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Abstract

Markov random field models provide a robust and unified framework for early vision problems

such as stereo and image restoration. Inference algorithmsbased on graph cuts and belief propa-

gation have been found to yield accurate results, but despite recent advances are often too slow for

practical use. In this paper we present some algorithmic techniques that substantially improve the

running time of the loopy belief propagation approach. One of the techniques reduces the complex-

ity of the inference algorithm to be linear rather than quadratic in the number of possible labels for

each pixel, which is important for problems such as image restoration that have a large label set.

Another technique speeds up and reduces the memory requirements of belief propagation on grid

graphs. A third technique is a multi-grid method that makes it possible to obtain good results with

a small fixed number of message passing iterations, independent of the size of the input images.

Taken together these techniques speed up the standard algorithm by several orders of magnitude.

In practice we obtain results that are as accurate as those of other global methods (e.g., using the

Middlebury stereo benchmark) while being nearly as fast as purely local methods.

1 Introduction

Over the past few years there have been exciting advances in the development of algorithms for

solving early vision problems such as stereo and image restoration using Markov random field

(MRF) models. While the MRF framework yields an optimization problem that is NP hard, good

approximation techniques based on graph cuts [4] and on belief propagation [12, 10] have been

developed and demonstrated for problems such as stereo and image restoration. These methods

are good both in the sense that the local minima they find are minima over “large neighborhoods”,

and in the sense that they produce highly accurate results inpractice. A comparison between the

two different approaches for the case of stereo is describedin [11].

Despite these substantial advances however, both the graphcuts and belief propagation ap-

proaches are still computationally demanding when compared to local methods that are not at-

tempting to solve MRF-based formulations. Thus one is faced with choosing between the MRF-
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based methods, which produce good results but are relatively slow, and local methods which pro-

duce substantially poorer results but are fast. In this paper we present several algorithmic tech-

niques that substantially improve the running time of belief propagation (BP) for solving early

vision problems. Taken together these techniques speed up the standard algorithm by several or-

ders of magnitude, making its running time competitive withlocal methods. In the case of stereo

we obtain results with a comparable degree of accuracy to standard BP or graph cuts algorithms in

less than one second per image pair. The differences are evenmore pronounced for problems such

as image restoration where there are a relatively large number of possible labels for each pixel.

The general framework for the problems we consider can be defined as follows (we follow the

notation in [4]). LetP be the set of pixels in an image andL be a finite set of labels. The labels

correspond to quantities that we want to estimate at each pixel, such as disparities or intensities.

A labelingf assigns a labelfp ∈ L to each pixelp ∈ P. We assume that the labels should vary

slowly almost everywhere but may change dramatically at some places such as pixels along object

boundaries. The quality of a labeling is given by an energy function,

E(f) =
∑

p∈P

Dp(fp) +
∑

(p,q)∈N

W (fp, fq),

whereN are the (undirected) edges in the four-connected image gridgraph.Dp(fp) is the cost of

assigning labelfp to pixel p, and is referred to as the data cost.W (fp, fq) measures the cost of

assigning labelsfp andfq to two neighboring pixels, and is normally referred to as thediscontinuity

cost. Finding a labeling that minimizes this energy corresponds to the maximum a posteriori

(MAP) estimation problem for an appropriately defined MRF (see [2, 8]).

In low-level computer vision problems the discontinuity cost W is generally based on the

differencebetween labels, rather than on their actual values. For example, in stereo and image

restoration the labels correspond to the possible disparities or intensity values respectively, and the

cost of assigning a pair of labels to neighboring pixels is based on the degree of difference between

the labels. Thus in this paper we consider the case whereW (fp, fq) = V (fp − fq), yielding an

energy minimization problem of the form,

E(f) =
∑

p∈P

Dp(fp) +
∑

(p,q)∈N

V (fp − fq). (1)
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2 Loopy Belief Propagation: Max-Product

We start by briefly reviewing the BP approach for performing inference on Markov random fields

(e.g., see [12]). First we consider the max-product algorithm, which can be used to approximate the

MAP solution to MRF problems. Normally this technique is defined in terms of probability distri-

butions, but an equivalent computation can be performed with negative log probabilities, where the

max-product becomes a min-sum. We use this formulation because it is less sensitive to numerical

artifacts, and because it directly corresponds to the energy function definition in equation (1).

The max-product BP algorithm works by passing messages around the graph defined by the

four-connected image grid. The method is iterative, with messages from all nodes being passed

in parallel. Each message is a vector of dimension given by the number of possible labels,k. Let

mt
p→q be the message that nodep sends to a neighboring nodeq at iterationt. When using negative

log probabilities all entries inm0
p→q are initialized to zero, and at each iteration new messages are

computed in the following way,

mt
p→q(fq) = min

fp



V (fp − fq) + Dp(fp) +
∑

s∈N (p)\q

mt−1
s→p(fp)



 (2)

whereN (p)\q denotes the neighbors ofp other thanq. After T iterations a belief vector is com-

puted for each node,

bq(fq) = Dq(fq) +
∑

p∈N (q)

mT
p→q(fq).

