of the model. Following

the work of [4] and [6] the location of each part is param-

eterized by li = (x, y, s, o) where (x, y) is the location of

a reference point on the part, s is a scale factor that corre-

sponds to foreshortening, and o is the part orientation. We

use the notation LS to denote the locations for S ⊂ V , for

example if S = {vi, vj , vk} then LS = (li, lj , lk).
First consider a graph with edges ET that forms a tree

T = (V,ET ). For such a model the prior over location,

or spatial model, p(L) factors into products involving the

edges and the nodes,

p(L) =

∏
(vi,vj)∈ET

p(li, lj)∏
vi∈V p(li)d(vi)−1

,

where p(·) is the marginal probability of its arguments, and

d(vi) is the degree of the vertex vi.

Following [4] we assume that there is no meaningful

prior on the location of an individual part. The spatial re-

lations are all on relative locations of parts rather than on

absolute location. In this case the prior can be rewritten as

a product over the edges. In general we use potential func-

tions φ(·) rather than distributions to avoid normalization

computations, yielding,

p(L) ∝
∏

(vi,vj)∈ET

φij(li, lj), (1)

where φij is a potential function over the clique (pair of

nodes) vi and vj .

As is common, we use a spring-like model for the con-

nection between limbs. Thus the clique potential for a pair

of parts connected by an edge eij is of the form,

φij(li, lj) = N(Tij(li) − Tji(lj), 0,Σij),

where N is an (unnormalized) Gaussian with mean zero.

Tij and Tji are linear transformations that bring li and lj
to an ideal relative orientation and scale about a connected

pivot point, and Σij is a covariance matrix. Conceptually

this corresponds to a simple spring model of a revolute joint

that connects two parts, where Tij and Tji encode the mean

or ideal relative position of the joint and Σij encodes the

degree of flexibility in the joint.

For a human body, the variance in the relative orienta-

tions of two connected limbs is generally quite high com-

pared to the other location parameters of position and scale.

Another alternative would be to represent the orientation us-

ing a Potts-like model which specifies an allowable range of

orientations rather than using a high variance Gaussian. We

have found little difference in practice, and thus use a Gaus-

sian for consistency with the other parameters.

It is useful to explicitly consider the random variable

Yij = Tij(li) − Tji(lj), (2)
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Figure 1: Tree model for a side-view of a walking person,

and a visualization of the model’s default pose configura-

tion.

which measures the deviation of two parts from their ideal

relative location in (x, y, s, o) space. This simplifies the ex-

pression for φij ,

φij(li, lj) = N(Yij , 0,Σij),

making explicit that the clique potential has the form of a

Gaussian distribution over the relative locations of the two

parts Yij .

Figure 1 shows an example of a tree-structured model for

a side view of a person walking. This model was learned

from labeled training data using the method in [4] which

is based on finding a minimum spanning tree (MST). The

connections between the parts as well as the potential func-

tions for each edge were learned from the data. Note that

the tree captures the kinematic structure because the parts

connected by joints are the most highly correlated, not be-

cause any specific tree was imposed a priori. The left side

of the Figure shows the parts of the model at the mean rela-

tive configuration with respect to the root part, which is the

torso. The right side of the Figure shows the tree structure.

Not only does this tree model naturally capture the kine-

matic structure, the factorization of the prior into a product

of pairwise clique potentials in equation (1) allows for in-

ference to be done in time linear in the number of nodes.

Moreover, the form of the clique potentials allows the meth-

ods in [4] to be used to perform estimation in O(nh) rather

than O(nh2) time, where h is the number of discrete loca-

tions for each of the n parts.

However this model of a person also illustrates some lim-

itations of tree-structured models. The locations of sibling

parts are independent when conditioned on their parent. For

instance, given a location for the torso, the locations of the

upper arms and legs are independent. In general for an undi-

rected graphical model, conditional independence is equiv-

alent to reachability in the graph (e.g., see [5, 16]). If we

remove node 1, the torso, then its children are all unreach-

able from one another and thus conditionally independent.

