Reinforcement Learning
Part 2

Dipendra Misra
Cornell University
dkm@cs.cornell.edu

https://dipendramisra.wordpress.com/
From previous tutorial

Reinforcement Learning

- Exploration
- No supervision
- Agent-Reward-Environment

Policy

- MDP
- Consistency Equation
- Optimal Policy
- Optimality Condition

Bellman Backup Operator

Iterative Solution
Interaction with the environment

Action

Reward

+ New environment

Scalar reward

Setup from Lenz et. al. 2014
Rollout

\[\langle s_1, a_1, r_1, s_2, a_2, r_2, s_3, \ldots a_n, r_n, s_n \rangle \]
Setup

\[S_t \xrightarrow{\mathbf{a}_t} S_{t+1} \]

\[S_t \xrightarrow{r_t} S_{t+1} \]

e.g., 1$
Policy

\[\pi(s, a) = 0.9 \]
From previous tutorial

An optimal policy \(\pi^* \) exists such that:

\[
V^{\pi^*}(s) \geq V^\pi(s) \quad \forall s \in S, \pi
\]

Bellman’s self-consistency equation

\[
V^\pi(s) = \sum_{a} \pi(s, a) \sum_{s'} P_{s,s'} \left\{ R_{s,s'}^a + \gamma V^\pi(s') \right\}
\]

Bellman’s optimality condition

\[
V^*(s) = \max_{a} \sum_{s'} P_{s,s'} \left\{ R_{s,s'}^a + \gamma V^*(s') \right\}
\]
Solving MDP

To solve an MDP (or RL problem) is to find an optimal policy
Dynamic Programming Solution

Initialize V^0 randomly

\[
\text{do } \\
V^{t+1} = TV^t \\
\text{until } \|V^{t+1} - V^t\|_\infty > \epsilon \\
\text{return } V^{t+1}
\]

\[
T : V \rightarrow V \\
(TV)(s) = \max_a \sum_{s'} P^a_{s,s'} \{R^a_{s,s'} + \gamma V(s')\}
\]
From previous tutorial

Reinforcement Learning

- Exploration
- No supervision
- Agent-Reward-Environment

Policy

- Consistency Equation
- Optimal Policy
- Optimality Condition

Bellman Backup Operator

Iterative Solution
Dynamic Programming Solution

Initialize V^0 randomly

\[
\text{do} \quad V^{t+1} = TV^t
\]

\[
\text{until} \quad \|V^{t+1} - V^t\|_\infty > \epsilon
\]

\[
\text{return} \quad V^{t+1}
\]

Problem?

\[
T : V \to V
\]

\[
(TV)(s) = \max_a \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma V(s') \}
\]
Learning from rollouts

Step 1: gather experience using a behaviour policy

Step 2: update value functions of an estimation policy
On-Policy and Off-Policy

On policy methods

- behaviour and estimation policy are same

Off policy methods

- behaviour and estimation policy can be different

Advantage?
Behaviour Policy

• Encourage exploration of search space

• Epsilon-greedy policy

$$\pi_\epsilon(s, a) = \begin{cases}
1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|} & \text{if } a = \arg \max_{a'} Q(s, a') \\
\frac{\epsilon}{|\mathcal{A}(s)|} & \text{otherwise}
\end{cases}$$
Temporal Difference Method

\[Q^\pi(s, a) = E_\pi \left[\sum_{t \geq 0} \gamma^t r_{t+1} | s_1 = s, a_1 = a \right] \]

\[= E_\pi \left[r_1 + \gamma \left(\sum_{t \geq 0} \gamma^t r_{t+2} \right) | s_1 = s, a_1 = a \right] \]

\[= E_\pi \left[r_1 + \gamma Q^\pi(s_2, a_2) | s_1 = s, a_1 = a \right] \]

\[Q^\pi(s, a) = (1 - \alpha) Q^\pi(s, a) + \alpha (r_1 + \gamma Q^\pi(s_2, a_2)) \]

combination of monte carlo and dynamic programming
Initialize $Q(s,a)$ arbitrarily
Repeat (for each episode):
 Initialize s
 Choose a from s using policy derived from Q (e.g., ε-greedy)
Repeat (for each step of episode):
 Take action a, observe r, s'
 Choose a' from s' using policy derived from Q (e.g., ε-greedy)
 $Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma Q(s',a') - Q(s,a)]$
 $s \leftarrow s'$; $a \leftarrow a'$;
until s is terminal