Finally, the labelf ∗
q that minimizesbq(fq) individually at each node is selected. The standard

implementation of this message passing algorithm on the grid graph runs inO(nk2T ) time, where

n is the number of pixels in the image,k is the number of possible labels for each pixel andT is the

number of iterations. It takesO(k2) time to compute each message and there areO(n) messages

to be computed in each iteration.

We consider three different techniques for speeding up thisstandard belief propagation algo-

rithm. First we note that each message update can be expressed as amin convolution, and moreover

that with the discontinuity costs commonly used in early vision this min convolution can be com-

puted inO(k) time. Our second result shows that for the grid graph (and anybipartite graph)
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essentially the same beliefs as those defined above can be obtained using only half as many mes-

sage updates. Besides yielding a speedup this technique alsomakes it possible to compute the

messages “in place”, using half as much memory as the normal algorithm. This is important be-

cause BP has high memory requirements, storing multiple distributions at each pixel. Finally we

present a multi-grid approach for performing BP in a coarse-to-fine manner. In this approach the

number of message passing iterations,T , can be a small constant, because long range interactions

are captured by short paths in coarse grid graphs.

Combining the three techniques together yields an algorithmthat runs inO(nk) time overall

and is very fast in practice. In contrast the standard algorithm summarized above requiresO(nk2)

time per iteration and the number of iterationsT is generallyO(n1/2) to allow for information to

propagate across the image. Our experimental results are asaccurate as those obtained when using

standard max-product BP or graph cuts algorithms to minimizeenergy functions of the form in

equation (1). In the case of stereo we quantify this using thebenchmark in [9].

3 Computing a Message Update in Linear Time

This section covers the first of the three techniques, which reduces the time required to compute a

single message update fromO(k2) to O(k) for most low-level vision applications. We can re-write

equation (2) as,

mt
p→q(fq) = min

fp

(V (fp − fq) + h(fp)) , (3)

whereh(fp) = Dp(fp)+
∑

mt−1
s→p(fp). The standard way of computing this message is to explicitly

minimize overfp for each choice offq, which takesO(k2) time wherek is the number of labels.

The form of equation (3) is commonly referred to as amin convolution. This operation is

analogous to the standard discrete convolution operation,however in a standard convolution the

sum would be replaced by a product and the min would be replaced by a sum. While standard

discrete convolutions can be efficiently computed using theFFT, no such general result is known

for min convolutions. However, for the cost functionsV (fp − fq) commonly used in computer

vision we show that the min convolution, and thus the BP message updates, can often be computed
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in O(k) time. Such linear time methods are particularly important for problems such as image

restoration where the number of labels,k, can be in the hundreds or more. Note that these methods

do not make any approximations; they compute exactly the same result as theO(k2) brute force

algorithm.

3.1 Potts Model

We start by considering a simple measure of the difference between labels, the Potts model [4],

which captures the assumption that labelings should be piecewise constant. This model considers

only the equality or inequality of labels. For equal labels the cost is zero, while for different labels

the cost is a positive constant,

V (x) =







0 if x = 0

d otherwise

With this cost function the min convolution in equation (3) can be expressed in a form where

the minimization overfp can be performed once, independent of the value offq,

mt
p→q(fq) = min

(

h(fq), min
fp

h(fp) + d

)

.

Separating the minimization overfp in this manner reduces the time necessary to compute a mes-

sage toO(k). First we computeminfp
h(fp), and then use that to compute the message value for

eachfq in constant time. Note that this idea still applies when instead of a single constantd there

is a constantdpq for each edge in the graph. This is useful when the result of some other process,

such as edge detection or segmentation, suggests that discontinuities should be penalized more or

less for different pairs of pixels.

3.2 Linear Model

Now we consider the case where the cost functionV is based on the magnitude of the difference

between labelsfp andfq. One common such function is the truncated linear model, where the cost

increases linearly based on the distance between the labelsfp andfq up to some level. In order to

allow for large discontinuities in the labeling the cost function stops growing after the difference
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becomes large. For instance,

V (x) = min(c|x|, d), (4)

wherec is the rate of increase in the cost, andd controls when the cost stops increasing. A similar

cost function was used in a BP approach to stereo [10], although rather than truncating the linear

cost they have a function that changes smoothly from being almost linear near the origin to a

constant value as the cost increases.

