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Abstract ers for solving stereo problems, and are too slow for prac-
tical use when solving optical flow and image restoration

Markov random field models provide a robust and unified problems. Thus one is faced with choosing between these
framework for early vision problems such as stereo, opti- methods, which produce good results but are slow, and lo-
cal flow and image restoration. Inference algorithms based cal methods which produce substantially poorer results but
on graph cuts and belief propagation yield accurate results are fast. In this paper we present three new algorithmic
but despite recent advances are often still too slow for prac techniques that substantially improve the running time of
tical use. In this paper we present new algorithmic tech- belief propagation (BP) for solving early vision problems.
nigues that substantially improve the running time of the Taken together these techniques speed up the standard al-
belief propagation approach. One of our techniques re- gorithm by several orders of magnitude, making its running
duces the complexity of the inference algorithm to be linear time competitive with local methods. In the case of stereo
rather than quadratic in the number of possible labels for we obtain results with the same degree of accuracy as stan-
each pixel, which is important for problems such as opti- dard BP or graph cuts algorithms in about one second per
cal flow or image restoration that have a large label set. A image pair. The differences are even more pronounced for
second technique makes it possible to obtain good resultsthe case of visual motion estimation and image restoration.
with a small fixed number of message passing iterations, For example, for optical flow our method is competitive in
independent of the size of the input images. Taken togethespeed with simple local window-based techniques and yet
these techniques speed up the standard algorithm by severaprovides qualitatively better results, similar to robuesgyu-
orders of magnitude. In practice we obtain stereo, optical larization formulations (e.g., [1]).
flow and image restoration algorithms that are as accurate )
as other global methods (e.g., using the Middlebury stereo The general framework for the problems we consider can

benchmark) while being as fast as local techniques. be defined as follows (we use the notation from [3]). Pet
be the set of pixels in an image adde a set of labels. The

labels correspond to quantities that we want to estimate at
1 Introduction each pixel, such as disparities, intensities or flow vectars
labeling f assigns a labef, € £ to each pixep € P. We
Over the past few years there have been exciting advance@SSume that the labels should vary smoothly almost every-
in the development of algorithms for solving early vision Where but may change dramatically at some places such as
problems such as stereo, optical flow and image restora-0bject boundaries. The quality of a labeling is given by an
tion using Markov random field (MRF) models. While the €nergy function,
MRF formulation of these problems yields an energy min-
imization problem that is NP hard, good approximation al-
gorithms based on graph cuts [3] and on belief propagation E(f) = Z V(fp, fq) + Z D, (fp), 1)
[10, 8] have been developed and demonstrated for the prob- (p,a)EN pEP
lems of stereo and image restoration. These methods are
good both in the sense that the local minima they find are
minima over “large neighborhoods”, and in the sense thatwhere N are the edges in the four-connected image grid
they produce highly accurate results in practice. A compar-graph. V(f,, f,) is the cost of assigning labeJ$ and f,
ison between the two different approaches for the case ofto two neighboring pixels, and is normally referred to as the
stereo is described in [9]. discontinuity cost.D,( f,,) is the cost of assigning labg],
Despite these substantial advances, both the graph cutso pixel p, which is referred to as the data cost. Finding
and belief propagation approaches still require sevena mi  a labeling with minimum energy corresponds to the MAP
utes of processing time on today’s fastest desktop comput-estimation problem for an appropriately defined MRF.



2 Loopy Belief Propagation rithm to perform BP in a coarse to fine manner. In our mul-
tiscale approach the number of message passing iterations,

We start by briefly reviewing the BP approach for perform- 7, can be a small constant, because long range interactions

ing inference on Markov random fields (e.g., see [10]). In are captured by short paths in coarse scale graphs. In con-

particular, the max-product algorithm can be used to find trast, for most problems the normal algorithm requifes

an approximate minimum cost labeling of energy functions to be large, as it bounds the distance that information can

in the form of equation (1). Normally this algorithm is de- propagate across the image. This means that in the standard

fined in terms of probability distributions, but an equivaetle  algorithm7" needs to grow like:'/? to allow for informa-

computation can be performed with negative log probabil- tion from one part of the image propagate everywhere else.

