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ABSTRACT
The processes by which communities come together, attract new
members, and develop over time is a central research issue inthe
social sciences — political movements, professional organizations,
and religious denominations all provide fundamental examples of
such communities. In the digital domain, on-line groups arebe-
coming increasingly prominent due to the growth of community
and social networking sites such as MySpace and LiveJournal. How-
ever, the challenge of collecting and analyzing large-scale time-
resolved data on social groups and communities has left mostbasic
questions about the evolution of such groups largely unresolved:
what are the structural features that influence whether individuals
will join communities, which communities will grow rapidly, and
how do the overlaps among pairs of communities change over time?

Here we address these questions using two large sources of data:
friendship links and community membership on LiveJournal,and
co-authorship and conference publications in DBLP. Both ofthese
datasets provide explicit user-defined communities, whereconfer-
ences serve as proxies for communities in DBLP. We study how
the evolution of these communities relates to properties such as
the structure of the underlying social networks. We find thatthe
propensity of individuals to join communities, and of communities
to grow rapidly, depends in subtle ways on the underlying network
structure. For example, the tendency of an individual to join a com-
munity is influenced not just by the number of friends he or shehas
within the community, but also crucially by how those friends are
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connected to one another. We use decision-tree techniques to iden-
tify the most significant structural determinants of these properties.
We also develop a novel methodology for measuring movement of
individuals between communities, and show how such movements
are closely aligned with changes in the topics of interest within the
communities.

Categories and Subject Descriptors:H.2.8 Database Manage-
ment: Database Applications – Data Mining

General Terms: Measurement, Theory

Keywords: social networks, on-line communities, diffusion of in-
novations

1. INTRODUCTION
The tendency of people to come together and form groups is

inherent in the structure of society; and the ways in which such
groups take shape and evolve over time is a theme that runs through
large parts of social science research [9]. The study of groups and
communities is also fundamental in the mining and analysis of phe-
nomena based on sociological data — for example, the evolution of
informal close-knit groups within a large organization canprovide
insight into the organization’s global decision-making behavior; the
dynamics of certain subpopulations susceptible to a disease can be
crucial in tracking the early stages of an epidemic; and the dis-
cussions within an Internet-based forum can be used to follow the
emergence and popularity of new ideas and technologies. Thedig-
ital domain has seen a significant growth in the scale and richness
of on-line communities and social media, through the rise ofsocial
networking sites beginning with Friendster and its relatives, and
continuing to more recent systems including MySpace, Facebook,
and LiveJournal, as well as media-sharing sites such as Flickr.

Understanding the structure and dynamics of social groups is a
natural goal for network analysis, since such groups tend tobe em-
bedded within larger social network structures. That is, given a
collection of individuals linked in an underlying social network, the
groups and communities that they identify with can be thought of
as corresponding to subgraphs of this network, growing and over-
lapping one another in a potentially complex fashion. A group that
grows mainly through the agressive recruitment of friends by other
friends would appear as a subgraph branching out rapidly over time
along links in the network; a group in which the decision to join
depends relatively little on the influence of friends might appear in-



stead as a collection of small disconnected components thatgrows
in a “speckled” fashion.1

While abstract descriptions such as this — of groups growing
concurrently and organically in a large network — are clearly sug-
gestive, the fact is that it has been very hard to make concrete em-
pirical statements about these types of processes. Much of the chal-
lenge arises from the difficulty in identifying and working with ap-
propriate datasets: one needs a large, realistic social network con-
taining a significant collection of explicitly identified groups, and
with sufficient time-resolution that one can track their growth and
evolution at the level of individual nodes. A further challenge has
been the lack of a reasonable vocabulary for talking about group
evolution — with each group growing in its own particular part of
the network, how do we abstract and quantify the common typesof
patterns that we observe?

The present work: Analyzing Group Formation and Evolution.
In this paper we seek to address these challenges, exploringthe
principles by which groups develop and evolve in large-scale so-
cial networks. We consider a number of broad principles about
the formation of social groups, concerning the ways in whichthey
grow and evolve, and we formalize concrete questions aroundthem
that can be tested on network data.

To do this, we take advantage of rich datasets and computational
models for describing the process of group formation. In particular,
as our primary sources of data, we make use of two networks that
combine the desirable features outlined above: LiveJournal, a so-
cial networking and blogging site with several million members and
a large collection of explicit user-defined communities; and DBLP,
a publication database with several hundred thousand authors over
several decades, and where conferences serve as proxies forcom-
munities. We will say more about these datasets below; for now, we
note the crucial point that we are focusing on networks wherethe
members haveexplicitly identified themselves as belonging to par-
ticular groups or communities — we are thus not seeking to solve
the unsupervised graph clustering problem of inferring “commu-
nity structures” in a network (e.g., [14, 15, 16, 20, 28]), since for
us the relevant communities have been identified by the members
themselves.

We consider three main types of questions.

• Membership. What are the structural features that influence
whether a given individual will join a particular group?

• Growth. What are the structural features that influence whether
a given group will grow significantly (i.e. gain a large net
number of new members) over time?

• Change. A given group generally exists for one or more
purposes at any point in time; in our datasets, for example,
groups are focused on particular “topics of interest.” How do
such foci change over time, and how are these changes corre-
lated with changes in the underlying set of group members?