We first consider the simpler problem of a pure linear cost without truncation. Substituting into

equation (3) yields,

mt
p→q(fq) = min

fp

(c|fp − fq|+ h(fp)) . (5)

One can envision the labels as being embedded in a grid. Note that this is a grid of labels and is

not related to the image grid. For instance it is a one-dimensional grid of disparity labels in the

case of stereo and a one-dimensional grid of intensity labels in the case of image restoration. The

minimization in (5) can then be seen as the lower envelope ofk upward facing cones of slopec

rooted at(fp, h(fp)) for each grid pointfp. The one-dimensional case is illustrated in Figure 1.

This lower envelope calculation is similar to that performed in computing a distance transform

(e.g., [3]). For the distance transform the cones are placedat height0 and occur only at selected

values rather than every grid point. Despite these differences, the standard distance transform

algorithm from [3] can be modified to compute the min convolution with a linear cost.

It is straightforward to verify that the following simple two-pass algorithm correctly computes

the message in equation (5) for the case where the labels correspond to integers{0, . . . , k − 1}.

First we initialize the message vector with the values ofh, and then update its entries sequentially.

This is done “in place” so that updates affect one another,

for fq from 1 to k − 1 :

m(fq)← min(m(fq),m(fq − 1) + c).

The backward pass is analogous,

for fq from k − 2 to 0 :

m(fq)← min(m(fq),m(fq + 1) + c).
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Figure 1: An illustration of the lower envelope of four conesin the case of one-dimensional labels

(e.g. stereo disparity or image restoration). Each cone is rooted at location(fp, h(fp)). The darker

line indicates the lower envelope.

Consider the example in Figure 1. The initial value ofm is (3, 1, 4, 2). With c = 1, the forward

pass yields(3, 1, 2, 2), and the backward pass yields(2, 1, 2, 2). The key property that allows us to

use this algorithm is that the labels are embedded in a grid, and the discontinuity cost is a linear

function of distance in the grid. If the labels are embedded in a higher dimensional grid (e.g.,

motion vectors in two dimensions) there is an analogous two-pass distance transform algorithm

that can be used (e.g. [3]).

Message updates using the truncated linear model in equation (4) can now easily be computed

in O(k) time. Note that a truncated linear function is the lower envelope of a linear function and

the constant function defined by the truncation value. Usingalgebraic properties of min convolu-

tions (see [7]) we can compute a message under the truncated linear model in terms of a message

under the linear model and a message under a constant penaltymodel. First we compute what the

message,m′, would be with the linear model and then compute the element-wise minimum of the

linear cost message and the value used for the Potts computation,

m(fq) = min(m′(fq), min
fp

h(fp) + d).
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Figure 2: The min convolution as the lower envelope ofk parabolas.

3.3 Quadratic Model

Another commonly used cost function is the truncated quadratic. In the case of a one-dimensional

label set the cost grows proportionally to(fp − fq)
2 up to some level and then becomes a constant

thereafter. As in the previous subsection, we first considerthe case without truncation. Substituting

into the message update equation (3), the squared Euclidean(or quadratic) cost update is given by,

mt
p→q(fq) = min

fp

(

c(fp − fq)
2 + h(fp)

)

. (6)

Analogous to the linear case, this can be viewed as the lower envelope of a collection of functions.

Each value offp defines a constraint that is an upward-facing parabola rooted at (fp, h(fp)), and

the overall minimization is defined by the lower envelope of these parabolas as shown in Figure 2.

Our algorithm for computing this quadratic min convolutionhas two steps. First we compute

the lower envelope of thek parabolas just mentioned. We then fill in the values ofm(fq) by

checking the height of the lower envelope at each grid location fq. Note that this approach starts

with something defined on a grid (the values ofh), moves to a combinatorial structure defined over

the whole domain (the lower envelope of the parabolas) and then moves back to values on the grid

by sampling the lower envelope. Pseudocode for the whole procedure is shown in Algorithm 1.

The main part of the algorithm is the lower envelope computation. Note that any two parabolas

9



defining the lower envelope intersect at exactly one point. The horizontal position of the intersec-

tion between the parabola coming from grid positionq and the one fromp is,

s =
(h(p) + cp2)− (h(q) + cq2)

2cp− 2cq
.

If q < p then the parabola coming fromq is below the one coming fromp to the left of the

intersection points, and above it to the right ofs.

We compute the lower envelope by sequentially computing thelower envelope of the firstq

parabolas, where the parabolas are ordered according to their corresponding horizontal grid loca-

tions. The algorithm works by computing the combinatorial structure of this lower envelope. We

keep track of the structure using two arrays. The horizontalgrid location of thei-th parabola in

the lower envelope is stored inv[i]. The range in which thei-th parabola of the lower envelope is

below the others is given byz[i] andz[i+1]. The variablej keeps track of the number of parabolas

in the lower envelope.

