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Abstract

Markov random field models provide a robust and unified frammkviar early vision problems
such as stereo and image restoration. Inference algoritbas®d on graph cuts and belief propa-
gation have been found to yield accurate results, but despdent advances are often too slow for
practical use. In this paper we present some algorithmicrnegples that substantially improve the
running time of the loopy belief propagation approach. Ofitne techniques reduces the complex-
ity of the inference algorithm to be linear rather than quatic in the number of possible labels for
each pixel, which is important for problems such as imageorasion that have a large label set.
Another technique speeds up and reduces the memory reguiteiof belief propagation on grid
graphs. A third technique is a multi-grid method that makemssible to obtain good results with
a small fixed number of message passing iterations, indeperd the size of the input images.
Taken together these techniques speed up the standardthlgdry several orders of magnitude.
In practice we obtain results that are as accurate as thosaharaglobal methods (e.g., using the

Middlebury stereo benchmark) while being nearly as fast aslglocal methods.

1 Introduction

Over the past few years there have been exciting advancés itetvelopment of algorithms for
solving early vision problems such as stereo and imagereggio using Markov random field
(MRF) models. While the MRF framework yields an optimizationldem that is NP hard, good
approximation techniques based on graph cuts [4] and orflg@ibpagation [12, 10] have been
developed and demonstrated for problems such as stereanaige irestoration. These methods
are good both in the sense that the local minima they find anemaiover “large neighborhoods”,
and in the sense that they produce highly accurate resytisastice. A comparison between the
two different approaches for the case of stereo is descibgdd |.

Despite these substantial advances however, both the graprand belief propagation ap-
proaches are still computationally demanding when contptzdocal methods that are not at-

tempting to solve MRF-based formulations. Thus one is facid ehoosing between the MRF-



based methods, which produce good results but are relasi@l, and local methods which pro-
duce substantially poorer results but are fast. In this pagepresent several algorithmic tech-
niques that substantially improve the running time of bgbpagation (BP) for solving early
vision problems. Taken together these techniques spedteugtandard algorithm by several or-
ders of magnitude, making its running time competitive vidtbal methods. In the case of stereo
we obtain results with a comparable degree of accuracy tolatd BP or graph cuts algorithms in
less than one second per image pair. The differences argm@wenpronounced for problems such
as image restoration where there are a relatively large puwitpossible labels for each pixel.

The general framework for the problems we consider can baeteas follows (we follow the
notation in [4]). LetP be the set of pixels in an image addbe a finite set of labels. The labels
correspond to quantities that we want to estimate at eac, @Mch as disparities or intensities.
A labeling f assigns a labef, € £ to each pixep € P. We assume that the labels should vary
slowly almost everywhere but may change dramatically atesplaces such as pixels along object
boundaries. The quality of a labeling is given by an energyfion,

E(f) =Y _Dy(fo)+ > W(fn fo):

peP (p.9)eN

where are the (undirected) edges in the four-connected imageggaioh. D, ( f,) is the cost of
assigning labelf, to pixel p, and is referred to as the data cost.( f,, f,) measures the cost of
assigning labelg, and f, to two neighboring pixels, and is normally referred to asdiseontinuity
cost. Finding a labeling that minimizes this energy coroesls to the maximum a posteriori
(MAP) estimation problem for an appropriately defined MRFe(g& 8]).

In low-level computer vision problems the discontinuityst®l” is generally based on the
differencebetween labels, rather than on their actual values. For pbearin stereo and image
restoration the labels correspond to the possible dispaot intensity values respectively, and the
cost of assigning a pair of labels to neighboring pixels selokon the degree of difference between
the labels. Thus in this paper we consider the case wh&tg,, f,) = V(f, — f,), yielding an
energy minimization problem of the form,

E(f) =) _Dy(fs)+ Y. V(fp— fo) (1)

peP (p.a)eN



2 Loopy Belief Propagation: M ax-Product

We start by briefly reviewing the BP approach for performinfgiance on Markov random fields
(e.g., see[12]). First we consider the max-product algorjtwhich can be used to approximate the
MAP solution to MRF problems. Normally this technique is detinn terms of probability distri-
butions, but an equivalent computation can be performeldnéagative log probabilities, where the
max-product becomes a min-sum. We use this formulationuseci s less sensitive to numerical
artifacts, and because it directly corresponds to the grfargtion definition in equation (1).

The max-product BP algorithm works by passing messages artengraph defined by the
four-connected image grid. The method is iterative, wittssages from all nodes being passed
in parallel. Each message is a vector of dimension given éythmber of possible labels, Let

p_)q be the message that nogleends to a neighboring nodet iterationt. When using negative
log probabilities all entries im,) ., are initialized to zero, and at each iteration new messages a

computed in the following way,

my,_,(fq) = min (V( fo = f) + Dp(f) + > mi(f ) )

seEN(p)\q

whereN (p)\¢ denotes the neighbors pfother tharny. After T iterations a belief vector is com-

puted for each node,

be(fy) = + > ml(fy).