The question of membership is closely related to the well-studied
topic of diffusion of innovation in the social sciences (see e.g. [31,
33, 34] as well as [13, 21, 30] for more recent applications inthe
data mining literature). That is, if we view the act of joining a
1While such social networks are not themselves directly observ-
able, on-line systems can provide rich data on large networks of
interactions that are highly reflective of these underlyingsocial net-
works. As has become customary in the computer science commu-
nity, we also refer to these observable networks as social networks,
while recognizing that they are only a reflection of the complete
picture of social interactions.

particular group as a kind of behavior that “spreads” through the
network, then how does one’s probabilityp of joining a group de-
pend on the friends that one already has in the group? Perhapsthe
most basic such question is how the probabilityp depends on the
number of friendsk that one already has in the group. This is a fun-
damental question in research on diffusion in social networks, and
most mathematical models of this process implicitly posit amodel
for the dependence ofp on k (see e.g. [13, 21, 34]); however, it
has to date been easier to explore such models theoreticallythan
to obtain reasonable estimates for them empirically on large-scale
data. Here we find that this dependence is remarkably similarfor
groups in the LiveJournal and DBLP datasets, despite the very dif-
ferent meaning of the groups in these two domains; the probability
p increases, but sublinearly so, in the number of friendsk belong-
ing to the group. The data suggest a “law of diminishing returns” at
work, where having additional friends in a group has successively
smaller effect but nonetheless continues to increase the chance of
joining over a fixed time window. In the context of diffusion mod-
els this result is somewhat surprising, in that it does not appear to
be explained well by models that posit logistic or “criticalmass”
behavior forp versusk.

Beyond this, however, the available data makes possible a much
broader investigation of membership in groups. While theoretical
models of diffusion have focused primarily on just the effect of k,
the number of friends one already has in a group, we would liketo
understand more generally the structural properties that are most in-
fluential in determining membership. Here we do this by applying a
decision-tree approach to the question, incorporating a wide range
of structural features characterizing the individual’s position in the
network and the subgraph defining the group, as well asgroup fea-
tures such as level of activity among members. In the process we
find that the probability of joining a group depends in subtlebut
intuitively natural ways not just on the number of friends one has,
but also on the ways in which they are connected to one another.

To take one illustrative example: for moderate values ofk, an in-
dividual withk friends in a group is significantly more likely to join
if thesek friends are themselves mutual friends than if they aren’t.
This example fits naturally with known sociological dichotomies
on diffusion, and hence it hints at some of the more qualitative pro-
cesses at work in the communities we are studying.

We adopt a similar approach to the question of growth: given
a group, how well can we estimate whether it will grow by a sig-
nificant fraction of its current size over a fixed time period?We
find that reasonable estimation performance can be obtainedbased
purely on the structural properties of the group as a subgraph in the
underlying social network. As with membership, relativelysub-
tle structural features are crucial in distinguishing between groups
likely to grow rapidly and those not likely to. Again, to focus on
one example, groups with a very large number of triangles (consist-
ing of three mutual friends) grow significantly less quicklyoverall
than groups with relatively few triangles. Overall, then, the frame-
work based on decision trees can be viewed as a way to identifythe
most “informative” structural and group features influencing the
growth and membership processes, with the payoff that the result-
ing features have natural interpretations in terms of the underlying
sociological considerations.

Groups not only grow and attract new members — the very char-
acteristics of a group can change over time. A groupA may change
its focus of interest to become more like some other groupB; it
may also change its membership to become more likeB. The final
set of questions that we investigate addresses issues of change in
group membership and interests, as well as the extent to which there
is a correlation between these two types of change. For instance do



changes in membership consistently precede or lag changes in in-
terest? While such questions are extremely natural at a qualitative
level, it is highly challenging to turn them into precise quantita-
tive ones, even on data as detailed as we have here. We approach
this through a novel methodology based on burst analysis [22]; we
identify bursts both in term usage within a group and in its mem-
bership. We find that these are aligned in time to a statistically
significant extent; furthermore, for CS conference data in DBLP,
we present evidence that topics of interest tend to cross between
conferences earlier than people do.

Related Work. As discussed above, there is a large body of work
on identifying tightly-connected clusters within a given graph (see
e.g. [14, 15, 16, 20, 28]). While such clusters are often referred to
as “communities”, it is important to note that this is a very different
type of problem from what we consider here — while this cluster-
ing work seeks to infer potential communities in a network based
on density of linkage, we start with a network in which the com-
munities of interest have already been explicitly identified and seek
to model the mechanisms by which these communities grow and
change. Dill et al. [11] study implicitly-defined “communities” of
a different sort: For a variety of features (e.g. a particular keyword,
a name of a locality, or a ZIP code), they consider the subgraph
of the Web consisting of all pages containing this feature. Such
communities of Web pages are still quite different from explicitly-
identified groups where participants deliberately join, aswe study
here; moreover, the questions considered in [11] are quite different
from our focus here.

The use of on-line social networking sites for data mining ap-
plications has been the subject of a number of recent papers;see
[1, 26] for two recent examples. These recent papers have focused
on different questions, and have not directly exploited thestructure
of the user-defined communities embedded in these systems. Stud-
ies of the relationship between different newsgroups on Usenet [4,
35] has taken advantage of the self-identified nature of these on-
line communities, although again the specific questions arequite
different.

As noted earlier, the questions we consider are closely related
to thediffusion of innovations, a broad area of study in the social
sciences [31, 33, 34]; the particular property that is “diffusing” in
our work is membership in a given group. The question of how a
social network evolves as its members’ attributes change has been
the subject of recent models by Sarkar and Moore [32] and Holme
and Newman [19]; a large-scale empirical analysis of socialnet-
work evolution in a university setting was recently performed by
Kossinets and Watts [23]; and rich models for the evolution of top-
ics over time have recently been proposed by Wang and McCallum
[36]. Mathematical models for group evolution and change have
been proposed in a number of social science contexts; for an ap-
proach to this issue in terms of diffusion models, we refer the reader
to the book by Boorman and Levitt [3].

2. COMMUNITY MEMBERSHIP
Before turning to our studies of the processes by which individ-

uals join communities in a social network, we provide some details
on the two sources of data, LiveJournal and DBLP. LiveJournal
(LJ) is a free on-line community with almost 10 million members;
a significant fraction of these members are highly active. (For ex-
ample, roughly300, 000 update their content in any given 24-hour
period.) LiveJournal allows members to maintain journals,individ-
ual and group blogs, and — most importantly for our study here—
it allows people to declare which other members are their friends
and to which communities they belong. By joining a community,
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Figure 1: The probability p of joining a LiveJournal commu-
nity as a function of the number of friends k already in the
community. Error bars represent two standard errors.
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Figure 2: The probability p of joining a DBLP community as a
function of the number of friends k already in the community.
Error bars represent two standard errors.

one typically gains the right to create new posts in that community
and other people’s posts become more accessible.