When considering the parabola fromq, we find its intersection with the parabola fromv[j]

(the rightmost parabola in the lower envelope computed so far). There are two possible cases,

as illustrated in Figure 3. If the intersection is afterz[j], then the lower envelope is modified

to indicate that the parabola fromq is below all others starting at the intersection point. If the

intersection is beforez[j] then the parabola fromv[j] should not be part of the new lower envelope,

so we decreasej to delete that parabola and repeat the procedure.

This algorithm is a simpler version of a technique for incrementally computing the lower en-

velope ofk parabolas inO(k log k) time [6]. That algorithm operates by sorting the parabolas into

an appropriate order to be inserted into the lower envelope in amortized constant time. In our case

the problem is simpler because the parabolas are all of the same shape and they are already sorted

into an appropriate order.

We note that a two-dimensional quadratic min convolution can be computed by first performing

a one-dimensional min convolution along each column of the grid, and then performing a one-

dimensional min convolution along each row of the result (see [7]). This argument extends to

arbitrary dimensions, resulting in the composition of one-dimensional min convolutions along each

dimension of the underlying grid of labels. For stereo and image restoration the label space is
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Algorithm DT(h)

1. j ← 0 (∗ Index of rightmost parabola in lower envelope∗)

2. v[0]← 0 (∗ Locations of parabolas in lower envelope∗)

3. z[0]← −∞ (∗ Locations of boundaries between parabolas∗)

4. z[1]← +∞

5. for q = 1 to n− 1 (∗ Compute lower envelope∗)

6. s← ((h(q) + cq2)− (h(v[j]) + cv[j]2))/(2cq − 2cv[j])

7. if s ≤ z[j]

8. then j ← j − 1

9. goto 6

10. else j ← j + 1

11. v[j]← q

12. z[j]← s

13. z[j + 1]← +∞

14. j ← 0

15. for q = 0 to n− 1 (∗ Fill in values of min convolution∗)

16. while z[j + 1] < q

17. j ← j + 1

18. Dh(q)← c(q − v[j])2 + h(v[j])

Algorithm 1: The min convolution algorithm for the squared Euclidean distance in one-dimension.

one-dimensional. In other early vision problems such as motion estimation the label space is two-

dimensional.

As in the linear case, message updates using a truncated quadratic model can also be computed

in O(k) time. Again we first compute what the message would be with thequadratic model and

then compute the element-wise minimum of this message with the value from the Potts compu-

tation. Moreover we can compute messages under a discontinuity cost function defined by the

lower envelope of a small number of linear and quadratic functions as described in [7]. Note also
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Figure 3: The two possible cases considered by the algorithmwhen adding the parabola fromq to

the lower envelope constructed so far. In (a)s > z[j] while in (b)s ≤ z[j].

that the algorithm for the quadratic cost function could easily be modified to handle any convex

discontinuity cost.

4 BP on the Grid Graph

In this section we describe how BP can be performed more efficiently for a bipartite graph while

getting essentially the same results as the standard algorithm. This is analogous to the red-black

techniques used for Gauss-Seidel relaxations. The main issue in using such a technique in the

context of BP is establishing that it computes the correct messages. Recall that a bipartite graph

is one where the nodes can be split into two sets so that every edge connects pairs of nodes in

different sets. If we color the grid graph in a checkerboard pattern every edge connects nodes of

different colors, so the grid graph is bipartite.

The main observation is that for a bipartite graph with nodesA ∪ B, when computing the

messages defined in equation (2) the messages sent from nodesin A only depend on the messages

sent from nodes inB and vice versa. In particular, if we know the messages sent from nodes inA

at iterationt, we can compute the messages from nodes inB at iterationt+1. At this point we can

compute the messages from nodes inA at iterationt + 2. Thus the messages from nodes inA at
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iterationt+2 can be computed without ever computing the messages from those nodes at iteration

t + 1. This motivates the following modification of the standard BPalgorithm for bipartite graphs.

In the new scheme messages are initialized in the standard way, but we alternate between

updating the messages fromA and the messages fromB. For concreteness let̄mt
p→q be the message

sent from nodep to nodeq at iterationt under this new message passing scheme. Whent is odd we

update the messages sent from nodes inA and keep the old values for the messages sent from nodes

in B. Whent is even we update the messages sent fromB but not those sent fromA. So we only

compute half the messages in each iteration. Moreover we canstore new messages in the same

memory space where the old messages were. This is because in each iteration the messages being

updated do not depend on each other. Using the ideas from the last paragraph it is straightforward

to show by induction that for allt > 0, if t is odd (even) then

m̄t
p→q =











mt
p→q if p ∈ A (if p ∈ B)

mt−1
p→q otherwise

.

That is, the messages̄m sent under the new scheme are nearly the same as the messagesm sent

under the standard scheme. Note that when BP converges, this alternative message passing scheme

converges to the same fixed point. This is because after convergencemt−1
p→q = mt

p→q.