PEN ()
Finally, the labelf; that minimizesb,(f,) individually at each node is selected. The standard

implementation of this message passing algorithm on thiegyeiph runs irO(nk*T) time, where
n is the number of pixels in the imagejs the number of possible labels for each pixel &nd the
number of iterations. It take9(k?) time to compute each message and there’dre messages
to be computed in each iteration.

We consider three different techniques for speeding upstiaisdard belief propagation algo-
rithm. First we note that each message update can be exgeesamin convolutionand moreover
that with the discontinuity costs commonly used in earlyonghis min convolution can be com-

puted inO(k) time. Our second result shows that for the grid graph (andtépgrtite graph)
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essentially the same beliefs as those defined above candieaibtising only half as many mes-
sage updates. Besides yielding a speedup this techniquenalses it possible to compute the
messages “in place”, using half as much memory as the nodgalitam. This is important be-
cause BP has high memory requirements, storing multipleilolisions at each pixel. Finally we
present a multi-grid approach for performing BP in a coaoséirie manner. In this approach the
number of message passing iteratidfiscan be a small constant, because long range interactions
are captured by short paths in coarse grid graphs.

Combining the three techniques together yields an algorittahruns inO(nk) time overall
and is very fast in practice. In contrast the standard algorsummarized above requir@$nk?)
time per iteration and the number of iteratidhiss generallyO(n'/?) to allow for information to
propagate across the image. Our experimental results accaste as those obtained when using
standard max-product BP or graph cuts algorithms to miniraizergy functions of the form in

equation (1). In the case of stereo we quantify this usingprehmark in [9].

3 Computing a Message Updatein Linear Time

This section covers the first of the three techniques, whedices the time required to compute a
single message update franik?) to O(k) for most low-level vision applications. We can re-write
equation (2) as,

mfv—w(fq) - rr}in (V(fp = fo) +h(fp), 3)

whereh(f,) = D,(f,)+>_ mi=},(f,)- The standard way of computing this message is to explicitly
minimize overf, for each choice of,, which takegD(k?) time wherek is the number of labels.
The form of equation (3) is commonly referred to asna convolution This operation is
analogous to the standard discrete convolution operatiowever in a standard convolution the
sum would be replaced by a product and the min would be reglagea sum. While standard
discrete convolutions can be efficiently computed using®R€, no such general result is known
for min convolutions. However, for the cost functiohs f, — f,) commonly used in computer

vision we show that the min convolution, and thus the BP messpdates, can often be computed



in O(k) time. Such linear time methods are particularly importamtgroblems such as image
restoration where the number of labglscan be in the hundreds or more. Note that these methods
do not make any approximations; they compute exactly theesasult as thé(%k?) brute force

algorithm.

3.1 PottsModel

We start by considering a simple measure of the differentwdsn labels, the Potts model [4],
which captures the assumption that labelings should bewwise constant. This model considers
only the equality or inequality of labels. For equal labéls tost is zero, while for different labels

the cost is a positive constant,

0 ifz=0
V() =
d otherwise
With this cost function the min convolution in equation (3nche expressed in a form where

the minimization overf, can be performed once, independent of the valug, of

mzaq(fq> = min (h(fq)a H}Zl)n h(fp) + d) :

Separating the minimization ovégy in this manner reduces the time necessary to compute a mes-
sage taO(k). First we computening, h(f,), and then use that to compute the message value for
eachf, in constant time. Note that this idea still applies wheneaastof a single constattthere

is a constantl,,, for each edge in the graph. This is useful when the resultmiesother process,
such as edge detection or segmentation, suggests thahtimstes should be penalized more or

less for different pairs of pixels.

3.2 Linear Modd

Now we consider the case where the cost functiois based on the magnitude of the difference
between labelg, and f,. One common such function is the truncated linear modelyevtie cost
increases linearly based on the distance between the |apbat&l f, up to some level. In order to

allow for large discontinuities in the labeling the costdtian stops growing after the difference
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becomes large. For instance,
V(x) = min(c|z], d), (4)

wherec is the rate of increase in the cost, ahdontrols when the cost stops increasing. A similar
cost function was used in a BP approach to stereo [10], althoaftper than truncating the linear
cost they have a function that changes smoothly from beingst linear near the origin to a
constant value as the cost increases.