DBLP, our second dataset, is an on-line database of computer
science publications, providing the title, author list, and conference
of publication for over 400,000 papers. A great deal of work has
gone into disambiguation of similar names, so co-authorship rela-
tionships are relatively free of name resolution problems.For our
purposes, we view DBLP as parallel to the friends-and-communities
structure of LiveJournal, with a “friendship” network defined by
linking people together who have co-authored a paper, and with
conferences serving as communities. We say that a person has
joined a community (conference) when he or she first publishes
a paper there; and, for this section, we consider the person to be-
long to the community from this point onward. (See Section 4 for
an analysis of changes in community membership that includeno-
tions of both joining and leaving.) For simplicity of terminology,
we refer to two people in either of LJ or DBLP as “friends” when
they are neighbors in the respective networks.

A fundamental question about the evolution of communities is
determining who will join a community in the future. As discussed
above, if we view membership in a community as a kind of “be-
havior” that spreads through the network, then we can gain initial
insight into this question from the study of the diffusion ofinnova-



Table 1: Features.
Feature Set Feature

Features related
to the community,
C. (Edges between
only members of
the community are
EC ⊆ E.)

Number of members (|C|).
Number of individuals with a friend inC (the fringe of C) .
Number of edges with one end in the community and the other in the fringe.
Number of edges with both ends in the community,|EC |.
The number of open triads:|{(u, v, w)|(u, v) ∈ EC ∧ (v, w) ∈ EC ∧ (u, w) /∈ EC ∧ u 6= w}|.
The number of closed triads:|{(u, v, w)|(u, v) ∈ EC ∧ (v, w) ∈ EC ∧ (u, w) ∈ EC}|.
The ratio of closed to open triads.
The fraction of individuals in the fringe with at least k friends in the community for2 ≤ k ≤ 19.
The number of posts and responses made by members of the community.
The number of members of the community with at least one post or response.
The number of responses per post.

Features related to
an individualu and
her setS of friends
in communityC.

Number of friends in community (|S|).
Number of adjacent pairs inS (|{(u, v)|u, v ∈ S ∧ (u, v) ∈ EC}|).
Number of pairs inS connected via a path inEC .
Average distance between friends connected via a path inEC .
Number of community members reachable fromS using edges inEC .
Average distance fromS to reachable community members using edges inEC .
The number of posts and response made by individuals inS.
The number of individuals inS with at least 1 post or response.

tion [31, 33, 34].

2.1 Dependence on number of friends
An underlying premise in diffusion studies is that an individual’s

probability of adopting a new behavior increases with the number
of friends already engaging in the behavior — in this case, the num-
ber of friends already in the community.

In Figures 1 and 2 we show this basic relationship for LJ and
DBLP respectively: the proportionP (k) of people who join a com-
munity as a function of the numberk of their friends who are al-
ready members. For LJ, this is computed as follows.

• First, we took two snapshots of community membership, roughly
one month apart.

• Then we find all triples(u, C, k) such that

– C is a community, and

– u is a user who, at the time of the first snapshot, did not
belong toC, and

– u hadk friends inC at that time.

• P (k) is then the fraction of such triples(u, C, k) for a given
k such thatu belonged toC at the time of the second snap-
shot.

The procedure for DBLP is analogous, except that we use a snap-
shot for each year, and determine the fraction of individuals who
“join” a conference from one year to the next.

The plots for LJ and DBLP exhibit qualitatively similar shapes,
dominated by a “diminishing returns” property in which the curve
continues increasing, but more and more slowly, even for relatively
large numbers of friendsk. This forms an interesting contrast to
the “S-shaped” curve at the heart of many theoretical modelsof
diffusion, in which the probability of adopting a new behavior fol-
lows a logistic function, with slow growth in adoption probability
for small numbers of friendsk, rapid growth for moderate values
of k, and a rapid flattening of the curve beyond this point.

In fact, the curves do exhibit some slight but noticeable “S-shaped”
behavior: While the plots mainly show sublinear increase, we ob-
serve that they each display a deviation fork = 0, 1, 2 — namely,

P (2) > 2P (1) for both LJ and DBLP. In other words, the marginal
benefit of having a second friend in a community is particularly
strong. However the remainder of each plot exhibits diminishing
returns ask increases; thus the deviation atk = 0, 1, 2 can be seen
as a slight “S-shaped” effect before the sublinear behaviortakes
over. Focusing on the functionP (k) for LJ, since the error bars are
smaller here, we see that the curve continues increasing even for
quite large values ofk. Indeed, there is a close fit to a function of
the formP (k) = a log k + b for appropriatea andb.

A key reason that the curve for LJ is quite smooth is that the
amount of data used to generate it is very large: the construction of
the plot in Figure 1 is based on roughly half a billion triplesof the
form (u, C, k) with k > 0. The analogous number of triples for
DBLP is 7.8 million, and the curve becomes noisy at much smaller
values ofk. This suggests that for computingP (k) as a function
of k in the context of diffusion studies, a very large sample may be
required to begin seeing the shape of the curve clearly.

We find it striking that the curves for LJ and DBLP have such
similar shapes (including the deviations fork = 0, 1, 2), given that
the types of communities represented by these two datasets have
such different characteristics: joining a community is a relatively
lightweight operation in LJ, requiring very little investment of ef-
fort, whereas the analogous act of joining in the case of the DBLP
dataset requires authorship and acceptance of a conferencepaper.

Curves with a diminishing returns property were also recently
observed in independent work of Leskovec et al. [25], in yet an-
other different context — recommendation data for on-line pur-
chases — although the curves in their case become noisier at smaller
values ofk. The probability of friendship as a function of shared
acquaintances and shared classes also exhibits diminishing returns
in the work of Kossinets and Watts [23]. It is an interesting ques-
tion to look for common principles underlying the similar shapes
of the curves in these disparate domains.