5 Multi-Grid BP

One drawback of using BP for many early vision problems follows from the fact that messages are

updated locally and in parallel (at least conceptually, even though the implementation is usually

sequential). This implies that it takes many iterations forinformation to flow over large distances

in the grid graph. In this section we describe a multi-grid technique to circumvent this problem.

The basic idea is to perform BP in a coarse-to-fine manner, so that long range interactions be-

tween pixels can be captured by short paths in coarse graphs.While hierarchical BP methods have

been used in other work such as [14], our method differs in that we use the hierarchy only to initial-

ize messages at successively finer levels. This makes it possible to reduce the number of message

passing iterations at each level, without changing the overall problem structure. In contrast, for
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example in [14] the underlying graph is changed so as to replace edges between neighboring pix-

els in the image grid by edges between a pixel and its parent ina quad-tree structure. This has the

nice property of removing loops from the graph, but it also substantially changes the minimization

problem being solved. In particular, the quad-tree structure creates artifacts due to the spatially

varying neighborhood structure.

BP works by looking for fixed points of the message update rule.For max-product BP the

messages are usually initialized to zero (in log-probability space). If we could initialize the mes-

sages close to a fixed point one would expect to get convergence more rapidly. This is how the

method described here works; we run BP at one level of resolution and then use the messages at

that level in order to get estimates for the messages at the next finer level. Thus the coarse-to-fine

computation speeds up convergence of the original BP problemleaving the graph structure and the

energy function unchanged.

In developing the multi-grid approach we use a slightly different notation that makes the image

grid Γ explicit. The problem that we want to solve is to assign a label fi,j ∈ L to each location

(i, j) ∈ Γ while minimizing the energy,

E(f) =
∑

(i,j)∈Γ

Di,j(fi,j) +
∑

(i,j)∈Γ\C

V (fi,j − fi+1,j) +
∑

(i,j)∈Γ\R

V (fi,j − fi,j+1), (7)

whereC andR are respectively the last column and last row of the image grid. Equation (7) is

the same as the original energy function in (1) except that itis expressed over the locations in the

image grid rather than over a set of sites and neighbors.

Let Γ0, Γ1, . . . be a hierarchy of grids such thatΓ0 = Γ and each node inΓ` corresponds to

a block ofε × ε pixels of the original gridΓ, whereε = 2`. Intuitively the`-th level represents

labelings where the image pixels in eachε× ε block are assigned the same label. A key property of

this construction is that long range interactions can be captured by short paths in the coarse level

grids, as the paths go through blocks instead of going through pixels. Figure 4 illustrates two levels

of the structure. Now we define a hierarchy of optimization problems on the coarse grids.

Let f ` be a labeling for the sites inΓ`. The energy function at level` is given by,

E(f `) =
∑

(i,j)∈Γ`

D`
i,j(f

`
i,j) +

∑

(i,j)∈Γ`\C`

V `(f `
i,j − f `

i+1,j) +
∑

(i,j)∈Γ`\R`

V `(f `
i,j − f `

i,j+1), (8)
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Figure 4: Illustration of two levels in the multi-grid method. Each node in level̀ corresponds to a

2× 2 block of nodes in level̀ − 1.

whereD` andV ` are the data and discontinuity costs at level`. There are a number of options for

how to define the costs at each level. We take an approach motivated by finite-element methods,

where the full set of image pixels corresponding to each block is taken into consideration.

First consider the data costD`
i,j. Intuitively assigning a labelα to a block(i, j) at level` is

equivalent to assigning that label to each pixel in the block, yielding a sum of the data costs for the

pixels in that block,

D`
ij(α) =

ε−1
∑

u=0

ε−1
∑

v=0

Dεi+u,εj+v(α).

The summation of negative log costs corresponds to taking a product of probabilities, thus the data

cost for anε×ε block can be understood in terms of the probability of observing the corresponding

set of pixels given one particular label for all of them. A given block can prefer several labels,

because a cost is determined for each label of the block. For instance, if half the pixels prefer label

α and half prefer labelβ, then each of these labels will have low cost whereas other labels will

have high cost. Note that when computing the data costs it is not necessary to always sum over the

original gridΓ. Instead the calculation can be done more efficiently by summing over four data

costs at the next finer level.

Now consider the discontinuity costs at level`. There is no discontinuity cost between pixels

inside a block, as every coarse labeling assigns the same label for such pixels. For each pair of

neighboring blocks there areε pairs of pixels along their boundary. In measuring the difference

between labels for two neighboring blocks we use a finite difference approach, where the difference
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between the labels is divided by the separation between the block centers,ε. This leads to,

V `(α− β) = εV

(

α− β

ε

)

.

Theε term multiplyingV takes into account the number of neighboring pixels along the boundary

of two neighboring blocks, while theε term in the denominator insideV takes into account the

separation between blocks when measuring the difference between neighboring labels.