Therefore it is not possible to directly represent coordina-

tion between limbs that are not connected by joints, such

as the fact that in a side view the arms and legs should be

Figure 2: Two pose configurations: 1) legs and arms all

to the same side of the torso, 2) legs and arms symmetric

about the torso. Both configurations have almost the same

probability using a kinematic tree model.

symmetric about the torso.

Figure 2 illustrates this limitation. The Figure shows

two configurations of a side-viewed body model. Clearly

the one on the left is un-natural, as the parts are all on one

side of the torso, whereas the one on the right is natural.

However these two poses have essentially the same proba-

bility with regard to the tree-structured model in Figure 1

because it only encodes kinematic relations. It should be

noted that this is a limitation in the spatial model, p(L),
which is missing important information about limb coor-

dination. For instance, while other information such as a

richer part appearance model than a silhouette might also

be useful, even then one could not in general distinguish

the two legs from one another. Thus we turn to additional

sources of spatial constraint by considering the residual co-

ordination between limbs given the tree model.

4. Residual Covariance Analysis

In order to identify possible additional spatial relations

among parts we consider the residual covariance of the parts

given the locations of their parents. Parts whose locations

are highly correlated given the locations of their parents are

parts that violate the conditional independence assumption

of the tree model, and are thus good candidates for addi-

tional spatial constraints in the model. The simplest case is

for parts that share a common parent and we use that case

to illustrate the approach. In the human body model in Fig-

ure 1 the only nodes with a common parent are the upper

arms, upper legs and head (nodes 2,3,5,7,9) which all have

the torso (node 1) as parent. Thus we consider which of

these nodes, if any, have substantial correlation in their lo-

cations given a fixed location of the parent.

The random variable Yij defined in equation (2) mea-

sures the degree to which two parts are at their mean rel-

ative locations (i.e. larger values correspond to more de-

formation). Thus given a parent node r and its children

u1, . . . , uk we compute the covariance matrix Σ of the Yri

for each ui and then consider the correlation coefficients for



that covariance matrix. Note that in the more general case

of multiple parents, this can be done with respect to all of

the parents rather than a single parent.

As an illustration we consider the case of side-views of

a person walking. We use 240 labeled silhouette images as

training examples. Given the tree-model learned in the pre-

vious section, as shown in Figure 1, the correlation matrix is

computed for the five children of the torso. The correlations

of the position and scale parameters for these parts are not

statistically significant (that is, conditional independence is

a reasonable assumption). However the correlations of the

orientation parameters are highly statistically significant for

the four upper limbs (that is, conditional independence is

a poor assumption). The portion of the correlation matrix

related to the orientation variable is shown in Table 1.

Head L. Arm L. Leg R. Arm R. Leg

Head 1.00 0.00 -0.00 -0.06 0.00

L. Arm 0.00 1.00 -0.58 -0.83 0.67

L. Leg -0.00 -0.58 1.00 0.61 -0.43

R. Arm -0.06 -0.83 0.61 1.00 -0.59

R. Leg 0.00 0.67 -0.43 -0.59 1.00

Table 1: The correlation coefficients of the orientation pa-

rameters for the 5 parts connected to the torso from 240

side-view images of a person walking.

All of the entries in this table are highly statistically

significant except those for the head. If one were to en-

code these relations as additional constraints in the graph-

ical model, one would end up with the structure in the top

of Figure 3, where the nodes for the upper arms and legs

are connected to one another. In the more general case for

nodes that do not have a common parent, all the parents

would be part of the clique.