2.2 A broader range of features
While these curves represent a good start towards membership

prediction, they estimate the probability of joining a community
based on just a single feature — the number of friends an individual
has in the community. We now consider a range of other features
related both to the communities themselves and to the topology of



the underlying network which could also, in principle, influence
the probability of joining a community. By applying decision-tree
techniques to these features we find that we can make significant
advances in estimating the probability of an individual joining a
community. Table 1 summarizes the features that we use. In ad-
dition to features related exclusively to the social network struc-
ture, we also generate simple features that serve as indicators of
the activity level of a community in LJ (for example, the number
of messages posted by members of the community).2 A recurring
principle in our experimental set-up is the following: since our goal
is to understand which features from a particular set of structural
and activity-based features are most informative, we intentionally
control the set of features available to our algorithms. Forthe strict
goal of obtaining high prediction performance, there are other fea-
tures that could be included that would be less informative for our
current purposes.

We now discuss the exact structure of the sets over which we
make predictions for both LJ and DBLP.

LiveJournal . For the more detailed studies of membership pre-
diction, we focused on a subset of 875 LJ communities, comparing
them from the first LJ snapshot to the second.3 For the first of these
snapshots, we also built the network structure on the communities
and their fringes. (We define thefringe of a communityC to be the
set of all non-members ofC who have at least one friend inC.) In
addition, we collected all posts during the two weeks prior to the
initial snapshot. (This two-week period was disjoint from the initial
period during which we selected the 875 communities.)

From this information, we created a data point(u, C) for each
useru and communityC such thatu belonged to the fringe ofC
in the first snapshot. We then estimated the probability eachsuch
fringe member would be in the community in the second snapshot.
Note that this task is an instance of the general problem of estimat-
ing missing values in a matrix: we are given a matrix whose rows
correspond to users, whose columns correspond to communities,
and whose entries(u, C) indicate whetheru joins C in the time
interval between the two snapshots. In this way, the set-up is syn-
tactically analogous to what one sees for example in collaborative-
filtering-style problems; there too one is attempting to estimate hid-
den matrix-valued data (e.g. which customers are likely to buy
which books). In keeping with our design principle, however, we
are interested in performance based only on carefully selected fea-
tures of the usersu and communitiesC, rather than their actual
identities.

We have 17,076,344 data points(u, C), and of these, only 14,488
of represent instances in which useru actually joined community
C, for an average rate of 8.48e-4. Note that our task here, to es-
timate probabilities for individuals joining, is compatible with the
low aggregate rate of joining. To make estimates about joining, we
grow 20 decision trees. Each of the 875 communities is selected to
have all of its fringe members included in the decision tree training
set or not with independent probability 0.5. At each node in the
decision tree, we examine every possible feature, and everybinary

2Due to the much more regimented nature of conference activ-
ity, we do not generate analogous activity features for the DBLP
dataset.
3We chose the 875 communities as follows. We monitored all new
posts to all communities during a 10 day period. Of those com-
munities which had at least 1 post, we selected the 700 most active
communities along with 300 at random from the others with at least
1 post. For technical reasons, it turned out that we were not able to
collect accurate data on the largest of the communities, andhence
were forced to discard communities which started with over 1000
members, leaving 875 communities.

Table 2: Prediction performance for single individuals joining
communities in LiveJournal. For every individual in the fri nge
of one of our 875 communities, we estimate the probability that
person will join in a one-month interval. We repeat this exper-
iment using 3 sets of features: only the number of friends in
the community, features based on post activity (plus basic fea-
tures: number of friends and community size), and finally the
combination of all the features, including the graph-theoretic
ones from Table 1.

Features Used ROCA APR CXE

Number of Friends 0.69244 0.00301 0.00934
Post Activity 0.73421 0.00316 0.00934

All 0.75642 0.00380 0.00923

Table 3: Prediction performance for single individuals joining
communities in DBLP. For every triple of a year, a conference,
and an author who had not published in the conference, but had
coauthored with a conference member, we estimate the proba-
bility that the author will publish in the conference’s next meet-
ing.

Features Used ROCA APR CXE

Number of Friends 0.64560 0.01236 0.06123
All 0.74114 0.02562 0.05808

split threshold for that feature. Of all such pairs, we select and in-
stall the split which produces the largest decrease in entropy [29]
(i.e. information gain). We continue to install new splits until there
are fewer than 100 positive cases at a node, in which case we in-
stall a leaf which predicts the ratio of positives to total cases for that
node. Finally, for every case we find the set of decision treesfor
which that case was not included in the training set used to grow
the tree. The average of these predictions gives us a prediction for
the case. For the few cases that we include in the training setof
every decision tree, we simply predict the baseline 8.48e-4. This
technique of model averaging [5] has been shown to be effective in
prediction settings such as these.

DBLP. For DBLP we perform a very similar experiment. Here
we define the fringe of a conferenceC in yeary to be those people
who have not published inC prior to yeary, but who have coau-
thored with at least one person who has published inC prior to
y. For every conference, year, and fringe member in that year we
create a data point. Of 7,651,013 data points, we find that 71,618
correspond to individuals who join the conference (publisha paper
in it) in the year in question. Again, to make predictions we use 20
simple decision trees grown in an identical way to those for LJ.

2.3 Results and Discussion
Table 2 and Table 3 summarize the performance we achieve with

these decision trees. For comparison, both tables contain the base-
line performance one could achieve by predicting based solely on
the number of friends a fringe member already has in the commu-
nity. In all of our predictions, even the people who are most likely
to join a community still have a probability much less than 50%.
This makes performance metrics like accuracy meaningless,since
if one had to make binary decisions, one would simply predictthat
no one would join. We thus use performance metrics that are based
on the order of predictions: area under the ROC curve (ROCA) and
average precision (APR), as well as cross entropy (CXE), which
treats predictions as probabilities. The two tables show that we are



Figure 3: The top two levels of decision tree splits for predict-
ing single individuals joining communities in LiveJournal. The
overall rate of joining is 8.48e-4.

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y

Proportion of Pairs Adjacent

Probability of joining a community versus adjacent pairs of friends in the community

3 friends
4 friends
5 friends

Figure 4: The probability of joining a LiveJournal communit y
as a function of the internal connectedness of friends already in
the community. Error bars represent two standard errors.

able to do significantly better by using features beyond the number
of friends an individual has in the community.