Different forms of discontinuity costs produce different relationships between the discontinuity

costs across the problem hierarchy. For instance, using a linear cost functionV (x) = c|x| yields a

hierarchical discontinuity cost that is independent of thelevel,

V `(x) = c|x|,

as theε terms cancel out. On the other hand using a quadratic cost function V (x) = cx2 yields a

hierarchical discontinuity cost that is weaker higher-up in the hierarchy,

V `(x) = cx2/ε,

As mentioned before, in practice it is important to use robust discontinuity costs such as the

truncated linear model in (4). We do this by truncating the discontinuity costs at each level,

V `(α− β) = min

(

εV

(

α− β

ε

)

, d

)

.

Another alternative would be to truncate the individual cost functionsV , but this would result in

the truncation factor changing based on the level in the hierarchy, due to the multiplication ofV

by ε. In practice we have found it better to truncate the costs between blocks instead.

A simple coarse-to-fine strategy using the hierarchy of problems defined by equation (8) is to

compute the BP messages for the problem at the coarsest level of the hierarchy and then use that

to initialize the messages at the next level, and so on, down to the original grid. The messages

at each level are a function of the same set of labels but represent interactions between different

sized blocks of pixels. Given a final set of messages sent by a block at level`, we initialize the

messages sent by the four blocks inside it at level`− 1 to those values. This is done separately for

the messages in the four directions: right, left, up and downin the grid.
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We have found that with this coarse-to-fine approach it is enough to run BP for a small number

of iterations at each level (between five and ten). Note that the total number of nodes in the

hierarchy is just4/3 the number of nodes at the finest level. Thus for a given numberof iterations

the total number of message updates in the hierarchical method is just1/3 more than the number

of updates in the finest level.

This hierarchical method differs in a subtle but important way from other multi-scale tech-

niques commonly used in computer vision, such as the Gaussian pyramid (e.g., [5]). Typically

such techniques have been used for finding displacements between pixels in pairs of images us-

ing differential methods. These techniques are based on reducing the resolution of the image

data, whereas ours is based on reducing only the resolution at which the labels are estimated. For

instance consider the problem of stereo. Reducing the image resolution reduces the number of

disparities that can be distinguished. By the fourth level ofsuch a hierarchy, all disparities be-

tween 0 and 16 are indistinguishable. In contrast our methoddoes not lower the image resolution

but rather aggregates data costs over larger spatial neighborhoods. Thus even at a very high level

of the hierarchy, small disparities are still evident if they are present over a large spatial region.

This difference is crucial to solving the problem at hand, because we want to be able to propagate

information about quantities such as disparities over large areas of the image in a small number

of message passing iterations. In general, we need a number of levels proportional tolog2 of the

image diameter. In contrast a Gaussian pyramid has no usefulinformation about displacements at

levels higher thanlog2 of the maximum magnitude displacement (and this value is usually much

smaller than the image diameter).

6 Sum-Product Belief Propagation

The max-product BP algorithm is motivated by finding a labeling with maximum posterior proba-

bility, or equivalently with minimum energy. Another common formulation is based on selecting

the most probable label for each pixel. There is a subtle but important difference between selecting

the most probable labeling and selecting the most probable label for each pixel individually. Se-

lecting the most probable label for each pixel minimizes thenumber of pixels with incorrect labels,
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but the overall labeling obtained in this way could have small joint posterior probability.

The sum-product BP algorithm can be used to approximate the posterior probability of each

label for each pixel. As with the max-product algorithm, thesum-product method works by passing

messages around the graph defined by the neighborhood systemN . In this section we letmt
p→q be

the message that nodep sends to a neighboring nodeq at iterationt of the sum-product algorithm,

mt
p→q(fq) =

∑

fp



Ψ(fp − fq)Φp(fp)
∏

s∈N (p)\q

mt−1
s→p(fp)



 (9)

where as aboveN (p)\q denotes the neighbors ofp other thanq. The potential functions are defined

in terms of the discontinuity costs and data costs in the energy function (1),

Φp(fp) = e−Dp(fp), Ψ(fp − fq) = e−V (fp−fq).

After T iterations a belief vector is computed for each node,

bq(fq) = Φq(fq)
∏

p∈N (q)

mT
p→q(fq).

The valuebq(fq) is an approximation to the probability that the correct label for pixel q is fq. As

was true for the max-product case, the standard implementation of this message passing algorithm

on the grid graph runs inO(nk2T ) time, wheren is the number of pixels in the image,k is the

number of possible labels for each pixel andT is the number of iterations

All of the algorithmic techniques that we discussed above for max-product also apply to the

sum-product algorithm for low-level vision problems. The bipartite graph technique in Section 4

and the multi-grid technique in Section 5 both apply directly, as neither technique depends on the

particular form of the messages. On the other hand, the techniques for linear-time message updates

depend on the form of the message and thus do not apply directly. However there is an analogous

set of techniques that we now describe.