ities, where the max-product becomes a min-sum. We use Combining all our techniques together we obtain an

this formulation because it is less sensitive to numerical a O(nk) algorithm that is very fast in practice. Moreover our

tifacts, and it uses the energy function definition more di- results are as accurate as those obtained when using stan-

rectly. dard max-product BP or graph cuts algorithms to minimize
The max-product BP algorithm works by passing mes- energy functions of the form in equation (1). In the case of

sages around the graph defined by the four-connected imstereo we quantify this using the benchmark in [7].

age grid. Each message is a vector of dimension given by

the number of possible labels. Let,, be the message that .

nodep sends to a neighboring noget timet. When using 3 Computing Messages

negative log probabilities all entries 'mgq are initialized

to zero, and at each iteration new messages are computed ifhis section covers the first of our three techniques, which
the following way. reduces the time required to compute a single message up-

date fromO(k?) to O(k) for most low-level vision applica-
tions. We can re-write equation (2) as,

t _ : t—1
pgfa) = i | Vo £2) 4 Dylf) + 3 5y (5o) o (fa) = min (V(fp f) +0(F), @)
sEN(p)\q o

whereh(f,) = Dy(f,) + >_mi, " (f,). The standard way
of computing the messages is to explicitly minimize ofgr

for each choice of,. This take)(k?) time, wherek is the

b - D n T . number of Iabels.. However, in low-level vision problems
alfa) olfa) + D mpy(fy) the costV(f,, f,) is generally based on some measure of

the differencebetween the labelg, and f, rather than on

Finally, the labelf;" that minimizesh,(f,) individually at the particular pair of labels. In such cases the messages can
each node is selected. The standard implementation ofoften be computed it)(k) time using techniques similar to
this message passing algorithm on the grid graph runs inthe ones in [5] for pictorial structures and [6] for HMMs.
O(nk>2T) time, wheren is the number of pixels in the im-  This is particularly important for problems such as motion
age, k is the number of possible labels for each pixel and estimation and image restoration where the number of la-
T is the number of iterations. Basically it tak€gk?2) time bels, k, can be in the hundreds or even thousands. These
to compute each message and there(zne) messages per large label sets have made current algorithms impractical
iteration. for such problems.

In this paper we show three different techniques for sub- We start by considering a simple case. The Potts model
stantially reducing the time needed to compute the mes-[3] captures the assumption that labelings should be piece-
sage updates in (2). First we show that the cost functionsWise constant. This model considers only the equality or
V(f,, f,) traditionally used in early vision problems en- inquality of labels. For qual Iabe[g the cost is zero, avhil
able a new message to be compute®iit) time, often via for different labels the cost is a positive constant,
the use of distance transform techniques. Our second re- 0 if f, =/,
sult shows that for the grid graph (and any bipartite graph) Vi (fp fog) = { 4 otherwise
essentially the same beliefs as those defined above can be
obtained using only half as many message updates. Beside¥/ith this cost function equation (3) can be expressed as,
yielding a speedup this technigue also makes it possible to
compute the messages “in place”, using half as much mem- m;q(fq) = min (h(fq), n}in h(fp) + d) )
ory as the normal algorithm. This is important because BP P
has high memory requirements, storing multiple distribu- In this form it is apparent that the minimization ovgrcan
tions at each pixel. Finally we present a multiscale algo- be performed once, independent of the valug,ofThus the

whereN (p)\¢ denotes the neighbors pfother than;. Af-
terT iterations a belief vector is computed for each node,

peEN(q)



overall time required to compute the messag@(is). First

we computeming, h(f,), and then use that to compute the
message value for eagfy in constant time. Note that this
idea still applies when instead of a single constatitere

is a constantl,, for each edge in the graph. This is useful
when the result of some other process, such as edge detec-
tion or segmentation, suggests that discontinuities shioail
penalized more or less for different pairs of pixels.

Another class of cost functions are based on the degree
of difference between labels. For example, in stereo and im- | ‘ ; |
age restoration the labe{§, ...,k — 1} correspond to dif- 0 1 2 3
ferent disparities or intensity values. The cost of assigni
a pair of labels to neighboring pixels is generally based on Figure 1: An illustration of the lower envelope of four cones
the amount of difference between these quantities. In orderin the case of one-dimensional labels (e.g. stereo dispar-
to allow for discontinuities, as the values are not smoothly ity or image restoration). Each cone is rooted at location
changing everywhere, the cost function should be robust,(f,, h(f,)). The darker line indicates the lower envelope.
becoming constant as the difference becomes large. One
common such function is the truncated linear model, where . ) )
the cost increases linearly based on the distance between thvector with the values ok, and then update its entries se-

labelsf, and f, up to some level, guentially. This is done “in place” so that updates affea on
another,
V (£, fq) = min(sl|f, = foll. d), @ for f, from 1tk 1:
wheres is the rate of increase in the cost, addontrols m(fq) < min(m(fy), m(fq — 1) + ).