Internal Connectedness of Friends. The top-level splits in the LJ
and DBLP decision trees were quite stable over multiple samples;
in Figure 3 we show the top two levels of splits in a representative
decision tree for LJ. We now discuss a class of features that proved
particularly informative for the LJ dataset: the internal connected-
ness of an individual’s friends.

The general issue underlying this class of feature is the follow-
ing: given someone withk friends in a community, are they more
likely to join the community if many of their friends are directly
linked to one another, or if very few of their friends are linked to one
another? This distinction turns out to result in a significant effect on
the probability of joining. To make this precise, we use the follow-
ing notation. For an individualu in the fringe of a community, with
a setS of friends in the community, lete(S) denote the number of
edges with both ends inS. (This is the number of pairs inS who
are themselves friends with each other.) Letϕ(S) = e(S)/

`

|S|
2

´

denote thefraction of pairs inS connected by an edge.
We find that individuals whose friends in a community are linked

to one another — i.e., those for whiche(S) andϕ(S) are larger —
are significantly more likely to join the community. In particular,
the top-level decision tree split for the LJ dataset is basedonϕ(S),
and in the right branch (whenϕ(S) exceeds a lower bound), the
next split is based one(S). We can see the effect clearly by fixing
a number of friendsk, and then plotting the joining probability as

a function ofϕ(S), over the sub-population of instances where the
individual hask friends in the community. Figure 4 shows this
relationship for the sub-populations withk = 3, 4, and5; in each
case, we see that the joining probability increases as the density of
linkage increases among the individual’s friends in the community.

It is interesting to consider such a finding from a theoretical per-
spective — why should the fact that your friends in a community
know each other make you more likely to join? There are socio-
logical principles that could potentially support either side of this
dichotomy.4 On the one hand, arguments based onweak ties [17]
(and see also the notion ofstructural holes in [6]) support the no-
tion that there is an informational advantage to having friends in a
community who do not know each other — this provides multiple
“independent” ways of potentially deciding to join. On the other
hand, arguments based on social capital (e.g. [8, 9]) suggest that
there is a trust advantage to having friends in a community who
know each other — this indicates that the individual will be sup-
ported by a richer local social structure if he or she joins. Thus, one
possible conclusion from the trends in Figure 4 is that trustadvan-
tages provide a stronger effect than informational advantages in the
case of LiveJournal community membership.

The fact that edges among one’s friends make community mem-
bership more likely is also consistent with observations made in
recent work of Centola, Macy, and Eguiluz [7]. They contend that
instances of successful social diffusion “typically unfold in highly
clustered networks” [7]. In the case of LJ and DBLP communi-
ties, for example, Macy observes that links among one’s friends
may contribute to a “coordination effect,” in which one receives a
stronger net endorsement of a community if it is a shared focus of
interest among a group of interconnected friends [27].

Relation to Mathematical Models of Diffusion. There are a num-
ber of theoretical models for the diffusion of a new behaviorin a
social network, based on simple mechanisms in which the behav-
ior spreads contagiously across edges; see for example [12,21, 34]
for references. Many of these models operate in regimented time
steps: at each step, the nodes that have already adopted the behavior
may have a given probability of “infecting” their neighbors; or each
node may have a given thresholdd, and it will adopt the behavior
onced of its neighbors have adopted it.

Now, it is an interesting question to consider how these models
are related to the empirical data in Figures 1 and 2. The theoretical
models posit very simple dynamics by which influence is transmit-
ted: in each time step, each node assesses the states of its neighbors
in some fashion, and then takes action based on this information.
The spread of a real behavior, of course, is more complicated, and
our measurements of LJ and DBLP illustrate this: we observe the
behavior of an individual nodeu’s friends in one snapshot, and
thenu’s own behavior in the next, but we do not know (i) when or
whetheru became aware of these friends’ behavior, (ii) how long
it took for this awareness to translate into a decision byu to act,
and (iii) how long it tooku to actually act after making this deci-
sion. (Imagine, for example, a scenario in whichu decides to join a
community after seeing two friends join, but by the timeu actually
joins, three more of her friends have joined as well.) Moreover,
for any given individual in the LJ and DBLP data, we do not know
how far along processes (i), (ii), and (iii) are at the time ofthe first
snapshot — that is, we do not know how much of the information
contained in the first snapshot was already known to the individ-
ual, how much they observed in the interval between the first and

4We thank David Strang for helping to bring the arguments on each
side into focus.



Figure 5: The top two levels of decision tree splits for predicting
community growth in LiveJournal.

second snapshots, and how much they never observed.
These considerations help clarify what the curves in Figures 1

and 2 are telling us. The concrete property they capture is the mea-
sured probability of adoption over a fixed time window, basedon
observed properties of an earlier snapshot — and they do thisfor
network data on a scale that has been hard to obtain in earlierso-
cial science studies of this phenomenon. Building on this, it is a
natural challenge to relate the data underlying these curves to more
purely operational models by which influence is spread through a
network, and potentially to assess whether such models are reason-
able approximations of real diffusion processes.

3. COMMUNITY GROWTH
We now turn to a different but related prediction task: identifying

which communities will grow significantly over a given period of
time. We apply decision tree techniques to this task as well,using
the community features given in the first half of Table 1.

For this experiment, our features come from two snapshots of
community membership and social network topology, taken roughly
4 months apart. Since the behavior of extremely small communi-
ties is determined by many factors that are not observable from the
network structure, we perform our experiments only on thosecom-
munities which had at least 100 members at the time of the first
snapshot. We say that a community has agrowth rate of x% if its
size in the second snapshot isx% larger than its size in the first
snapshot. Over all communities, the mean growth rate was 18.6%,
while the median growth rate was 12.7%.

We cast this problem directly as a binary classification problem
in which class 0 consists of communities which grew by less than
9%, while class 1 consists of communities which grew by more
than 18%. We find that by excluding the middle we achieve more
meaningful estimates of performance, as it is unreasonableto ex-
pect good performance in the region around a simple threshold.
This leaves us a data set with 13570 communities, 49.4% of which
are class 1.