We first consider the simpler problem of a pure linear costauit truncation. Substituting into
equation (3) yields,

My_q(fa) = win (clfy = fol + h{p)) (5)

One can envision the labels as being embedded in a grid. Natéhts is a grid of labels and is
not related to the image grid. For instance it is a one-dinoeas grid of disparity labels in the
case of stereo and a one-dimensional grid of intensity $abethe case of image restoration. The
minimization in (5) can then be seen as the lower envelope uward facing cones of slope
rooted at(f,, h(f,)) for each grid pointf,. The one-dimensional case is illustrated in Figure 1.
This lower envelope calculation is similar to that perfodme computing a distance transform
(e.g., [3]). For the distance transform the cones are platéeight0 and occur only at selected
values rather than every grid point. Despite these difie@enthe standard distance transform
algorithm from [3] can be modified to compute the min conviolutwith a linear cost.

It is straightforward to verify that the following simple tapass algorithm correctly computes
the message in equation (5) for the case where the labelsspomd to integer§0, ...,k — 1}.
First we initialize the message vector with the values,aind then update its entries sequentially.

This is done “in place” so that updates affect one another,
for f,from1tok —1:
m(fq) < min(m(fy), m(fq — 1) + o).
The backward pass is analogous,
for f,fromk — 2100 :
m(fq) < min(m(fq), m(fy + 1) +c).
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Figure 1: An illustration of the lower envelope of four corieshe case of one-dimensional labels
(e.g. stereo disparity or image restoration). Each coneoted at locatiort f,,, 2(f,)). The darker

line indicates the lower envelope.

Consider the example in Figure 1. The initial valuenofis (3, 1,4, 2). With ¢ = 1, the forward
pass yieldg3, 1,2, 2), and the backward pass yields 1, 2, 2). The key property that allows us to
use this algorithm is that the labels are embedded in a gndl tflze discontinuity cost is a linear
function of distance in the grid. If the labels are embedded higher dimensional grid (e.qg.,
motion vectors in two dimensions) there is an analogouspags distance transform algorithm
that can be used (e.qg. [3]).

Message updates using the truncated linear model in equ@i@an now easily be computed
in O(k) time. Note that a truncated linear function is the lower éope of a linear function and
the constant function defined by the truncation value. Uaiggbraic properties of min convolu-
tions (see [7]) we can compute a message under the trun@aded inodel in terms of a message
under the linear model and a message under a constant peraalst. First we compute what the
messagey’, would be with the linear model and then compute the elemésg-minimum of the

linear cost message and the value used for the Potts congotat

m(fy) = min(m/(fq)v H}in h(fp) + d).



Figure 2: The min convolution as the lower envelopé @arabolas.

3.3 Quadratic Model

Another commonly used cost function is the truncated quedida the case of a one-dimensional
label set the cost grows proportionally(tf), — f,)* up to some level and then becomes a constant
thereafter. As in the previous subsection, we first congltiecase without truncation. Substituting
into the message update equation (3), the squared Euclidegqunadratic) cost update is given by,

mh_(J2) = min (e(f, = )" + R()) ©®)

Analogous to the linear case, this can be viewed as the lowet@e of a collection of functions.
Each value off,, defines a constraint that is an upward-facing parabola doattéf,, 2.( f,)), and
the overall minimization is defined by the lower envelopehafse parabolas as shown in Figure 2.

Our algorithm for computing this quadratic min convolutioais two steps. First we compute
the lower envelope of thé parabolas just mentioned. We then fill in the valuesidff,) by
checking the height of the lower envelope at each grid looafj. Note that this approach starts
with something defined on a grid (the valuesifmoves to a combinatorial structure defined over
the whole domain (the lower envelope of the parabolas) agwltfoves back to values on the grid
by sampling the lower envelope. Pseudocode for the wholegplure is shown in Algorithm 1.

The main part of the algorithm is the lower envelope companatNote that any two parabolas



defining the lower envelope intersect at exactly one poihe Rorizontal position of the intersec-

tion between the parabola coming from grid positicend the one fromp is,

_ (hp) + cp?) — (h(q) + cq®)
2cp — 2¢q

If ¢ < p then the parabola coming fromis below the one coming from to the left of the
intersection poing, and above it to the right of.

We compute the lower envelope by sequentially computingdiver envelope of the firsj
parabolas, where the parabolas are ordered accordingitatheesponding horizontal grid loca-
tions. The algorithm works by computing the combinatortaligture of this lower envelope. We
keep track of the structure using two arrays. The horizamtial location of thei-th parabola in
the lower envelope is stored irfi]. The range in which théth parabola of the lower envelope is
below the others is given byj:] andz[i + 1]. The variablej keeps track of the number of parabolas
in the lower envelope.

When considering the parabola framwe find its intersection with the parabola fromy]
(the rightmost parabola in the lower envelope computed 5o fehere are two possible cases,
as illustrated in Figure 3. If the intersection is aftdyj], then the lower envelope is modified
to indicate that the parabola fromis below all others starting at the intersection point. K th
intersection is before[j] then the parabola fromj] should not be part of the new lower envelope,
so we decreasgto delete that parabola and repeat the procedure.