when the cost stops increasing. A similar cost function was
used in a BP approach to stereo [8], although rather than
truncating the linear cost they have a function that changes for f,fromk —2to0:
smoothly from being almost linear near the origin to a con- ;
. m min(m ,m + 1)+ s).
stant value as the cost increases. (fa) = min(m(fe), m(fg +1) + )
We first consider the simpler problem of a pure linear Consider the example in Figure 1. The initial valuerofs

The backward pass is analogous,

cost without truncation given by ( f,,. f,) = s||fp — fqll- (3,1,4,2). After the forward pass we hay8, 1, 2,2), and
Substituting into equation (3) yields, after the backward pass we @et 1, 2, 2). The key property
that allows us to use this algorithm is that the labels are
my,(fq) = fin(stp — foll + h(fp)) - 5) embedded in a grid, and the discontinuity cost is a linear

function of distance in the grid.

One can envision the labels as being embedded in a grid. Messages with the truncated linear model in equation (4)

Note that this is a grid of labels and is not related to the can now be easily be computedﬁhik).tlme. F.'rSt we com-
image grid. The grid of labels is one-dimensional in the pute what the message would be with the linear model and

then compute the element-wise minimum of the linear cost

case of stereo or image restoration, and two-dimensional ,
in the case of motion. The minimization in (5) can then message and the value used for the Pots computation,

be seen as the lower envelopekotﬂpwar_d facir_1g cones 01_‘ Mipg(fo) = min(m(f,), min h(f,) + d).
slopes rooted at(f,, h(f,)). The one-dimensional case is o
illustrated in Figure 1. This lower envelope calculation is
similar to that performed in computing a distance transform
(e.g., [2]). For the distance transform the cones are plated
height0 and occur only at selected values rather than every
grid point. Despite these differences, the standard distan
transform algorithm from [2] can be modified to compute
messages with the linear cost.

It is straightforward to verify that the following sim- 4 BP on the Grid Gra_ph
ple two-pass algorithm correctly computes the message
in equation (5) for the one-dimensional case. The two- In this section we show that for a bipartite graph BP can
dimensional case is similar. First we initialize the messag be performed more efficiently while getting essentially the

Another useful cost function that can be computed in a
similar manner is the truncated quadratic, which grows pro-
portionally to || f, — f,||* up to some level and then be-
comes a constant thereafter. However we do not cover the
algorithm for the truncated quadratic case here.



same results as the standard algorithm. Recall that a biparrequires many iterations to produce good results. In con-
tite graph is one where the nodes can be split into two setstrast, our technique produces high quality results using a
so that every edge connects pairs of nodes in different setssmall fixed number of iterations.
If we color the grid graph in a checkerboard pattern we see  The basic idea is to perform BP in a coarse-to-fine man-
that every edge connects nodes of different colors, so thener, so that long range interactions between pixels can be
grid graph is bipartite. captured by short paths in coarse graphs. While hierarchi-

The main observation is that for a bipartite graph with cal BP methods have been used in other work such as [11],
nodesA U B, when computing the messages defined in our method differs in that we use the hierarchy only to re-
equation (2) the messages sent from noded ionly de- duce the number of message passing iterations and do not
pend on the messages sent from nodeB8 Bnd vice versa.  change the function that is being minimized. For instance
In particular, if we know the messages sent from nodes inin [11] the edges between neighboring pixels in the image
A at iterationt, we can compute the messages from nodesgrid are replaced by edges between a pixel and its parentin a
in B at iterationt + 1. At this point we can compute the quad-tree structure. This has the nice property of removing
messages from nodes ihat iterationt + 2. Thus the mes-  loops from the graph, but it also substantially changes the
sages from nodes iA at iterationt + 2 can be computed  minimization problem compared with the non-hierarchical
without ever computing the messages from those nodes atase. In particular, the quad-tree structure createseidif
iterationt + 1. This motivates the following modification of  due to the spatially varying neighborhood structure.
the standard BP algorithm for bipartite graphs. Recall that BP works by looking for fixed points of the