To make predictions on this dataset we again use binary decision
trees. Because this data set is smaller and more balanced, weinstall
binary splits until a node has less than 50 data points, in which case
we install a leaf which predicts the fraction of positive instance at
that point. We grow 100 decision trees on 100 independent samples
of the full dataset. For a particular test case, we make a prediction
for that case using all of the decision trees which were not grown
using that case.

3.1 Results
For comparison, we start by considering a number of simple

baseline predictions, shown in Table 4. Using the same technique
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triads (triangles) is negatively related to growth. Error bars
represent two standard errors.

Table 4: Results for predicting community growth: baselines
based on three different features, and performance using all
features.

Features Used ROCA APR CXE ACC

Fringe 0.55874 0.53560 1.01565 0.54451
Community Size 0.52096 0.52009 1.01220 0.51179

Ratio of Fringe to Size 0.56192 0.56619 1.01113 0.54702
Combination of above 3 0.60133 0.60463 0.98303 0.57178

All Features 0.77070 0.77442 0.82008 0.70035

of averaging trees, but with only a single feature, we construct three
baselines. The first feature for comparison is simply the size of the
community. One might suspect that communities with a large num-
ber of people became large for a reason and are likely to continue
growing. The second baseline uses the number of people in the
fringe of the community, as these are the people most likely to join.
Finally, we use the ratio of these two features — the size of the
fringe divided by the size of the community — as well as a combi-
nation of all three.

Table 4 shows that none of these simple features gives good per-
formance by itself. While they each perform slightly betterthan
random guessing, the difference is small. Furthermore, using these
three baseline features in combination still does not yieldvery im-
pressive results: an ROCA of 0.60133 as compared to 0.5 for ran-
dom guessing.

By including the full set of features described previously,how-
ever, we find that we can make predictions with reasonably good
performance. ROCA increases to 0.77070 , while accuracy goes
up to 70%. Other performance metrics indicate improvement on
similar scales. Furthermore, accuracy on the fastest growing com-
munities is as high as 80%.

3.2 Discussion of Results
It is informative to look at which features are being used at the

top-level splits made by the decision trees. Figure 5 shows the top 2
splits installed by a representative tree. While the features and splits
in the tree varied depending on the sample, the top 2 splits were
quite stable, with only minor variations between samples. The first
of these is the number of people that have a large number of friends
in the community. Given the results of the previous section,this is
intuitively natural. At the top level, we see that communities with a



higher percentage of fringe members with at least 13 friendsin the
community are much more likely to be of class 1. Furthermore,of
the communities with relatively few such fringe members, the next
split is based on individuals with 7 friends in the community.

A second class of features, also important for community growth
though for less intuitively apparent reasons, is the density of trian-
gles. (See the right subtree in Figure 5.) Communities for which
the ratio of closed to open triads is too high are unlikely to grow.
Although this shows up strongly in the data (see also Figure 6), it
is not entirely clear how to interpret this result. It is possible that
a large density of triangles indicates a kind of “cliqueishness” that
makes the community less attractive to join; it is also possible that
high triangle density is a sign of a community that stopped gaining
new members at some point in the past and has subsequently been
densifying, adding edges among its current set of members. We are
currently pursuing further investigations to attempt to interpret the
role of this feature more clearly.

4. MOVEMENT BETWEEN COMMUNITIES
Having analyzed the membership and growth of communities,

we now turn to the question of how people and topics move be-
tween communities. A fundamental question here is the degree
to which people bring topics with them from one community to
another, versus the degree to which topics arise in a community
and subsequently attract people from other communities. Inother
words, given a set of overlapping communities, do topics tend to
follow people, or do people tend to follow topics? We also inves-
tigate a related question: when people move into a communityare
they more or less likely than other members of the community to
be participants in current and future “hot topics” of discussion in
that community?

While these questions are intuitively very natural, it is a chal-
lenge to define sufficiently precise versions of them that we can
make quantitative observations. Furthermore, any attemptto make
these questions precise will involve certain simplifications and ap-
proximations, and we start by discussing the reasons behindsome
of our experimental design decisions. We use the DBLP data dis-
cussed in earlier sections, with conferences serving as thecommu-
nities (limiting the data to 87 conferences for which there is DBLP
data over at least a 15-year time period). Since DBLP includes pa-
per titles, we take the words in titles as the raw data for identifying
topics in each community. There are a number of indications that
the cumulative set of words in titles can serve, for our purposes
here, as an effective proxy for top-level topics (see e.g. [22] and
some of the discussion at the end of this section).

Informally, it is easy to think of individual instances where two
conferencesB andC seemed to move “closer together” over some
period of years (for example, NIPS and ICML in the period 2000-
2003 — an observation borne out by analysis of the data as well).
We now define experiments that ask whether, in general over all
such movement patterns, these movements are at the level of topics,
people, or both — and if both, then which kind of movement tends
to precede the other.

4.1 Time Series and Detected Bursts
Intuitively, it is possible for the same topicx to be “hot” at each

of two conferencesB andC at the same time, even ifB andC
are not highly similar in any “global” sense. Many of the effects
we are seeking to understand have more the former flavor (a shared
hot topic) than the latter (global similarity), so we structure our
definitions around this former notion.

Term Bursts. For a given conferenceC and a wordw, we denote
by Tw,C(y) the fraction of paper titles at conferenceC in yeary
that contain the wordw. Tw,C can thus be viewed as the time series
giving the frequency of wordw at C over a sequence of years.
For each time seriesTw,C , we identify bursts in the usage ofw
using a simple stochastic model for term generation that identifies
intervals in which the usage can be approximated by a “burst rate”
that is twice the average rate [22]. This burst detection technique
was used in [22] on the same DBLP title data, and was observed
to be effective at identifying “hot topics” at conferences.The same
technique has since been used for finding term bursts in a range
of other domains, for instance in detecting current topics in blogs
[24].