This algorithm is a simpler version of a technique for incesally computing the lower en-
velope ofk parabolas irO(k log k) time [6]. That algorithm operates by sorting the parabaolés i
an appropriate order to be inserted into the lower envelopenortized constant time. In our case
the problem is simpler because the parabolas are all of the shape and they are already sorted
into an appropriate order.

We note that a two-dimensional quadratic min convolutiamtm&acomputed by first performing
a one-dimensional min convolution along each column of the, @nd then performing a one-
dimensional min convolution along each row of the resule(§§). This argument extends to
arbitrary dimensions, resulting in the composition of al@ensional min convolutions along each

dimension of the underlying grid of labels. For stereo andgmrestoration the label space is
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Algorithm DT(R)
j<—0 (* Index of rightmost parabola in lower envelope
v[0] < 0 (+ Locations of parabolas in lower envelope
2[0] «— —o0 (+ Locations of boundaries between parabelas
z[1] «— o0
forg=1ton—1 (x Compute lower envelop€)

s — ((h(q) + cg?) — (h(u[j]) + colj]?))/(2eq — 2e0j])

if s < z[j]

thenj — j—1

© © N o 00k~ WD P

goto 6

=
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gse j—7j7+1

=
=

v[j] < q

|
N

zlj] = s

z[j
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1] < 400

=
B

J =0

=
a1

. forg=0ton—1 (x Fill in values of min convolutiorx)

[ —
o

whilez[j + 1] < ¢

=
~

je—ji+1
18.  Du(q) « c(q —v[j])* + h(v]j])

Algorithm 1: The min convolution algorithm for the squareddidean distance in one-dimension.

one-dimensional. In other early vision problems such asanastimation the label space is two-
dimensional.

As in the linear case, message updates using a truncatechtjoawodel can also be computed
in O(k) time. Again we first compute what the message would be withgtreglratic model and
then compute the element-wise minimum of this message Wwéhvalue from the Potts compu-
tation. Moreover we can compute messages under a disciyptoost function defined by the

lower envelope of a small number of linear and quadratictions as described in [7]. Note also
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Figure 3: The two possible cases considered by the algorithemn adding the parabola frogto

the lower envelope constructed so far. In{a} z[;] while in (b) s < z[j].

that the algorithm for the quadratic cost function couldilgdse modified to handle any convex

discontinuity cost.

4 BP ontheGrid Graph

In this section we describe how BP can be performed more eftigiéor a bipartite graph while
getting essentially the same results as the standard thgoriThis is analogous to the red-black
techniques used for Gauss-Seidel relaxations. The maie issusing such a technique in the
context of BP is establishing that it computes the correctsagss. Recall that a bipartite graph
is one where the nodes can be split into two sets so that edgg eonnects pairs of nodes in
different sets. If we color the grid graph in a checkerboatigrn every edge connects nodes of
different colors, so the grid graph is bipartite.

The main observation is that for a bipartite graph with nodes B, when computing the
messages defined in equation (2) the messages sent frominotiesly depend on the messages
sent from nodes i® and vice versa. In particular, if we know the messages sent frodes inA
at iterationt, we can compute the messages from nodes at iterationt + 1. At this point we can

compute the messages from nodesliat iterationt + 2. Thus the messages from nodesAirat
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iterationt + 2 can be computed without ever computing the messages frose timdes at iteration
t + 1. This motivates the following modification of the standardd@gorithm for bipartite graphs.

In the new scheme messages are initialized in the standaydbuéiwe alternate between
updating the messages frofrand the messages frofh For concreteness let],  be the message
sent from node to nodeqg at iterationt under this new message passing scheme. Wiseodd we
update the messages sent from nodesamd keep the old values for the messages sent from nodes
in B. Whent is even we update the messages sent fidbut not those sent from. So we only
compute half the messages in each iteration. Moreover westcei@ new messages in the same
memory space where the old messages were. This is becausshiiteration the messages being
updated do not depend on each other. Using the ideas froraghpdragraph it is straightforward

to show by induction that for all > 0, if ¢ is odd (even) then

t p—q

mt if pe A(if p e B)
P—q :

t—1 H
m,—,, Otherwise

That is, the messages sent under the new scheme are nearly the same as the messagat
under the standard scheme. Note that when BP convergediénistive message passing scheme

