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Abstract

Markov random field models provide a robust and unified
framework for early vision problems such as stereo, opti-
cal flow and image restoration. Inference algorithms based
on graph cuts and belief propagation yield accurate results,
but despite recent advances are often still too slow for prac-
tical use. In this paper we present new algorithmic tech-
niques that substantially improve the running time of the
belief propagation approach. One of our techniques re-
duces the complexity of the inference algorithm to be linear
rather than quadratic in the number of possible labels for
each pixel, which is important for problems such as opti-
cal flow or image restoration that have a large label set. A
second technique makes it possible to obtain good results
with a small fixed number of message passing iterations,
independent of the size of the input images. Taken together
these techniques speed up the standard algorithm by several
orders of magnitude. In practice we obtain stereo, optical
flow and image restoration algorithms that are as accurate
as other global methods (e.g., using the Middlebury stereo
benchmark) while being as fast as local techniques.

1 Introduction

Over the past few years there have been exciting advances
in the development of algorithms for solving early vision
problems such as stereo, optical flow and image restora-
tion using Markov random field (MRF) models. While the
MRF formulation of these problems yields an energy min-
imization problem that is NP hard, good approximation al-
gorithms based on graph cuts [3] and on belief propagation
[10, 8] have been developed and demonstrated for the prob-
lems of stereo and image restoration. These methods are
good both in the sense that the local minima they find are
minima over “large neighborhoods”, and in the sense that
they produce highly accurate results in practice. A compar-
ison between the two different approaches for the case of
stereo is described in [9].

Despite these substantial advances, both the graph cuts
and belief propagation approaches still require several min-
utes of processing time on today’s fastest desktop comput-

ers for solving stereo problems, and are too slow for prac-
tical use when solving optical flow and image restoration
problems. Thus one is faced with choosing between these
methods, which produce good results but are slow, and lo-
cal methods which produce substantially poorer results but
are fast. In this paper we present three new algorithmic
techniques that substantially improve the running time of
belief propagation (BP) for solving early vision problems.
Taken together these techniques speed up the standard al-
gorithm by several orders of magnitude, making its running
time competitive with local methods. In the case of stereo
we obtain results with the same degree of accuracy as stan-
dard BP or graph cuts algorithms in about one second per
image pair. The differences are even more pronounced for
the case of visual motion estimation and image restoration.
For example, for optical flow our method is competitive in
speed with simple local window-based techniques and yet
provides qualitatively better results, similar to robust regu-
larization formulations (e.g., [1]).

The general framework for the problems we consider can
be defined as follows (we use the notation from [3]). LetP
be the set of pixels in an image andL be a set of labels. The
labels correspond to quantities that we want to estimate at
each pixel, such as disparities, intensities or flow vectors. A
labelingf assigns a labelfp ∈ L to each pixelp ∈ P. We
assume that the labels should vary smoothly almost every-
where but may change dramatically at some places such as
object boundaries. The quality of a labeling is given by an
energy function,

E(f) =
∑

(p,q)∈N

V (fp, fq) +
∑

p∈P

Dp(fp), (1)

whereN are the edges in the four-connected image grid
graph. V (fp, fq) is the cost of assigning labelsfp andfq

to two neighboring pixels, and is normally referred to as the
discontinuity cost.Dp(fp) is the cost of assigning labelfp

to pixel p, which is referred to as the data cost. Finding
a labeling with minimum energy corresponds to the MAP
estimation problem for an appropriately defined MRF.
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2 Loopy Belief Propagation

We start by briefly reviewing the BP approach for perform-
ing inference on Markov random fields (e.g., see [10]). In
particular, the max-product algorithm can be used to find
an approximate minimum cost labeling of energy functions
in the form of equation (1). Normally this algorithm is de-
fined in terms of probability distributions, but an equivalent
computation can be performed with negative log probabil-
ities, where the max-product becomes a min-sum. We use
this formulation because it is less sensitive to numerical ar-
tifacts, and it uses the energy function definition more di-
rectly.

The max-product BP algorithm works by passing mes-
sages around the graph defined by the four-connected im-
age grid. Each message is a vector of dimension given by
the number of possible labels. Letmt

pq be the message that
nodep sends to a neighboring nodeq at timet. When using
negative log probabilities all entries inm0

pq are initialized
to zero, and at each iteration new messages are computed in
the following way,

mt
pq(fq) = min

fp



V (fp, fq) + Dp(fp) +
∑

s∈N (p)\q

mt−1
sp (fp)





(2)
whereN (p)\q denotes the neighbors ofp other thanq. Af-
terT iterations a belief vector is computed for each node,

bq(fq) = Dq(fq) +
∑

p∈N (q)

mT
pq(fq).