For our purposes, these burst intervals serve to identify the “hot
topics” that indicate a focus of interest at a conference. Wesay that
a wordw is hot at a given conferenceC in a yeary if the yeary
is contained in a burst interval of the time seriesTw,C . (Note that
being a hot term is a property of three things: a term, a conference,
and a year.)

We also note an important caveat. Clearly it does not make sense
to evaluate anysingle paper based on whether it happens to use a
particular word in its title or not. All of our experimental findings
based on burst analysis, however, only consider the frequencies of
bursty words over large sets of papers, and will in all cases be sup-
ported by strong findings of statistical significance. In this way,
the noise inherent in specific paper titles is being smoothedout by
looking across large samples.

Movement Bursts. Next, we need to define a corresponding no-
tion for author movement, and some care is needed here. Unlike
title terms, individual people appear quite sparsely at conferences;
even someone who is a “member” of a given conference commu-
nity will generally not publish there every year. Moreover,move-
ment is asymmetric — there may be movement from a conference
B to a conferenceC but not vice versa — and so we need to employ
a notion that is different from a simple overlap measure.

First, we define someone to be amember of a conference in a
given yeary if they have published there in the 5 years leading
up to y. (In contrast to previous sections, this definition allows
someone to be a member of a conference and later not a member,
which is crucial for the kinds of analysis we do here.) We thensay
that authora moves into conferenceC from conferenceB in year
y whena has a paper in conferenceC in yeary and is a member
of conferenceB in yeary − 1. Note that movement is a property
of two conferences and a specific year, and further that although
this measure of movement is asymmetric, it may sometimes hold
in both directions.

Let MB,C(y) denote the fraction of authors atC in yeary with
the property that they are moving intoC from B. Thus,MB,C

can be viewed as a time series representing author movement,and
we use burst detection to find intervals ofy in which the value
MB,C(y) exceeds the overall average by an absolute difference of
.10.5 We refer to such an interval as aB → C movement burst.

We now have word burst intervals, identifying hot terms, and

5We use an additive difference instead of a multiplicative factor to
generate the burst rate here: multiplicative burst rates tend to penal-
ize time series with large averages, and we need these here since
they correspond to conference pairs with a large baseline overlap
that nonetheless experience a sharp increase. While nearbyvalues
give similar results, we use a difference of.10 to define the burst
rate since it produces about200 burst intervals that are of moder-
ate length, about4 years each, over all conference pairs(B, C).
By way of comparison, the word bursts average about5 years in
length.



All Papers Papers Contrib. to Movement
Num. papers 99774 10799
Currently hot 0.3859 0.4391

Future hot 0.1740 0.1153
Expired hot 0.2637 0.3102

Table 5: Fractions of papers containing hot terms. Papers con-
tributing to a movement burst contain elevated frequenciesof
currently and expired hot terms, but lower frequencies of fu-
ture hot terms.

movement burst intervals, identifying conference pairsB, C dur-
ing which there was significant movement. We next discuss some
experiments that investigate how these are aligned in time.

4.2 Papers Contributing to Movement Bursts
We first consider characteristics of papers associated withsome

movement burst into a conferenceC; we find that they exhibit sig-
nificantly different properties from arbitrary papers atC. In partic-
ular, one crucial difference is in the extent to which they use terms
that are currently hot atC, and the extent to which they use terms
that will be hot atC in the future. Given that movement bursts intu-
itively represent increased participation from some othercommu-
nity, these differences will provide a first perspective on the general
question of whether topics are following people, or whetherpeople
are following topics.

We make this precise as follows. First, we say that a paper ap-
pearing at a conferenceC in a yeary contributes to some move-
ment burst atC if one of its authors is moving from some confer-
enceB into C in yeary, andy is part of aB → C movement
burst. These are precisely the papers that, intuitively, are part of the
elevated movement from other conferences intoC. Now, it is natu-
ral to ask whether these papers that contribute to movement bursts
differ from arbitrary papers in the way they use hot terms. Here we
say that a paper uses a hot term if one of the words in its title is hot
for the conference and year in which it appears.

As a baseline,38.59% of all papers use hot terms. (While this
number is a useful benchmark for relative comparisons, its actual
magnitude can clearly be affected by altering the settings of the
burst detection parameters.) On the other hand, as shown in Ta-
ble 5, 43.91% of all papers contributing to movement bursts use
hot terms. This difference is statistically significant: ifwe consider
a binary variable that is true.3859 of the time, then the probability
of seeing a sample of size10799 (the number of papers contribut-
ing to movement bursts) where the variable is true.4391 of the time
is seen to be< 10−15 using a Chernoff-Hoeffding bound.

Thus it is apparent that papers written by people who are partof
a burst of authors moving into a conference are more likely tobe
about topics that are “hot”, or experiencing a burst, than isthe case
for papers in general.

Given that papers contributing to a movement burst exhibit an
elevated usage of hot terms, it is natural to also ask whetherthey
also contain an unusually high proportion of terms thatwill be hot
at some point in the future, or thatwere hot at some point in the past.
Specifically, we say that a paper at a conferenceC in yeary uses a
future hot term if it contains a word that will experience a burst at
C starting in some year> y; we say that it uses an expired hot term
if it contains a word that experienced a burst atC ending in some
year< y. As shown in Table 5, we find that papers contributing
to movement bursts in fact use expired hot terms at a significantly
higher rate than arbitrary papers at the same conference (31.02%
vs. 26.37%), but use future hot terms at a significantlylower rate

(B+) (B+)
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(C+)

(C+) (C −)
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(a) Shared Interest (b) Colonization

(c) Exploration (d) Shared Membership

Figure 7: Four patterns of author movement and topical align-
ment: in each of (a)-(d), the labeled arrows represent term
burst intervals for a shared hot term in conferencesB and C,
and the square wave represents aB → C movement burst. In
the terminology from the text, (a) is shared interest, (b) iscolo-
nization, (c) is exploration, and (d) is shared membership.

(11.53% vs. 17.40%). Again, these differences are statistically
significant at comparable levels.