converges to the same fixed point. This is because after cg:enean;:}q =mp .,

5 Multi-Grid BP

One drawback of using BP for many early vision problems foldsem the fact that messages are
updated locally and in parallel (at least conceptuallynef®ugh the implementation is usually
sequential). This implies that it takes many iterationsiféormation to flow over large distances
in the grid graph. In this section we describe a multi-gricht@que to circumvent this problem.
The basic idea is to perform BP in a coarse-to-fine manner,adddhg range interactions be-
tween pixels can be captured by short paths in coarse gréyhte hierarchical BP methods have
been used in other work such as [14], our method differs itmieause the hierarchy only to initial-
ize messages at successively finer levels. This makes iipe$s reduce the number of message

passing iterations at each level, without changing theadlvproblem structure. In contrast, for
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example in [14] the underlying graph is changed so as to ceadges between neighboring pix-
els in the image grid by edges between a pixel and its parentjirad-tree structure. This has the
nice property of removing loops from the graph, but it alsbstantially changes the minimization

problem being solved. In particular, the quad-tree stmectweates artifacts due to the spatially
varying neighborhood structure.

BP works by looking for fixed points of the message update réder max-product BP the
messages are usually initialized to zero (in log-probgbdpace). If we could initialize the mes-
sages close to a fixed point one would expect to get conveegeioce rapidly. This is how the
method described here works; we run BP at one level of resolatnd then use the messages at
that level in order to get estimates for the messages at ttidiner level. Thus the coarse-to-fine
computation speeds up convergence of the original BP prolglanng the graph structure and the
energy function unchanged.

In developing the multi-grid approach we use a slightlyeafi#int notation that makes the image
grid I" explicit. The problem that we want to solve is to assign allgbe € £ to each location
(,7) € T" while minimizing the energy,

Z Di;(fij) + Z V(fij— firrj) + Z V(fij— fij+)s (7)
(3,5)€T (3,7)€T\C (3,7)ET\R
whereC andR are respectively the last column and last row of the image. géiquation (7) is
the same as the original energy function in (1) except thatékpressed over the locations in the
image grid rather than over a set of sites and neighbors.

LetI'°,T'!, ... be a hierarchy of grids such thBf = I" and each node ifi corresponds to
a block ofe x € pixels of the original grid’, wheree = 2¢. Intuitively the ¢-th level represents
labelings where the image pixels in eache block are assigned the same label. A key property of
this construction is that long range interactions can béucagd by short paths in the coarse level
grids, as the paths go through blocks instead of going thrpugels. Figure 4 illustrates two levels
of the structure. Now we define a hierarchy of optimizatioolgems on the coarse grids.

Let f* be a labeling for the sites iiY. The energy function at levélis given by,

Z D Z Vz o Z+1])+ Z Vz( - 1]+1) (8)

(i,j)€T? (i,5)ETE\CY (i,5)€TE\RE
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level O level 1

Figure 4. lllustration of two levels in the multi-grid metthoEach node in levél corresponds to a

2 x 2 block of nodes in levef — 1.

whereD? andV* are the data and discontinuity costs at leielThere are a number of options for
how to define the costs at each level. We take an approachatestiby finite-element methods,
where the full set of image pixels corresponding to eachkiietaken into consideration.

First consider the data coﬁf,j. Intuitively assigning a labek to a block(i, 7) at level? is
equivalent to assigning that label to each pixel in the blgadding a sum of the data costs for the

pixels in that block,
e—1 e—1

ij (a) = Z Z Dsz‘—l—u,ej—i—v(a)'

u=0 v=0
The summation of negative log costs corresponds to takimgdupt of probabilities, thus the data

cost for are x € block can be understood in terms of the probability of obsgrthe corresponding
set of pixels given one particular label for all of them. Aeivblock can prefer several labels,
because a cost is determined for each label of the block nBtance, if half the pixels prefer label
« and half prefer labeb, then each of these labels will have low cost whereas otleddawill
have high cost. Note that when computing the data costs d@tieecessary to always sum over the
original gridI". Instead the calculation can be done more efficiently by sungraver four data
costs at the next finer level.

Now consider the discontinuity costs at le¥elThere is no discontinuity cost between pixels
inside a block, as every coarse labeling assigns the sarakftabsuch pixels. For each pair of
neighboring blocks there akepairs of pixels along their boundary. In measuring the déffee

between labels for two neighboring blocks we use a finitedifice approach, where the difference
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between the labels is divided by the separation betweendlo& benterse¢. This leads to,

vf(a—ﬁ):ev(o‘_ﬁ).

€

Thee term multiplyingV’ takes into account the number of neighboring pixels aloegttundary
of two neighboring blocks, while theterm in the denominator insidé takes into account the
separation between blocks when measuring the differerteeesba neighboring labels.