Finally, the labelf∗
q that minimizesbq(fq) individually at

each node is selected. The standard implementation of
this message passing algorithm on the grid graph runs in
O(nk2T ) time, wheren is the number of pixels in the im-
age,k is the number of possible labels for each pixel and
T is the number of iterations. Basically it takesO(k2) time
to compute each message and there areO(n) messages per
iteration.

In this paper we show three different techniques for sub-
stantially reducing the time needed to compute the mes-
sage updates in (2). First we show that the cost functions
V (fp, fq) traditionally used in early vision problems en-
able a new message to be computed inO(k) time, often via
the use of distance transform techniques. Our second re-
sult shows that for the grid graph (and any bipartite graph)
essentially the same beliefs as those defined above can be
obtained using only half as many message updates. Besides
yielding a speedup this technique also makes it possible to
compute the messages “in place”, using half as much mem-
ory as the normal algorithm. This is important because BP
has high memory requirements, storing multiple distribu-
tions at each pixel. Finally we present a multiscale algo-

rithm to perform BP in a coarse to fine manner. In our mul-
tiscale approach the number of message passing iterations,
T , can be a small constant, because long range interactions
are captured by short paths in coarse scale graphs. In con-
trast, for most problems the normal algorithm requiresT
to be large, as it bounds the distance that information can
propagate across the image. This means that in the standard
algorithmT needs to grow liken1/2 to allow for informa-
tion from one part of the image propagate everywhere else.

Combining all our techniques together we obtain an
O(nk) algorithm that is very fast in practice. Moreover our
results are as accurate as those obtained when using stan-
dard max-product BP or graph cuts algorithms to minimize
energy functions of the form in equation (1). In the case of
stereo we quantify this using the benchmark in [7].

3 Computing Messages

This section covers the first of our three techniques, which
reduces the time required to compute a single message up-
date fromO(k2) to O(k) for most low-level vision applica-
tions. We can re-write equation (2) as,

mt
pq(fq) = min

fp

(V (fp, fq) + h(fp)) , (3)

whereh(fp) = Dp(fp) +
∑

mt−1
sp (fp). The standard way

of computing the messages is to explicitly minimize overfp

for each choice offq. This takesO(k2) time, wherek is the
number of labels. However, in low-level vision problems
the costV (fp, fq) is generally based on some measure of
the differencebetween the labelsfp andfq rather than on
the particular pair of labels. In such cases the messages can
often be computed inO(k) time using techniques similar to
the ones in [5] for pictorial structures and [6] for HMMs.
This is particularly important for problems such as motion
estimation and image restoration where the number of la-
bels,k, can be in the hundreds or even thousands. These
large label sets have made current algorithms impractical
for such problems.

We start by considering a simple case. The Potts model
[3] captures the assumption that labelings should be piece-
wise constant. This model considers only the equality or
inequality of labels. For equal labels the cost is zero, while
for different labels the cost is a positive constant,

V (fp, fq) =

{

0 if fp = fq

d otherwise

With this cost function equation (3) can be expressed as,

mt
pq(fq) = min

(

h(fq),min
fp

h(fp) + d

)

.

In this form it is apparent that the minimization overfp can
be performed once, independent of the value offq. Thus the
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overall time required to compute the message isO(k). First
we computeminfp

h(fp), and then use that to compute the
message value for eachfq in constant time. Note that this
idea still applies when instead of a single constantd there
is a constantdpq for each edge in the graph. This is useful
when the result of some other process, such as edge detec-
tion or segmentation, suggests that discontinuities should be
penalized more or less for different pairs of pixels.

Another class of cost functions are based on the degree
of difference between labels. For example, in stereo and im-
age restoration the labels{0, . . . , k − 1} correspond to dif-
ferent disparities or intensity values. The cost of assigning
a pair of labels to neighboring pixels is generally based on
the amount of difference between these quantities. In order
to allow for discontinuities, as the values are not smoothly
changing everywhere, the cost function should be robust,
becoming constant as the difference becomes large. One
common such function is the truncated linear model, where
the cost increases linearly based on the distance between the
labelsfp andfq up to some level,

V (fp, fq) = min(s||fp − fq||, d), (4)

wheres is the rate of increase in the cost, andd controls
when the cost stops increasing. A similar cost function was
used in a BP approach to stereo [8], although rather than
truncating the linear cost they have a function that changes
smoothly from being almost linear near the origin to a con-
stant value as the cost increases.