In the new scheme messages are initialized in the stanimessage update rule. Usually messages are initialized to
dard way, but we alternate between updating the messagesgero (in the log-probability space). If we could somehow
from A and the messages froB For concreteness Iﬁt;q initialize the messages close to a fixed point one would
be the message sent from nqgd& nodeq at timet under expect to get convergence more rapidly. Our hierarchical
this new message passing scheme. Whsiodd we update  method does exactly this; we run BP at one level of reso-
the messages sent from nodesdimnd keep the old values lution in order to get estimates for the messages at the next
for the messages sent from nodesinWhent is even we  finer level. Thus we use a coarse-to-fine computation only
update the messages sent fr@rbut not those sent from to speed up convergence of the original BP problem on the
A. So we only compute half the messages in each iteration.grid graph, without changing the graph structure or the en-
Moreover we can store new messages in the same memorgrgy function being minimized.
space where the old messages were. This is because in each In more detail, we define a set of problems arranged in a
iteration the messages being updated do not depend on eaatparse-to-fine manner. The zero-th level corresponds to the
other. Using the ideas from the last paragraph it is straight original labeling problem we want to solve. Theh level
forward to show by induction that for all > 0, if ¢ is odd corresponds to a problem where blockQbk 2¢ pixels are

(even) then grouped together, and the resulting blocks are connected in
a grid structure. Intuitively the-th level can represent la-
At mi, ifpe A(ifpe B) belings where all the pixels in a block are assigned the same
Pq m;;l otherwise ’ label. A key property of this construction is that long range

interactions can be captured by short paths in the coarse lev
That is, the messages sent under the new scheme are els, as the paths are through blocks instead of pixels. Fig-
nearly the same as the messagesent under the standard ure 2 illustrates two levels of the structure.
scheme. Note that when BP converges, this alternative mes- The data costs for the coarser levels are defined in terms
sage passing scheme converges to the same fixed point. Thisf the data costs from the original problem. The cost of

is because after convergeneg, ' = my,,. assigning labef; to a blockb s,
i Dy(fo) = D> Dp(fp), (6)
5 Multiscale BP b(fo) % b(fo)

One problem with BP for many early vision problems fol- where the sum is over pixels in the block. In practice the
lows from the fact that messages are updated in parallelblock costs at level can be computed by summing the costs
(at least conceptually, even though the implementation isof four blocks from level — 1. The summation of negative
usually sequential). This implies that it takes many itera- log costs corresponds to a product of probabilities, thas th
tions for information to flow over large distances in the grid interpretation ofD, is that of the probability of observing
graph. In this section we describe a multiscale techniquethe corresponding set of pixels given a particular label for
to circumvent this problem. An alternative approach to ad- them. It is important to note that even when pixels in a
dress this issue was discussed in [9], but that method stillblock actually prefer different labels, this is capturectiy



[ [ ] [ number of iterations at each level (between five and ten).
. Note that the total number of nodes in a quad-tree is just
4/3 the number of nodes at the finest level. Thus for a given
| | | | . ) :
number of iterations the total number of message updates in
the hierarchical method is jusf'3 more than the number of

u u u u updates in the standard single level method. In the next sec-
] tion we show some results of our method applied to stereo,
[ | [ | [ ] [ | motion estimation and image restoration. The results pro-

duced by this multiscale algorithm sometimes seem to be
better than those we have obtained by running standard BP
at the finest level for hundreds of iterations. We believé tha
in such cases the coarse to fine processing is guiding BP to
a better local minimum solution, that tends to be smoother
overall but still preserves real discontinuities.

Our hierarchical method differs in a subtle but important
way from other techniques commonly used in computer vi-
fact that several values can have relatively low costs. Forsion, such as the Gaussian pyramid (e.g., [4]). Typically
instance, if half the pixels prefer labeland half prefer label  hierarchical techniques have been used so that diffetentia
3, then each of these labels will have low cost whereas othermethods can be applied when there are large displacements
labels will have high cost. between pairs of images. These techniques are based on