When there is a common parent the graph G = (V,EG)
is triangulated (there are no minimum cycles of length more

than 3). In the general case the graph can easily be triangu-

lated, if it is not already, by adding edges to the subtree

beneath their common ancestor. For a triangulated graph

p(L) can be factored into the ratio of a product over maxi-

mal cliques and a product over separators (for more details

see, for example, [5, 16]). Note that the maximal cliques

are those cliques that cannot be made any larger by adding

more nodes. The separators are the nonempty intersections

between pairs of maximal cliques. If C denotes the maximal

cliques of G and S the separators then p(L) factors as,

p(L) ∝

∏
C∈C φC(LC)∏
S∈S φS(LS)

, (3)

where φC(LC) are clique potentials for the cliques, φS(LS)
are clique potentials for the separators, and the poten-

tial functions are properly defined as proportional to the

marginal probability of the corresponding clique or sepa-

rator. Recall from above that the notation LC denotes the

location variables of the nodes C ⊂ V .

As was the case for the tree models, the denominator of

(3) can dropped because the separators all contain a single

node and the priors over individual nodes are uniformly dis-

tributed (uninformative), yielding

p(L) ∝
∏

C∈C

φC(LC). (4)

Moreover as in the tree model, each clique potential is nat-

urally defined in terms of the relative locations of the parts.

We use the tree structure to provide a parameterization,

where part locations are expressed relative to the parent.

Let C = {r, u1, . . . , uk} where u1, . . . , uk are all children

of r. Then the clique potential can be defined over the cross

product of the domains of all pairwise random variables Yri,

1 ≤ i ≤ k,

φC(LC) = N((Yr1, . . . , Yrk), 0,ΣC)

= N(YC , 0,ΣC), (5)

where YC is shorthand for (Yr1, . . . , Yrk), and ΣC is the

covariance for YC . Note that for a two-clique this is the

same as the edge potential φij(li, lj) of the tree model used

above.

The main drawback of this factorization is that comput-

ing the potential function for the 5-clique is not practical,

because it involves the cross-product space of four Yri’s. A

common approach is to approximate the computation using

pairwise potentials for the edges and loopy belief propa-

gation (LBP). We contrast that approach with ours in the

experimental section, and find that LBP does not seem to

work well for this problem. We suspect this is because the

clique is quite large compared to most problems where LBP

has been applied successfully (such as a four-connected grid

graph where the maximal cliques are still pairs).

5. Factor Analysis

In this section we investigate the use of factor analysis to

identify common factors that account for the residual cor-

relations among parts. Such factors can be added to the

graphical model as latent variables, rather than adding ex-

plicit dependencies between nodes as described in the pre-

vious section. Our main goal is to represent the important

information about additional spatial relations between parts

in a more computationally efficient manner. As with the

kinematic tree model, we want to learn this kind of relation

from data rather than imposing it, both as a means of setting

parameter values and as a means of validating the underly-

ing intuition.



Consider a clique C = (r, u1, . . . , uk) with the clique

potential defined in equation (5), where ΣC is the covari-

ance of YC . We now investigate applying factor analysis to

the covariance matrix ΣC to look for an underlying (hidden)

factor that explains the covariance. Factor analysis is a com-

mon statistical tool for modeling covariance structure. Sim-

ilar to principal components (PCA), it uses a small number

of variables to model high dimensional data and its covari-

ance matrix. However, PCA only reduces the dimension,

whereas factor analysis further tries to explain the correla-

tion between different components using a common factor.

The model usually used in factor analysis is

Z = µ+AX + e,

where Z is a n dimensional observation vector, X is a

m dimensional (m < n) vector of unobservable variables

called the common factor, and A is a n ×m matrix of fac-

tor loadings (parameters). The common factor X is as-

sumed to be independently and identically distributed as

N(X, 0, Im)(Im is a m dimensional identity matrix here),

independently of the errors e, which are assumed to be inde-

pendently and identically distributed as N(e, 0,De), where

De = diag(σ2
1 , σ

2
2 , . . . , σ

2
n). The σ2

i are called the unique-

nesses. Thus conditional on X = x0, the random variable

Z is independently distributed as N(Z, µ+ Ax0,De). Un-

conditionally, Z is independently distributed according to

a normal distribution with mean µ and covariance matrix

AAT + De. From now on, we will assume µ = 0 and ig-

nore it, since we can shift the data to zero its mean position.

A set of parameters {A,De} needs to be learned for the

factor analysis, given the training data set {z1, z2, ...zt}.