Different forms of discontinuity costs produce differeelationships between the discontinuity
costs across the problem hierarchy. For instance, usimgearlicost functio (z) = c|z| yields a

hierarchical discontinuity cost that is independent ofléwel,
Vi(w) = cla,

as thec terms cancel out. On the other hand using a quadratic costidari/ (z) = cz? yields a

hierarchical discontinuity cost that is weaker higherqughie hierarchy,
Vi(x) = cx?/e,

As mentioned before, in practice it is important to use rolliscontinuity costs such as the

truncated linear model in (4). We do this by truncating treedntinuity costs at each level,

V4o — 8) = min (eV (O‘Zﬁ>,d).

Another alternative would be to truncate the individualtdosctionsV’, but this would result in

the truncation factor changing based on the level in theahity, due to the multiplication df
by e. In practice we have found it better to truncate the costwéxen blocks instead.

A simple coarse-to-fine strategy using the hierarchy of lemols defined by equation (8) is to
compute the BP messages for the problem at the coarsest fahel mierarchy and then use that
to initialize the messages at the next level, and so on, dovthe original grid. The messages
at each level are a function of the same set of labels butseptenteractions between different
sized blocks of pixels. Given a final set of messages sent bgck lat level/, we initialize the
messages sent by the four blocks inside it at Iévell to those values. This is done separately for

the messages in the four directions: right, left, up and diovthe grid.
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We have found that with this coarse-to-fine approach it isighdo run BP for a small number
of iterations at each level (between five and ten). Note thattotal number of nodes in the
hierarchy is justt/3 the number of nodes at the finest level. Thus for a given numbiégrations
the total number of message updates in the hierarchicaladéshjust1/3 more than the number
of updates in the finest level.

This hierarchical method differs in a subtle but importamtywirom other multi-scale tech-
niques commonly used in computer vision, such as the Gaupgiamid (e.g., [5]). Typically
such techniques have been used for finding displacemem®&detpixels in pairs of images us-
ing differential methods. These techniques are based awcirggl the resolution of the image
data, whereas ours is based on reducing only the resolutiwhieh the labels are estimated. For
instance consider the problem of stereo. Reducing the imegg@ution reduces the number of
disparities that can be distinguished. By the fourth leveswth a hierarchy, all disparities be-
tween 0 and 16 are indistinguishable. In contrast our metltoes not lower the image resolution
but rather aggregates data costs over larger spatial regighdds. Thus even at a very high level
of the hierarchy, small disparities are still evident ifyhere present over a large spatial region.
This difference is crucial to solving the problem at hand;daese we want to be able to propagate
information about quantities such as disparities overdangas of the image in a small number
of message passing iterations. In general, we need a nurhleyets proportional tdog, of the
image diameter. In contrast a Gaussian pyramid has no usé&unation about displacements at
levels higher tharog, of the maximum magnitude displacement (and this value igliysmuch

smaller than the image diameter).

6 Sum-Product Belief Propagation

The max-product BP algorithm is motivated by finding a lalglivith maximum posterior proba-
bility, or equivalently with minimum energy. Another commé&rmulation is based on selecting
the most probable label for each pixel. There is a subtlerbportant difference between selecting
the most probable labeling and selecting the most probablel for each pixel individually. Se-

lecting the most probable label for each pixel minimizesthmber of pixels with incorrect labels,
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but the overall labeling obtained in this way could have $joait posterior probability.

The sum-product BP algorithm can be used to approximate teepor probability of each
label for each pixel. As with the max-product algorithm, slien-product method works by passing
messages around the graph defined by the neighborhood sistémthis section we letn/, ., be

the message that nogesends to a neighboring noget iterationt of the sum-product algorithm,

mf)ﬂq(fl]) = Z ( ( fp H ms~>p ) (9)

Ir sEN(p)\q

where as abov&/(p)\q denotes the neighbors pbther than;. The potential functions are defined

in terms of the discontinuity costs and data costs in theggmainction (1),

Oy(fy) = PP W(f, — fy) = eI,

After T iterations a belief vector is computed for each node,

bq(fq) = (I)q(fq) H mgﬁq(fq)‘

peN(q)

The valueb,( f,) is an approximation to the probability that the correct ldbepixel ¢ is f,. As
was true for the max-product case, the standard implementaftthis message passing algorithm
on the grid graph runs i0(nk?T) time, wheren is the number of pixels in the imagg,is the
number of possible labels for each pixel ahds the number of iterations

All of the algorithmic techniques that we discussed aboveriax-product also apply to the
sum-product algorithm for low-level vision problems. Thpdrtite graph technique in Section 4
and the multi-grid technique in Section 5 both apply ding@k neither technique depends on the
particular form of the messages. On the other hand, the igadsfor linear-time message updates
depend on the form of the message and thus do not apply giretdivever there is an analogous
set of techniques that we now describe.