Our multiscale algorithm starts by running BP at the reducing the resolution of the image data, whereas ours is
coarsest level of the hierarchy with the messages iniédliz  based on reducing only the resolution at which the labels are
to zero. AfterT iterations the resulting messages are used toestimated. For instance consider the problem of stereo. Re-
initialize the messages at the second coarsest level. After ducing the image resolution reduces the number of dispari-
iterations at that level the resulting messages are use@toi ties that can be distinguished. By the fourth level of such a
tialize the next finer level, and so on. In the four-connected hierarchy, all disparities between 0 and 16 are indististgui
grid graph each node sends messages corresponding to thale. In contrast our method, as defined by equation (6),
directionsright, left, up anddown Let ], be the message does not lower the image resolution but rather aggregates
that nodep sends to the right at iteration and similarly data costs over larger spatial neighborhoods. Thus even at
let l;, u; and d; be the messages that it sends left, up and a very high level of the hierarchy, small disparities ar# sti
down, respectively. Note that this is simply a different way evident if they are present over a large spatial region. This
of naming the messages, for instance if ngdis the left difference is crucial to solving the problem at hand, beeaus
neighbor of nodg thenr), = m;, andl} = m/ . Similarly we want to be able to propagate information about quan-
for up and down, with special care taken for boundary nodestities such as disparities over large areas of the image in
where there are not neighbors in all directions. Messages at small number of message passing iterations. In general,
leveli — 1 are initialized from the messages at levéi the we need a number of levels proportionalldg, of the im-
following way. We let the initial message that a node sends age diameter. In contrast a Gaussian pyramid has no useful
to the right to be the final message that its block sent to theinformation about displacements at levels higher thap
right in the coarser level. Similarly for the other directso of the maximum magnitude displacement (and this value is

level O level 1

Figure 2: lllustration of two levels in our coarse-to-fine
method. Each node in levéktorresponds to a block of four
nodes in level — 1.

To be precise, usually much smaller than the image diameter).
0 T 0 T
Tp,i—l — rp’.,i lp,i—l — lp’,z' .
6 EXxperiments
Ug,z‘—l — u;,i d?),i_1 — dZ/,i

For all the experiments shown here we used the trun-
where node’ at leveli is the block containing nodg at cated linear model for the discontinuity costs,f,, f;) =
leveli — 1. When updating the messages at each level, themin(s||f, — f;||,d). In all cases we ran five message up-
data costs are as defined above and the discontinuity costdate iterations at each scale, with a total of six scalese Not
at all levels are the same as that for the original problem. thatin each iteration we only updated half the messages, us-
One could imagine other schemes for initializing messagesing the technique described in Section 4. The running times
at one level of the hierarchy based on the level above, butreported were obtained on a 2Ghz Pentium 4 computer.
this simple approach produces good results in practice. In stereo the labels correspond to different disparities.
We have found that with this coarse-to-fine approach of Using the brightness constancy assumption we expect that
initializing messages, it is enough to run BP for a small pixels that correspond between the left and right image



In motion estimation the labels correspond to different

Energy of the tsukuba image . . .
displacement vectors. The data costs can be defined as in

500000 ———— _ _ )
a mstiglnsggg 77777777777 the stereo case using the brightness constancy assumption,
450000 | | 1 )
Dp(fp) = min([[lo(p) = L (p + fp)l], 7)-
400000 | | 1

.‘ Figure 5 shows optical flow results for a simple pair of im-
350000 -, 1 ages with a person walking and a static background. Note
| that the motion discontinuities are quite sharp. The rugnin

Energy

500000 time of our algorithm on this image pair is about four sec-
250000 f e 1 onds. Results on a standard image pair are illustrated in Fig
e ure 6. The energy minimization formulation of the motion
2000000 20 40 60 80 100 120 140 160 180 200 estimation problem yields solutions that are regularizetd y
Number of iterations preserve discontinuities. In particular we get both smooth

) ] ) fields and sharp boundaries. For the motion experiments we
Figure 3: Energy of stereo solution as a function of the num- seds = 50, ¢ = 150 and+ = 50. The input images were
ber of message update iterations. smoothed with a Gaussian filter of= 1.5 before comput-
ing the data costs.