There exists an EM algorithm to learn these parameters,

where {z1, z2, ...zt} is considered the incomplete data set,

and {z1, x1; z2, x2; ...zt, xt} is considered as the complete

data set (for more details see [8]).

Given the factor analysis for a clique C =
(r, u1, . . . , uk), we know that for a particular value X = x0

of the common factor, the random variable YC is indepen-

dently distributed as a Gaussian function N(Ax0, 0,De),
where De is a diagonal matrix. That is, conditional on the

common factor, the high dimensional multivariate Gaussian

clique potential φC(LC) can be factored into a product of

independent Gaussian functions over the Yri’s,

p(LC |X) ∝ φC|X(LC) =
k∏

i=1

N(Yri − λiX, 0, σ
2
i ), (6)

where λi is the ith row vector of factor loading matrix A.

When the clique involves children of a common par-

ent we can rewrite this clique potential as a product over

certain edges of the original tree T = (V,ET ), by not-

ing that each term of the product in (6) corresponds to an

edge between a child ui and the parent r, and moreover
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Figure 3: Introducing the common factor variable into the

graphical model breaks the large clique into several 3-

cliques by augmenting the original tree with a common fac-

tor vertex (labeled “X”).

these are all edges of ET . Denote this set of edges by

EC = {(vi, vj) ∈ ET |vi, vj ∈ C}.

Then Equation (6) can be rewritten in factorized form

based on the tree edges in EC ,

p(LC |X) ∝
∏

eij∈EC

φri|X(li, lj), (7)

where

φri|X(lr, li) = N(Yri − λiX, 0, σ
2
i ). (8)

Letting EC̄ = ET − EC be the tree edges not in the

clique C, we can write the conditional probability p(L|X)
in a tree-factored form by considering the partition of ET

into EC and EC̄ . Substituting equation (7) into the factor-

ization of p(L) in (4) yields,

p(L|X) ∝
∏

eij∈EC

φij|X(li, lj)
∏

eij∈EC̄

φij(li, lj). (9)

In other words, for a fixed X = X0 the corresponding

graphical model is simply the original tree T , however the

clique potentials on the edges of EC are different from the

original problem. They are φij|X defined in (8). Adding

a latent node for the common factor X into the tree T re-

quires connecting that new node to every node that was in

the clique C, because in the factorization in equation (7)

there is a dependency between X and every node in C (or

more precisely between X and every pair of nodes corre-

sponding to an edge in EC). We call the resulting graph the

common-factor graph F = (U,EF ), where U = V ∪ {X}
and EF = ET ∪{(X, vi)|vi ∈ C}. This replacement of the

clique inG by the latent variable structure in F is illustrated

in Figure 3.



6. Inference Methods

The posterior distribution P (L|I) of object configura-

tions given an image I is commonly used for estimating the

pose of a model with respect to the image. By Bayes’ rule

P (L|I) ∝ P (I|L)P (L),

which is the product of the likelihood of observing the im-

age given location L and the prior over locations. It is gen-

erally assumed that the likelihood factors into a product of

functions, one for each part of the model,

P (I|L) ∝
∏

vi∈V

ψi(I, li).

We use a simple likelihood model from [4] that measures

the degree to which each part overlaps the binary silhouette

data.

In this paper we have considered three forms of prior

P (L), the tree in equation (1), the graph with the large

clique in equation (4) and the common-factor graph in equa-

tion (9). For each of these three factorizations of the pos-

terior P (L), we consider the problem of finding an optimal

configuration of the parts by MAP estimation,

L∗ = arg max
L

∏

vi∈V

ψi(I, li)P (L).

The computational difficulty of this MAP estimation

problem depends on how the prior factors. For the tree-

structured graph, T , the MAP estimation problem can be

solved in O(nh) time, where n is the number of parts and

h is the number of possible locations of each part (using the

methods in [4]). For the graph with a 5-clique, exact solu-

tions to the MAP estimation problem are prohibitively slow

taking time O(nh5) (see [5, 16]). However it is common

to do approximate inference on graphs with cycles using

loopy belief propagation (LBP). This has been done for ob-

ject recognition (see [2]).