Following the analysis for the max-product case, we can rewrite the message update rule in

equation (9) as

mt
p→q(fq) =

∑

fp

(Ψ(fp − fq)h(fp)) , (10)
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whereh(fp) = Φp(fp)
∏

mt−1
s→p(fp). In this form we see that the message update computation is a

convolution, which can be computed inO(k log k) time fork discrete values offp andfq using the

fast fourier transform (FFT).

The most commonly used compatibility functionsΨ(fp − fq) are Gaussians or mixtures of

Gaussians, and in these cases the message computation can beapproximated inO(k) time. The

method is also very fast in practice and thus preferable to the FFT not only because of the log

factor improvement but because of the low constants.

Convolution with a Gaussian can be approximated inO(k) time using the box sum method in

[13]. The technique uses the fact that a Gaussian can be accurately approximated by the sequential

convolution of a small number of box filters. The discrete convolution of a function withk sam-

ple points with a box filter can be computed inO(k) time, because each successive shift involves

only a single addition and subtraction, regardless of the width of the box. To approximate Gaus-

sian convolution the input functionh(fp) is sequentially convolved with a set of such box filters.

In practice only four convolutions are necessary to obtain agood approximation to a Gaussian,

yielding anO(k) method that is also very fast in practice.

Using the box-sum technique together with the multi-grid and bipartite graph techniques results

in anO(nk) algorithm for sum-product belief propagation on a grid withn nodes (or pixels). For

more general potential functionsΨ, the use of the FFT yields anO(nk log k) method.

7 Experiments

In this section we show some simple experimental results to illustrate the techniques described in

the paper. In these experiments we used the max-product formulation of belief propagation, or

more precisely the min-sum algorithm where costs correspond to negative log probabilities. We

considered both the problems of stereo and image restoration. In both cases we combined all

three techniques together: the linear time message updates, the bipartite graph message passing

schedule, and the multi-grid method. For the multi-grid method we used six levels in the grid

hierarchy. The test images were generally around640 × 480 pixels in size, making the coarsest

grid have just a few blocks.

19



For the stereo problem the labels correspond to different disparities that can be assigned to

pixels in the left image. We used a truncated linear cost function for the discontinuity term,

V (fp − fq) = min(|fp − fq|, d).

Using the brightness constancy assumption we expect that corresponding pixels in the left and

right images should have similar intensities. We assume that the images have been rectified so that

disparities are horizontal shifts, and use a truncated linear model for the data cost

Dp(fp) = λ min(|Il(x, y)− Ir(x− fp, y)|, τ),

whereτ is a truncation value andλ is a scaling factor. The truncation makes the data cost robust

to occlusion and artifacts that violate the brightness constancy assumption (such as specularities).

The scaling factor allows us to control the relative weighting of the data and discontinuity costs.

More involved data costs such as those in [1] could also be employed in this framework.

Figure 5 shows stereo results for the Tsukuba image pair using our algorithm with these trun-

cated linear cost functions. In this case we used 10 message update iterations per level. The

running time was about one second on a 2GHz Pentium IV. In generating stereo results we used

the following set of parameters:d = 1.7, τ = 15 andλ = 0.07. The resulting discontinuity cost

function is nearly like a Potts model, with cost zero when thelabels are the same, 1 when they

differ by one, and 1.7 otherwise. The input images were smoothed slightly, with a Gaussian of

σ = 0.7 prior to computing the data cost. This example illustrates that the use of the hierarchi-

cal method seems to produce less variation in the output thanis obtained by non-hierarchical BP

techniques (for example the background is more uniformly a single disparity).

Figure 6 shows the value of the energy that is being minimizedas a function of the number of

message update iterations for our multi-grid BP method versus the standard algorithm. Note how

our method computes a low energy solution in just a few iterations per level, while the standard

algorithm takes many more iterations to obtain a similar result. This provides some empirical

evidence that the multi-grid technique is operating as intended, allowing information to propagate

over long distances in few message update iterations.

Figure 7 gives empirical results of the speedups obtained byeach of the techniques described

in the paper. The graph compares running BP with all speedup techniques versus running BP
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Figure 5: Stereo results for the Tsukuba image pair.
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Figure 6: Energy of stereo solution as a function of the number of message update iterations.

with all but one of the techniques. In each case the running time of the algorithm is controlled by

varying the number of message update iterations. We see thateach speedup technique provides

a significant benefit. Note how the min convolution method provides an important speedup even

when the number of labels is small (16 disparities for the Tsukuba images).

Table 1 shows evaluation results of our stereo algorithm on the Middlebury stereo benchmark

[9]. These results were obtained using the parameters described above. Overall our method per-
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Figure 7: Energy of stereo solution as a function of running time. The graph compares running BP

will all speedup techniques described in the paper versus BP with all but one of the techniques.