We first consider the simpler problem of a pure linear
cost without truncation given byV (fp, fq) = s||fp − fq||.
Substituting into equation (3) yields,

mt
pq(fq) = min

fp

(s||fp − fq|| + h(fp)) . (5)

One can envision the labels as being embedded in a grid.
Note that this is a grid of labels and is not related to the
image grid. The grid of labels is one-dimensional in the
case of stereo or image restoration, and two-dimensional
in the case of motion. The minimization in (5) can then
be seen as the lower envelope ofk upward facing cones of
slopes rooted at(fp, h(fp)). The one-dimensional case is
illustrated in Figure 1. This lower envelope calculation is
similar to that performed in computing a distance transform
(e.g., [2]). For the distance transform the cones are placedat
height0 and occur only at selected values rather than every
grid point. Despite these differences, the standard distance
transform algorithm from [2] can be modified to compute
messages with the linear cost.

It is straightforward to verify that the following sim-
ple two-pass algorithm correctly computes the message
in equation (5) for the one-dimensional case. The two-
dimensional case is similar. First we initialize the message

0 1 2 3

Figure 1: An illustration of the lower envelope of four cones
in the case of one-dimensional labels (e.g. stereo dispar-
ity or image restoration). Each cone is rooted at location
(fp, h(fp)). The darker line indicates the lower envelope.

vector with the values ofh, and then update its entries se-
quentially. This is done “in place” so that updates affect one
another,

for fq from 1 to k − 1 :

m(fq) ← min(m(fq),m(fq − 1) + s).

The backward pass is analogous,

for fq from k − 2 to 0 :

m(fq) ← min(m(fq),m(fq + 1) + s).

Consider the example in Figure 1. The initial value ofm is
(3, 1, 4, 2). After the forward pass we have(3, 1, 2, 2), and
after the backward pass we get(2, 1, 2, 2). The key property
that allows us to use this algorithm is that the labels are
embedded in a grid, and the discontinuity cost is a linear
function of distance in the grid.

Messages with the truncated linear model in equation (4)
can now be easily be computed inO(k) time. First we com-
pute what the message would be with the linear model and
then compute the element-wise minimum of the linear cost
message and the value used for the Potts computation,

mpq(fq) = min(m(fq),min
fp

h(fp) + d).

Another useful cost function that can be computed in a
similar manner is the truncated quadratic, which grows pro-
portionally to ||fp − fq||2 up to some level and then be-
comes a constant thereafter. However we do not cover the
algorithm for the truncated quadratic case here.

4 BP on the Grid Graph

In this section we show that for a bipartite graph BP can
be performed more efficiently while getting essentially the
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same results as the standard algorithm. Recall that a bipar-
tite graph is one where the nodes can be split into two sets
so that every edge connects pairs of nodes in different sets.
If we color the grid graph in a checkerboard pattern we see
that every edge connects nodes of different colors, so the
grid graph is bipartite.

The main observation is that for a bipartite graph with
nodesA ∪ B, when computing the messages defined in
equation (2) the messages sent from nodes inA only de-
pend on the messages sent from nodes inB and vice versa.
In particular, if we know the messages sent from nodes in
A at iterationt, we can compute the messages from nodes
in B at iterationt + 1. At this point we can compute the
messages from nodes inA at iterationt + 2. Thus the mes-
sages from nodes inA at iterationt + 2 can be computed
without ever computing the messages from those nodes at
iterationt+1. This motivates the following modification of
the standard BP algorithm for bipartite graphs.

In the new scheme messages are initialized in the stan-
dard way, but we alternate between updating the messages
from A and the messages fromB. For concreteness let̄mt

pq

be the message sent from nodep to nodeq at timet under
this new message passing scheme. Whent is odd we update
the messages sent from nodes inA and keep the old values
for the messages sent from nodes inB. Whent is even we
update the messages sent fromB but not those sent from
A. So we only compute half the messages in each iteration.
Moreover we can store new messages in the same memory
space where the old messages were. This is because in each
iteration the messages being updated do not depend on each
other. Using the ideas from the last paragraph it is straight-
forward to show by induction that for allt > 0, if t is odd
(even) then

m̄t
pq =

{

mt
pq if p ∈ A (if p ∈ B)

mt−1
pq otherwise

.