For the common-factor graph, F , an optimal configura-

tion is given by

〈L,X〉∗ = arg max
〈L,X〉

p(L,X)p(I|L)

Since p(L,X) factors into p(X) · p(L|X) we can compute

arg max
L

p(L|X)p(I|L) (10)

for each X and then maximize over X . Moreover, from

equation (9), p(L|X)p(I|L) factors into a tree, so standard

dynamic programming methods can be used to efficiently

compute (10). The maximization over X simply involves

trying the hx possible discrete values of X , for an overall

running time of O(hxnh). Note that for the models devel-

oped here X ranges over possible orientations [−π, π], and

thus a reasonable discretization results in values of hx that

are fairly small.

7. Experimental Results

We learned common-factor models for three different

kinds of images, one for a side-view of a person walking,

one for a 45-degree view of a person walking, and one for

a person dancing. In each case the (labeled) training data

for learning the model was a different set of images than the

ones used for doing pose estimation. For each of the three

kinds of images we learned three different types of models,

one using a tree, one using a common-factor graph and one

using a graph with a large clique. Our main interest in these

experiments is in comparing the pose estimation accuracy

of these three types of models for various kinds of images.

Thus we use a simple appearance model that measures the

degree of overlap of a part with silhouette data.

As described above the learning process consists of three

stages. First a kinematic tree structure is learned using

the minimum-spanning tree method of [4], illustrated in

Figure 1. Second, covariance analysis is used to identify

parts that violate the independence assumption of the tree

model. These parts form the model with a large clique

(where approximate pose is estimated using max-product

LBP). Third, factor analysis is used to find a common fac-

tor that models the clique, and a latent variable is introduced

in place of the clique, as illustrated in Figure 3.

For the side-view walking model we trained the model

using 240 labeled frames from CMU’s HumanId side-view

walking sequence. For testing we used 50 frames from the

Brown sequence in [13], for which there is ground truth

from motion capture. The ground truth gives the loca-

tion of markers, which can easily be related to the parts

of our models because they are at joints between parts or

part centers. To generate silhouettes all images are back-

ground subtracted and normalized to a size of 200 by 200.

For this data the large clique consists of the upper arms

and legs and the resulting common factor X is a 1D ran-

dom variable in the orientation dimension with Gaussian

distribution N(0, 1), and with the loading vector as A =
(0.9426,−0.8055,−0.9432, 0.8152)T . The common factor

has a simple interpretation as the “swing” angle of the arms

and legs during walking, and the loading matrix reflects the

use of the limbs for balance related to that variable.

We used the three types of side-view model (common-

factor, tree and large clique) learned from the CMU data

to estimate poses for the first 50 frames of the Brown data.

Note that the model is quite generic, being generated with

data from a different person than appears in the test set. For

each test image and for each of the three models we find the

MAP estimate of the pose. While the exact (discrete) MAP

estimate is computed for the tree and the common-factor

models, for the model with the large clique only an approx-

imate estimate can be computed (using max-product LBP).

To evaluate the accuracy of the models we used the 15
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Figure 4: Mean squared error of the joint location for each

frame for the three estimation techniques, compared to the

ground truth MOCAP data.

marker positions indicated by stars in Figure 5 to compare

the pose estimation results for each model with the ground

truth (MOCAP). Figure 4 shows the mean squared error of

the estimated marker locations compared to the true loca-

tions for each image frame. Note that for single-viewpoint

silhouette data there is an unresolvable left-right ambiguity,

so we switch the left and right limbs and use the one with

smaller error in each case.

Overall the average errors are 6.42, 13.79 and 12.00 pix-

els for the common-factor, tree and large clique models

(with standard deviations of 1.55, 3.99 and 3.99 respec-

tively). Thus we see that the common-factor model has

about half the pose estimation error of the other two models.