Following the analysis for the max-product case, we canitewine message update rule in
equation (9) as

mh o (fa) =D (W (fp = f)h(S,)), (10)

Ip
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whereh(f,) = ®,(f,) [Im:=},(f,). In this form we see that the message update computation is a
convolution, which can be computeddn(k log k) time for k discrete values of,, and f, using the
fast fourier transform (FFT).

The most commonly used compatibility functiods f, — f,) are Gaussians or mixtures of
Gaussians, and in these cases the message computation @pprbeimated irO(k) time. The
method is also very fast in practice and thus preferable éd=RT not only because of the log
factor improvement but because of the low constants.

Convolution with a Gaussian can be approximate@ (i) time using the box sum method in
[13]. The technique uses the fact that a Gaussian can beagelyuapproximated by the sequential
convolution of a small number of box filters. The discretevaduation of a function witht sam-
ple points with a box filter can be computeddik) time, because each successive shift involves
only a single addition and subtraction, regardless of thdtwof the box. To approximate Gaus-
sian convolution the input functioh( f,) is sequentially convolved with a set of such box filters.
In practice only four convolutions are necessary to obtagoad approximation to a Gaussian,
yielding anO(k) method that is also very fast in practice.

Using the box-sum technique together with the multi-grid bipartite graph techniques results
in anO(nk) algorithm for sum-product belief propagation on a grid withodes (or pixels). For

more general potential functionis, the use of the FFT yields an(nk log k) method.

7 Experiments

In this section we show some simple experimental resultbustiate the techniques described in
the paper. In these experiments we used the max-productfation of belief propagation, or
more precisely the min-sum algorithm where costs correspomegative log probabilities. We
considered both the problems of stereo and image restoratio both cases we combined all
three techniques together: the linear time message upda&ebipartite graph message passing
schedule, and the multi-grid method. For the multi-grid moett we used six levels in the grid
hierarchy. The test images were generally aro6d@ x 480 pixels in size, making the coarsest

grid have just a few blocks.
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For the stereo problem the labels correspond to differesgadities that can be assigned to

pixels in the left image. We used a truncated linear costtfandor the discontinuity term,

V(fp — fo) = min(|f, — f,l,d).
Using the brightness constancy assumption we expect thatspomnding pixels in the left and

right images should have similar intensities. We assumeghieamages have been rectified so that

disparities are horizontal shifts, and use a truncate@tinedel for the data cost

Dp(fp) = Amin(|Li(z,y) = L(x = fp,9)],7),

wherer is a truncation value and is a scaling factor. The truncation makes the data cost tobus
to occlusion and artifacts that violate the brightness @ty assumption (such as specularities).
The scaling factor allows us to control the relative weigtof the data and discontinuity costs.
More involved data costs such as those in [1] could also bdamg in this framework.

Figure 5 shows stereo results for the Tsukuba image paigwmsinalgorithm with these trun-
cated linear cost functions. In this case we used 10 mesgadpdauiterations per level. The
running time was about one second on a 2GHz Pentium IV. Inrgéing stereo results we used
the following set of parameterd: = 1.7, 7 = 15 and A = 0.07. The resulting discontinuity cost
function is nearly like a Potts model, with cost zero when |tizels are the same, 1 when they
differ by one, and 1.7 otherwise. The input images were sheabslightly, with a Gaussian of
o = 0.7 prior to computing the data cost. This example illustrabed the use of the hierarchi-
cal method seems to produce less variation in the outputithalbtained by non-hierarchical BP
techniques (for example the background is more uniformiygls disparity).

Figure 6 shows the value of the energy that is being minimased function of the number of
message update iterations for our multi-grid BP method #ettsel standard algorithm. Note how
our method computes a low energy solution in just a few itenatper level, while the standard
algorithm takes many more iterations to obtain a similaultesThis provides some empirical
evidence that the multi-grid technique is operating asitkel, allowing information to propagate
over long distances in few message update iterations.

Figure 7 gives empirical results of the speedups obtaineebloh of the techniques described

in the paper. The graph compares running BP with all speedimigues versus running BP
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Figure 5: Stereo results for the Tsukuba image pair.
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Figure 6: Energy of stereo solution as a function of the nurobenessage update iterations.

with all but one of the techniques. In each case the running bf the algorithm is controlled by
varying the number of message update iterations. We seedlcat speedup technique provides
a significant benefit. Note how the min convolution methodvjgles an important speedup even
when the number of labels is small (16 disparities for thekliba images).

Table 1 shows evaluation results of our stereo algorithmherMiddlebury stereo benchmark

[9]. These results were obtained using the parametersidedabove. Overall our method per-
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Figure 7: Energy of stereo solution as a function of runnimgt The graph compares running BP

will all speedup techniques described in the paper versusiBPallbut one of the techniques.