Tsukuba Sawtooth Venus Map

Rank Error Rank Error Rank Error Rank Error

13 1.84 13 0.94 8 0.94 11 0.36

Table 1: Evaluation of the stereo algorithm on the Middlebury Stereo benchmark. The error mea-

sures the percentage of pixels with wrong disparities. Our method ranks in 12th place in the overall

evaluation.

forms comparably to the original graph cuts energy minimization approach [4, 9] that similarly

used simple data and discontinuity costs, as well as to results in [11] that compared belief propa-

gation with graph cuts. However these other methods run considerably more slowly, taking tens

or hundreds of times longer than our algorithm. It is important to stress that this comparison is

intended to demonstrate that the algorithmic techniques wehave presented here produce similar

quality results much faster than these other methods. Considerably more sophisticated data terms,

use of occlusion information, and other techniques could beincorporated in order to improve the
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accuracy of the final results.

While belief propagation and graph cuts methods are now commonly used to solve the stereo

problem, these techniques have not been widely adopted for other low level vision problems such

as image restoration. There is a long history of MRF-based formulations of image restoration

problems (e.g., see [2, 8]), however computing solutions for these problems using previous meth-

ods is quite slow, particularly when the number of possible labels for each pixel is large. Here we

consider the problem of restoring images that have 256 intensity values. We use input images that

have been corrupted with additive Gaussian noise as well as by masking out regions.

In image restoration both the labels and the input data are intensities. We used a truncated

quadratic for the discontinuity cost,

V (fp − fq) = min((fp − fq)
2, d),

and a quadratic cost for the data term,

Dp(fp) = λ min((I(p)− fp)
2),

measuring the difference between the label at a pixel and theobserved intensity at that pixel.

In principle this formulation of the restoration problem should also do a good job of filling

in missing data, by propagating information from other parts of the image. To demonstrate this

capability we show an example of an image that was distorted by adding Gaussian noise ofσ = 20,

and in which in addition a rectangular region was masked out.A modified data cost function was

used, where for a masked pixel the data cost is zero for any label. That is,Dp(fp) = 0 when pixel

p is masked. The discontinuity cost function remained unchanged. The parameters for the cost

functions were:d = 200 andλ = 0.04. In this case we used 5 message passing iterations per level

and the running time was approximately 10 seconds on a 2Ghz Pentium IV. Figure 8 shows the

results of our algorithm. Note that method does a good job of filling in missing data based on the

remaining image.
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Corrupted Restoration

Figure 8: Restoration results with an input that has missing values.

8 Summary

We have presented three algorithmic techniques for speeding up the belief propagation approach

for solving low level vision problems formulated in terms ofMarkov random fields. The main

focus of the paper is on the max-product formulation of belief propagation, and the corresponding

energy minimization problem in terms of costs that are proportional to negative log probabilities.

We also show how similar techniques apply to the sum-productformulation of belief propagation.

The use of our techniques yields results of comparable accuracy to other algorithms but hundreds

of times faster. In the case of stereo we quantified this accuracy using the Middlebury benchmark.

The method is quite straightforward to implement and in manycases should remove the need to

choose between fast local methods that have relatively low accuracy, and slow global methods that

have high accuracy.

The first of the three techniques reduces the time necessary to compute a single message update

from O(k2) to O(k), wherek is the number of possible labels for each pixel. For the max-product

formulation this technique is applicable to problems wherethe discontinuity cost for neighboring

labels is a truncated linear or truncated quadratic function of the difference between the labels. The

method is not an approximation, it uses an efficient algorithm to produce exactly the same results

as the brute force quadratic time method. For sum-product a similar technique yields anO(k log k)
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method for any discontinuity cost function based on difference between labels.

The second of the three techniques uses the fact that the gridgraph is bipartite to decrease both

the storage requirements and the running time by a factor of two. This is particularly important

because of the relatively high memory requirements of belief propagation methods, which store

multiple distributions at each pixel. The third of the techniques uses a multi-grid approach to

reduce the number of message passing iterations to a small constant, whereas the standard method

requires a number of iterations that is proportional to the diameter of the image grid.

For problems such as stereo, where the label set is relatively small, the techniques presented

here provide substantial speedup. For other problems, including image restoration, where the label

set can be quite large, these techniques can make an MRF-basedapproach tractable where it was

not before. There are several opportunities for further development of our techniques. First, a

general method for computing the min convolution quickly, analogous to the FFT for convolution,

would broaden the applicability of fast message updates to arbitrary discontinuity cost functions

based on difference between labels. Second, the lower envelope method that we have presented for

the min convolution could be extended to handle problems where the labels are embedded in some

space but do not lie on a regularly spaced grid. More generally, it would be interesting to consider

whether other sorts of structures on the set of labels enablefast methods.
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