These results support the assumption that coordination be-

tween limbs beyond the kinematic structure is highly impor-

tant for pose estimation. Figure 5 shows one of the image

frames with the ground truth joint positions and the results

from the three models, illustrating some typical pose errors.

Note that between frames 20 and 30 the three methods have

almost the same performance. This is not surprising be-

cause these are the frames where the arms and legs over-

lap and are nearly vertical, where the kinematic tree model

works quite well.

Approximate inference for the large-clique model (using

max-product LBP) yields results more similar in accuracy

to the tree model than to the common-factor model. This is

in contrast to many other applications of LBP, including for

recognition (e.g., [2]). One difference that may explain the

relatively poor performance of LBP is that here the model

has one quite large clique, whereas in other applications the

cliques are quite small. For instance in [2] the clique size is

two.

We can also consider how the error varies by body part.

Table 2 shows the mean error for twelve of the fifteen mark-

Figure 5: Illustration of MAP pose estimation accuracy for

the three methods: 1) ground truth (MOCAP), 2) common-

factor model, 3) tree model, 4) LBP for model with large

clique.

shoulder elbow wrist hip knee ankle

Factor 4.8 5.5 8.6 4.2 4.4 5.4

Tree 9.1 11.1 19.4 6.4 6.6 28.6

LBP 9.9 11.9 20.5 6.4 5.3 20.5

Table 2: Average error by marker (see text).

ers, averaging errors for the left and right sides together.

This illustrates that the largest improvement comes from the

extremities (wrist and ankle). In fact for the three markers

not shown in the table, the torso, neck and head, the error of

all three methods is similar. Intuitively, the extremities have

the most positional freedom in a tree model. The common-

factor model constrains the upper limbs more tightly, and

this in turn increases the accuracy in the extremities.

In addition to the Brown sequence, we consider some

data without ground truth to provide a qualitative evalua-

tion of the common-factor model. The second dataset is a

45-degree view of a walking person from CMU’s humanID

database. We show some results using the common-factor

model in Figure 6. The other two models produce similar

kinds of pose estimation errors to that seen in the side-view

walking sequence in Figure 5.

The third dataset contains snapshots from a frontal-view

Figure 6: MAP results for the common-factor model on sev-

eral images of a 45-degree view of a person walking.



Figure 7: Comparison of pose estimation results for a dance

image: (Top) common-factor model, (Bottom) tree model.

sequence of a person dancing, again without ground truth.

Figure 7 shows some frames contrasting the common-factor

model and the tree model. The top row displays the pose es-

timation results using the common-factor model, while the

bottom shows the results on the same frames using the tree

model. The balance constraint is quite different here than

for the side or 45-degree walking views, but there is a sim-

ilar improvement in results for the common-factor model

compared to the tree model.

To help visualize the 2D pose estimation results we have

also composed some videos showing the MAP pose esti-

mates that were computed for each frame. These videos

are included in the supplemental materials. For the dance

sequence there is no ambiguity about the left vs. right

side, whereas for the other sequences there is an ambiguity.

This ambiguity is resolved by simple temporal continuity,

choosing the left vs. right configuration that is most consis-

tent with the previous frame. The videos suggest that with

some extensions this technique could also be used for per-

son tracking. However it would be important to add some

temporal constraints (e.g., using a linear dynamical system)

in order to smooth out the estimated part locations on suc-

cessive frames.

8. Conclusion

In this paper we extend tree-structured kinematic mod-

els so as to model residual correlations in locations of the

parts, thereby capturing constraints such as balance and co-

ordination of the limbs. To achieve tractable inference we

use factor analysis to model the covariance matrix for limbs

whose orientations are highly correlated after accounting

for kinematic constraints. By introducing the common fac-

tor as a latent variable into the graph we are able to apply

standard dynamic programming techniques to perform ex-

act (discrete) inference with relatively low computational

cost.

The additional spatial constraints allow us to better cap-

ture the dependency among parts. The experimental results

illustrate that the common-factor model yields better pose

results than a tree, more than halving the estimation error

for a set of images that have ground truth.
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