Taken together these results support the notion that a burstof au-
thors moving into a conferenceC from some other conferenceB
are drawn to topics that are currently hot atC; but there is also evi-
dence that this burst of authors produces papers that are comparably
impoverished in their usage of terms that will be hot in the future.
In other words, any notion that they are “germinating” termsthat
will soon become hot at conferenceC is not borne out by the data;
in fact, the opposite appears to be true.

We now turn to a second set of experiments that explores this
temporal alignment of movement and term bursts in a different way,
but leading to qualitatively similar conclusions.

4.3 Alignment between Different Conferences
We say that conferencesB andC aretopically aligned in a year

y if some wordw is hot at bothB andC in yeary. (We will also
say thatB andC are topically alignedvia w.) Note that topical
alignment, like movement, is a property of two conferences and a
specific year. Also, two conferences can be topically aligned even
if their overall collections of papers are quite different;they need
only share a single common focus, in the form of a hot term.

It is natural to expect that two conferences are more likely to be
topically aligned in a given year if there is also a movement burst
going on between them. We first show that this is indeed the case,
a basic result establishing that movements of terms and people are
indeed correlated. Specifically, over all triples(B,C, y) such that
there is aB → C movement burst containing yeary, we find that
56.34% have the property thatB andC are topically aligned in
yeary. As a baseline, only16.10% of all triples (B, C, y) have
the property thatB andC are topically aligned in yeary. Thus,
the presence of a movement burst between two conferences enor-
mously increases the chance that they share a hot term.

Given this, we are now in a position to ask one of the questions
posed informally at the outset: do movement bursts or term bursts
tend to come first? Specifically, whenever there is aB → C move-
ment burst, we look at all hot termsw such thatB andC are top-
ically aligned viaw in some yeary inside the movement burst.
There are now three events of interest:

(i) the start of the burst forw at conferenceB;

(ii) the start of the burst forw at conferenceC; and

(iii) the start of theB → C movement burst.

Let us consider how these might occur in order relative to onean-



C+ C−
(a) (b)

B+ 194 (0.6025) 32 (0.0994)
(c) (d)

B− 35 (0.1087) 61 (0.1894)

Table 6: Frequency of the four patterns relating movement and
topical alignment. B+ (resp. B−) denotes that the burst ofw
at B follows (resp. precedes) theB → C movement burst; and
analogously forC.

other, with interpretations of each; the various orders aredepicted
schematically in Figure 7. We then discuss how frequently these
orders actually occur in the data.

• w bursts at bothB and atC (in some order) before theB →
C movement burst begins. (See Figure 7(a).) We call this
patternshared interest, since the topical alignment ofB and
C happens before they come closer together in membership.

• w bursts atB, then theB → C movement burst begins, and
thenw bursts atC. (See Figure 7(b).) We call this pattern
colonization, since one can imagine the movement fromB to
C as having a “colonizing” effect, carrying the termw from
B (where it was already hot) toC (where it becomes hot).

• w bursts atC, then theB → C movement burst begins, and
thenw bursts atB. (See Figure 7(c).) We refer to this pat-
tern asexploration, since one can imagine the hot topic atC
attracting authors fromB; subsequent to this “exploration”
from B, the term becomes hot atB as well.

• The B → C movement burst begins, after whichw bursts
at B and atC (in some order). (See Figure 7(d).) We refer
to this pattern asshared membership, sinceB andC come
closer together in membership before the topical alignment
happens via the common hot termw.

We now consider the relative frequencies of these four patterns.
Over all cases in which there was a topical alignment ofB andC
concurrent with aB → C movement burst, we remove from the
tabulation those in which two of the three relevant burst intervals
(for the term at each conference, and for the movement) beganin
the same year. This leaves us with322 instances in total, which
are divided over the four categories as shown in Table 6.194 of
the instances correspond to theshared interest pattern: the term
burst in each conference precedes the movement burst. In other
words, of the four patterns, shared interest is50% more frequent
than the other three patterns combined. The next most frequent is
shared membership, with61 instances, followed by colonization
and exploration with35 and32 respectively.

As with the previous set of experiments, we find that the intu-
itively appealing notion of authors from a conferenceB “trans-
planting” hot terms to a new conferenceC is not in fact the domi-
nant type of movement in the data. Rather, it is much more frequent
for conferencesB andC to have a shared burst term that is already
underway before the increase in author movement takes place.

5. CONCLUSIONS AND FURTHER DIREC-
TIONS

We have considered the ways in which communities in social
networks grow over time — both at the level of individuals and
their decisions to join communities, and at a more global level, in

which a community can evolve in both membership and content.
Even with very rich data, it is challenging to formulate the basic
questions here, and we view the elaboration of further questions to
be an interesting direction for future work.

The availability of complex datasets on communities in social
networks, and their evolution over time, leads naturally toa search
for more refined theoretical models. It will be interesting to connect
standard theoretical models of diffusion in social networks to the
kinds of data on community membership that one can measure in
on-line systems such as LiveJournal. One class of questionswas
suggested at the end of Section 2 — forming accurate models for
the asynchronous processes by which nodes become aware of their
neighbors’ behavior and subsequently act on it. Another goal is to
understand how even very simple diffusion models may changeif
we parametrize influence not just by the number of neighbors who
have adopted a behavior, but by the internal connectedness of these
neighbors, following the findings in Section 2.

Finally, it would be interesting to relate some of the techniques
developed here, particularly on movement between communities,
to latent-space models for social networks as studied in Hoff et
al. [18] and Sarkar and Moore [32]. Even without the network
aspect, the movements in content exposed by very simple latent-
space techniques are quite suggestive. For example, Figure8 shows
a representation of conferences from the DBLP dataset, encoded as
term vectors and projected into a two-dimensional vector spaceX
defined by Latent Semantic Indexing (LSI) [2, 10]. In each year,
the set of conferences projects differently intoX, and their col-
lective motion over successive years provides some illustration of
their changing relationships to one another. Such representations
can clearly form the basis for alternate ways of quantifyingcom-
munity movement, with conferences forming natural groupings by
topic, and with certain parts of the space becoming “filled out” as
particular areas emerge over time.
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