Tsukuba Sawtooth Venus Map

Rank Error| Rank Error| Rank Error| Rank Error
13 1.84| 13 0.94 8 094 | 11 0.36

Table 1: Evaluation of the stereo algorithm on the Middlglfstrereo benchmark. The error mea-
sures the percentage of pixels with wrong disparities. Qethiod ranks in 12th place in the overall

evaluation.

forms comparably to the original graph cuts energy minitnwaapproach [4, 9] that similarly
used simple data and discontinuity costs, as well as totsesu]11] that compared belief propa-
gation with graph cuts. However these other methods runiderably more slowly, taking tens
or hundreds of times longer than our algorithm. It is impert® stress that this comparison is
intended to demonstrate that the algorithmic techniquebave presented here produce similar
quality results much faster than these other methods. Ceradity more sophisticated data terms,

use of occlusion information, and other techniques coulthberporated in order to improve the
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accuracy of the final results.

While belief propagation and graph cuts methods are now cartynsed to solve the stereo
problem, these techniques have not been widely adoptedter tow level vision problems such
as image restoration. There is a long history of MRF-basechdtations of image restoration
problems (e.g., see [2, 8]), however computing solutionsHese problems using previous meth-
ods is quite slow, particularly when the number of possiabeels for each pixel is large. Here we
consider the problem of restoring images that have 256 sitiemalues. We use input images that
have been corrupted with additive Gaussian noise as welf aslsking out regions.

In image restoration both the labels and the input data demsities. We used a truncated

guadratic for the discontinuity cost,

V(fp — fo) = min((f, — fq)Qv d),

and a quadratic cost for the data term,

Dy(fp) = Amin((I(p) — fp)Q)a

measuring the difference between the label at a pixel andliberved intensity at that pixel.

In principle this formulation of the restoration problenosikd also do a good job of filling
in missing data, by propagating information from other paft the image. To demonstrate this
capability we show an example of an image that was distoextiding Gaussian noise of= 20,
and in which in addition a rectangular region was masked Auhodified data cost function was
used, where for a masked pixel the data cost is zero for amy.|@bat is,D,( f,) = 0 when pixel
p is masked. The discontinuity cost function remained ungbdn The parameters for the cost
functions wered = 200 and\ = 0.04. In this case we used 5 message passing iterations per level
and the running time was approximately 10 seconds on a 2GhzuRelV. Figure 8 shows the
results of our algorithm. Note that method does a good jodlofdgiin missing data based on the

remaining image.
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Corrupted Restoration

Figure 8: Restoration results with an input that has missaiges.
8 Summary

We have presented three algorithmic techniques for spgedgirthe belief propagation approach
for solving low level vision problems formulated in terms Mfarkov random fields. The main
focus of the paper is on the max-product formulation of hgliepagation, and the corresponding
energy minimization problem in terms of costs that are proopaoal to negative log probabilities.
We also show how similar techniques apply to the sum-profituctulation of belief propagation.
The use of our techniques yields results of comparable acguo other algorithms but hundreds
of times faster. In the case of stereo we quantified this acgussing the Middlebury benchmark.
The method is quite straightforward to implement and in meases should remove the need to
choose between fast local methods that have relatively émaracy, and slow global methods that
have high accuracy.

The first of the three techniques reduces the time necesseaoyripute a single message update
from O(k?) to O(k), wherek is the number of possible labels for each pixel. For the nraxhypct
formulation this technique is applicable to problems wheeediscontinuity cost for neighboring
labels is a truncated linear or truncated quadratic funaiidhe difference between the labels. The
method is not an approximation, it uses an efficient algoritb produce exactly the same results

as the brute force quadratic time method. For sum-produntitas technique yields a® (k log k)
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method for any discontinuity cost function based on diffieebetween labels.

The second of the three techniques uses the fact that thgrgith is bipartite to decrease both
the storage requirements and the running time by a factawaf This is particularly important
because of the relatively high memory requirements of bpliepagation methods, which store
multiple distributions at each pixel. The third of the teitjues uses a multi-grid approach to
reduce the number of message passing iterations to a smatbed, whereas the standard method
requires a number of iterations that is proportional to tiaengter of the image grid.

For problems such as stereo, where the label set is relaswedll, the techniques presented
here provide substantial speedup. For other problemsidimay image restoration, where the label
set can be quite large, these techniques can make an MRF-#yasexhch tractable where it was
not before. There are several opportunities for furthertigyment of our techniques. First, a
general method for computing the min convolution quickhal@gous to the FFT for convolution,
would broaden the applicability of fast message updateshitrary discontinuity cost functions
based on difference between labels. Second, the loweraesalethod that we have presented for
the min convolution could be extended to handle problemgevtie labels are embedded in some
space but do not lie on a regularly spaced grid. More gengralould be interesting to consider

whether other sorts of structures on the set of labels erfiasienethods.
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