Our last experiment in Figure 7 illustrates image restora-
tion results. Here labels correspond to intensity valuég T
cost of assigning a particular intensity for a pixel is based
Dy (f,) = min(||I(z,y) — I.(z — f,, )|, 7), \(:QIJZe difference between that intensity and the observed

wherer denotes a truncation value. The truncation is neces- Dy(fp) = min(||1(p) — fpll, 7).

sary to make the data cost robust to occlusion and artifactsyy,o image restoration problem is a case where the dis-
that violate the brightness constancy assumption (SUCh @§4nce transform techniques are particularly important. Fo
specularities). Figure 4 shows stereo results for the Tisalku  4ig problem there are 256 labels, and algorithms that are
image pair. The running time of our algorithm for this stereo quadratic in the label set would take a very long time to run.
pair is about one second. In contrast, the standard BP algo,o running time of our algorithm for the example shown
rithm takes a few minutes to produce similar (but patchier) pere is about three seconds. For this experiment we used
solutions as reported in [9] and [8]. Figure 3 shows the  _ 1, d = 20 andr = 100. The noisy image was obtained

value of the energy we are minimizing as a function of 1 54ding independent Gaussian noise with: 30 to each
the number of message update iterations for our multlscalepixe| of the original input.

BP method versus the standard algorithm. Note how our
method computes a low energy solution in just a few itera-
tions per level, while the standard algorithm takes hursired 7 Summary and Discussion
of iterations to obtain a similar result.
Table 1 shows evaluation results of our stereo algorithm We have presented an energy minimization method for solv-
on the Middlebury stereo benchmark [7]. For all stereo ex- ing MRF problems that arise in early vision based on the

should have similar intensities. Thus we use the following
data cost for a pixeh = (z,y),

periments we used a fixed set of parameters10, d = 20 max-product belief propagation technique. Our method
andr = 20. The input images were smoothed with a Gaus- yields results of comparable accuracy to other algorithms
sian filter ofc = 0.7 before computing the data costs. but runs hundreds of times faster. In the case of stereo we

Overall our method is ranked fifth among those in the quantified the accuracy using the Middlebury benchmark.
Middlebury evaluation, making it comparable to the other The method is quite straightforward to implement and in
global techniques. However these other techniques all runmany cases should remove the need to choose between fast
hundreds of times more slowly than our method. It is also local methods that have relatively low accuracy, and slow
important to note that our results are based only on theglobal methods that have high accuracy.
simple discontinuity and data costs defined above, whereas Our method is based on three algorithmic techniques.
other methods use additional information about intensity The first technique uses a variant of distance transform al-
boundaries and occlusions as well as more sophisticatedyorithms to reduce the time necessary to compute a single
data costs. We used simple cost functions because our focumessage update frod(k?) to O(k), wherek is the number
here is on the algorithmic techniques, and demonstratingof labels. The second technique uses the fact that the grid
that they produce similar quality results much more quickly graph is bipartite to decrease both the storage requirement
Our techniques could be used with other costs as well. and the running time by a factor of two. This is particularly



Figure 4: Stereo results for the Tsukuba image pair.
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Figure 5: Optical flow results for the Lab image pair.

Figure 6: Optical flow results for the Yosemite image pair.
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Table 1: Evaluation of the stereo algorithm on the MiddlgbB8tereo benchmark. The error measures the percentage of
pixels with wrong disparities. Our method ranks in fifth @an the overall evaluation.
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Restoration

Figure 7: Restoration results for the penguin image.

important because of the relatively high memory require- [2]
ments of belief propagation methods. The third technique
uses a hierarchical structure to reduce the number of mes-
sage passing iterations to a small constant rather thag bein [3]
proportional to the diameter of the image grid graph. This
hierarchical technique differs from decimation baseddrier

chies such as the Gaussian pyramid that are commonly used

in computer vision. It is used to reduce propagation time of [4]
messages rather than to solve lower resolution estimation
problems.

There are a number of possible extensions to the tech- [5]
nigues reported here. As mentioned in the Experiments sec-
tion, only the simplest cost functions were used here, yet
the method is applicable to a broad range of more sophisti- [6]
cated cost functions, including the use of discontinuitytso
that vary based on evidence of a boundary or an occlusion.
Another extension would be to obtain sub-pixel accuracy
in the estimates of disparity or motion. As shown in [9] the  [7]
sum-product belief propagation approach (as opposed to the
max-product used here) can be used to obtain sub-pixel esti-
mates of stereo disparity. Two of our three algorithmic tech  [g]
niques apply directly to the sum-product approach, namely
the bipartite grid technique and the hierarchical message
propagation technique. The distance transform technique [g]
is no longer applicable, however there is a related teckniqu
based on convolution that can be used (and has been applied
to pictorial structures in [5] and HMMs in [6]).

(10]
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