That is, the messages̄m sent under the new scheme are
nearly the same as the messagesm sent under the standard
scheme. Note that when BP converges, this alternative mes-
sage passing scheme converges to the same fixed point. This
is because after convergencemt−1

pq = mt
pq.

5 Multiscale BP

One problem with BP for many early vision problems fol-
lows from the fact that messages are updated in parallel
(at least conceptually, even though the implementation is
usually sequential). This implies that it takes many itera-
tions for information to flow over large distances in the grid
graph. In this section we describe a multiscale technique
to circumvent this problem. An alternative approach to ad-
dress this issue was discussed in [9], but that method still

requires many iterations to produce good results. In con-
trast, our technique produces high quality results using a
small fixed number of iterations.

The basic idea is to perform BP in a coarse-to-fine man-
ner, so that long range interactions between pixels can be
captured by short paths in coarse graphs. While hierarchi-
cal BP methods have been used in other work such as [11],
our method differs in that we use the hierarchy only to re-
duce the number of message passing iterations and do not
change the function that is being minimized. For instance
in [11] the edges between neighboring pixels in the image
grid are replaced by edges between a pixel and its parent in a
quad-tree structure. This has the nice property of removing
loops from the graph, but it also substantially changes the
minimization problem compared with the non-hierarchical
case. In particular, the quad-tree structure creates artifacts
due to the spatially varying neighborhood structure.

Recall that BP works by looking for fixed points of the
message update rule. Usually messages are initialized to
zero (in the log-probability space). If we could somehow
initialize the messages close to a fixed point one would
expect to get convergence more rapidly. Our hierarchical
method does exactly this; we run BP at one level of reso-
lution in order to get estimates for the messages at the next
finer level. Thus we use a coarse-to-fine computation only
to speed up convergence of the original BP problem on the
grid graph, without changing the graph structure or the en-
ergy function being minimized.

In more detail, we define a set of problems arranged in a
coarse-to-fine manner. The zero-th level corresponds to the
original labeling problem we want to solve. Thei-th level
corresponds to a problem where blocks of2i × 2i pixels are
grouped together, and the resulting blocks are connected in
a grid structure. Intuitively thei-th level can represent la-
belings where all the pixels in a block are assigned the same
label. A key property of this construction is that long range
interactions can be captured by short paths in the coarse lev-
els, as the paths are through blocks instead of pixels. Fig-
ure 2 illustrates two levels of the structure.

The data costs for the coarser levels are defined in terms
of the data costs from the original problem. The cost of
assigning labelfb to a blockb is,

Db(fb) =
∑

p∈b

Dp(fb), (6)

where the sum is over pixels in the block. In practice the
block costs at leveli can be computed by summing the costs
of four blocks from leveli − 1. The summation of negative
log costs corresponds to a product of probabilities, thus the
interpretation ofDb is that of the probability of observing
the corresponding set of pixels given a particular label for
them. It is important to note that even when pixels in a
block actually prefer different labels, this is captured bythe
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level 0 level 1

Figure 2: Illustration of two levels in our coarse-to-fine
method. Each node in leveli corresponds to a block of four
nodes in leveli − 1.

fact that several values can have relatively low costs. For
instance, if half the pixels prefer labelα and half prefer label
β, then each of these labels will have low cost whereas other
labels will have high cost.

Our multiscale algorithm starts by running BP at the
coarsest level of the hierarchy with the messages initialized
to zero. AfterT iterations the resulting messages are used to
initialize the messages at the second coarsest level. AfterT
iterations at that level the resulting messages are used to ini-
tialize the next finer level, and so on. In the four-connected
grid graph each node sends messages corresponding to the
directions,right, left, up anddown. Let rt

p be the message
that nodep sends to the right at iterationt, and similarly
let ltp, ut

p anddt
p be the messages that it sends left, up and

down, respectively. Note that this is simply a different way
of naming the messages, for instance if nodep is the left
neighbor of nodeq thenrt

p = mt
pq andltq = mt

qp. Similarly
for up and down, with special care taken for boundary nodes
where there are not neighbors in all directions. Messages at
level i− 1 are initialized from the messages at leveli in the
following way. We let the initial message that a node sends
to the right to be the final message that its block sent to the
right in the coarser level. Similarly for the other directions.
To be precise,

r0
p,i−1 ← rT

p′,i l0p,i−1 ← lTp′,i

u0
p,i−1 ← uT

p′,i d0
p,i−1 ← dT

p′,i

where nodep′ at level i is the block containing nodep at
level i − 1. When updating the messages at each level, the
data costs are as defined above and the discontinuity costs
at all levels are the same as that for the original problem.
One could imagine other schemes for initializing messages
at one level of the hierarchy based on the level above, but
this simple approach produces good results in practice.

We have found that with this coarse-to-fine approach of
initializing messages, it is enough to run BP for a small

number of iterations at each level (between five and ten).
Note that the total number of nodes in a quad-tree is just
4/3 the number of nodes at the finest level. Thus for a given
number of iterations the total number of message updates in
the hierarchical method is just1/3 more than the number of
updates in the standard single level method. In the next sec-
tion we show some results of our method applied to stereo,
motion estimation and image restoration. The results pro-
duced by this multiscale algorithm sometimes seem to be
better than those we have obtained by running standard BP
at the finest level for hundreds of iterations. We believe that
in such cases the coarse to fine processing is guiding BP to
a better local minimum solution, that tends to be smoother
overall but still preserves real discontinuities.

Our hierarchical method differs in a subtle but important
way from other techniques commonly used in computer vi-
sion, such as the Gaussian pyramid (e.g., [4]). Typically
hierarchical techniques have been used so that differential
methods can be applied when there are large displacements
between pairs of images. These techniques are based on
reducing the resolution of the image data, whereas ours is
based on reducing only the resolution at which the labels are
estimated. For instance consider the problem of stereo. Re-
ducing the image resolution reduces the number of dispari-
ties that can be distinguished. By the fourth level of such a
hierarchy, all disparities between 0 and 16 are indistinguish-
able. In contrast our method, as defined by equation (6),
does not lower the image resolution but rather aggregates
data costs over larger spatial neighborhoods. Thus even at
a very high level of the hierarchy, small disparities are still
evident if they are present over a large spatial region. This
difference is crucial to solving the problem at hand, because
we want to be able to propagate information about quan-
tities such as disparities over large areas of the image in
a small number of message passing iterations. In general,
we need a number of levels proportional tolog2 of the im-
age diameter. In contrast a Gaussian pyramid has no useful
information about displacements at levels higher thanlog2

of the maximum magnitude displacement (and this value is
usually much smaller than the image diameter).

6 Experiments

For all the experiments shown here we used the trun-
cated linear model for the discontinuity costs,V (fp, fq) =
min(s||fp − fq||, d). In all cases we ran five message up-
date iterations at each scale, with a total of six scales. Note
that in each iteration we only updated half the messages, us-
ing the technique described in Section 4. The running times
reported were obtained on a 2Ghz Pentium 4 computer.

In stereo the labels correspond to different disparities.
Using the brightness constancy assumption we expect that
pixels that correspond between the left and right image
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Figure 3: Energy of stereo solution as a function of the num-
ber of message update iterations.

should have similar intensities. Thus we use the following
data cost for a pixelp = (x, y),

Dp(fp) = min(||Il(x, y) − Ir(x − fp, y)||, τ),

whereτ denotes a truncation value. The truncation is neces-
sary to make the data cost robust to occlusion and artifacts
that violate the brightness constancy assumption (such as
specularities). Figure 4 shows stereo results for the Tsukuba
image pair. The running time of our algorithm for this stereo
pair is about one second. In contrast, the standard BP algo-
rithm takes a few minutes to produce similar (but patchier)
solutions as reported in [9] and [8]. Figure 3 shows the
value of the energy we are minimizing as a function of
the number of message update iterations for our multiscale
BP method versus the standard algorithm. Note how our
method computes a low energy solution in just a few itera-
tions per level, while the standard algorithm takes hundreds
of iterations to obtain a similar result.

Table 1 shows evaluation results of our stereo algorithm
on the Middlebury stereo benchmark [7]. For all stereo ex-
periments we used a fixed set of parameterss = 10, d = 20
andτ = 20. The input images were smoothed with a Gaus-
sian filter ofσ = 0.7 before computing the data costs.

Overall our method is ranked fifth among those in the
Middlebury evaluation, making it comparable to the other
global techniques. However these other techniques all run
hundreds of times more slowly than our method. It is also
important to note that our results are based only on the
simple discontinuity and data costs defined above, whereas
other methods use additional information about intensity
boundaries and occlusions as well as more sophisticated
data costs. We used simple cost functions because our focus
here is on the algorithmic techniques, and demonstrating
that they produce similar quality results much more quickly.
Our techniques could be used with other costs as well.

In motion estimation the labels correspond to different
displacement vectors. The data costs can be defined as in
the stereo case using the brightness constancy assumption,

Dp(fp) = min(||I0(p) − I1(p + fp)||, τ).

Figure 5 shows optical flow results for a simple pair of im-
ages with a person walking and a static background. Note
that the motion discontinuities are quite sharp. The running
time of our algorithm on this image pair is about four sec-
onds. Results on a standard image pair are illustrated in Fig-
ure 6. The energy minimization formulation of the motion
estimation problem yields solutions that are regularized yet
preserve discontinuities. In particular we get both smooth
fields and sharp boundaries. For the motion experiments we
useds = 50, d = 150 andτ = 50. The input images were
smoothed with a Gaussian filter ofσ = 1.5 before comput-
ing the data costs.

Our last experiment in Figure 7 illustrates image restora-
tion results. Here labels correspond to intensity values. The
cost of assigning a particular intensity for a pixel is based
on the difference between that intensity and the observed
value,

Dp(fp) = min(||I(p) − fp||, τ).

The image restoration problem is a case where the dis-
tance transform techniques are particularly important. For
this problem there are 256 labels, and algorithms that are
quadratic in the label set would take a very long time to run.
The running time of our algorithm for the example shown
here is about three seconds. For this experiment we used
s = 1, d = 20 andτ = 100. The noisy image was obtained
by adding independent Gaussian noise withσ = 30 to each
pixel of the original input.

7 Summary and Discussion

We have presented an energy minimization method for solv-
ing MRF problems that arise in early vision based on the
max-product belief propagation technique. Our method
yields results of comparable accuracy to other algorithms
but runs hundreds of times faster. In the case of stereo we
quantified the accuracy using the Middlebury benchmark.
The method is quite straightforward to implement and in
many cases should remove the need to choose between fast
local methods that have relatively low accuracy, and slow
global methods that have high accuracy.

Our method is based on three algorithmic techniques.
The first technique uses a variant of distance transform al-
gorithms to reduce the time necessary to compute a single
message update fromO(k2) toO(k), wherek is the number
of labels. The second technique uses the fact that the grid
graph is bipartite to decrease both the storage requirements
and the running time by a factor of two. This is particularly
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Figure 4: Stereo results for the Tsukuba image pair.

Tsukuba Sawtooth Venus Map
Rank Error Rank Error Rank Error Rank Error

8 1.86 7 0.97 4 0.96 9 0.33

Table 1: Evaluation of the stereo algorithm on the Middlebury Stereo benchmark. The error measures the percentage of
pixels with wrong disparities. Our method ranks in fifth place in the overall evaluation.
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Figure 5: Optical flow results for the Lab image pair.
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Figure 6: Optical flow results for the Yosemite image pair.
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Figure 7: Restoration results for the penguin image.

important because of the relatively high memory require-
ments of belief propagation methods. The third technique
uses a hierarchical structure to reduce the number of mes-
sage passing iterations to a small constant rather than being
proportional to the diameter of the image grid graph. This
hierarchical technique differs from decimation based hierar-
chies such as the Gaussian pyramid that are commonly used
in computer vision. It is used to reduce propagation time of
messages rather than to solve lower resolution estimation
problems.

There are a number of possible extensions to the tech-
niques reported here. As mentioned in the Experiments sec-
tion, only the simplest cost functions were used here, yet
the method is applicable to a broad range of more sophisti-
cated cost functions, including the use of discontinuity costs
that vary based on evidence of a boundary or an occlusion.
Another extension would be to obtain sub-pixel accuracy
in the estimates of disparity or motion. As shown in [9] the
sum-product belief propagation approach (as opposed to the
max-product used here) can be used to obtain sub-pixel esti-
mates of stereo disparity. Two of our three algorithmic tech-
niques apply directly to the sum-product approach, namely
the bipartite grid technique and the hierarchical message
propagation technique. The distance transform technique
is no longer applicable, however there is a related technique
based on convolution that can be used (and has been applied
to pictorial structures in [5] and HMMs in [6]).
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