Converges w.p.1 to an optimal policy as long as all state-action pairs are visited infinitely many times and epsilon eventually decays to 0 i.e. policy becomes greedy.

On or off?
Q-Learning

Initialize \(Q(s, a) \) arbitrarily
Repeat (for each episode):
 Initialize \(s \)
 Repeat (for each step of episode):
 Choose \(a \) from \(s \) using policy derived from \(Q \) (e.g., \(\varepsilon \)-greedy)
 Take action \(a \), observe \(r, s' \)
 \(Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] \)
 \(s \leftarrow s' \);
until \(s \) is terminal

Resemblance to Bellman optimality condition

\[
Q^*(s, a) = \sum_{s'} P_{s,s'}^a \left\{ R_{s,s'}^a + \gamma \max_{a'} Q^*(s', a') \right\}
\]

For proof of convergence see:
Summary

• SARSA and Q-Learning

• On vs Off policy. Epsilon greedy policy.
What we learned

Solving Reinforcement Learning

Dynamic Programming Soln.

Bellman Backup Operator

Iterative Solution

Temporal Difference Learning

SARSA

Q-Learning
Another Approach

- So far policy is implicitly defined using value functions

- Can’t we directly work with policies
Policy Gradient Methods

- Parameterized policy $\pi_{\theta}(s, a)$

- Optimization $\max_{\theta} J(\theta)$ where $J(\theta) = E_{\pi_{\theta}(s,a)} \left[\sum_{t} \gamma^t r_{t+1} \right]$

- Gradient descent. Smoothly evolving policy.

- Obtaining gradient estimator?

On or off?
Finite Difference Method

\[
\frac{\partial J(\theta)}{\partial \theta_i} \approx \frac{J(\theta + \epsilon e_i) - J(\theta - \epsilon e_i)}{2\epsilon}
\]

\[
\theta_i^{t+1} \leftarrow \theta_i^t + \alpha \frac{\partial J(\theta^t)}{\partial \theta_i^t}
\]

- Easy to implement and works for all policies.
Likelihood Ratio Trick

\[
J(\theta) = E_{t \sim p_\theta(t')} [R(t)] = \sum_{t} R(t)p_\theta(t)
\]

\[
\max_{\theta} J(\theta)
\]

\[
\nabla_{\theta} J(\theta) = \sum_{t} R(t)\nabla_{\theta} p_\theta(t)
\]

\[
= \sum_{t} R(t)p_\theta(t) \nabla_{\theta} \log p_\theta(t)
\]

\[
= E_{t \sim p_\theta(t')} [R(t)\nabla_{\theta} \log p_\theta(t)]
\]

\[
= E_{t \sim p_\theta(t')} [(R(t) - b)\nabla_{\theta} \log p_\theta(t)] \quad \forall b
\]
Reinforce (Multi Step)

Policy gradient theorem:

\[\nabla_{\theta} J(\theta) = E_{\pi_{\theta}(s,a)} \left[\nabla_{\theta} \log \pi_{\theta}(s,a) Q^{\pi_{\theta}(s,a)}(s,a) \right] \]

initialize \(\theta \)

for each episode \(\langle s_1, a_1, r_1, s_2, a_2, r_2, s_3, \ldots a_n, r_n, s_n \rangle \sim \pi_{\theta}(s_1, a_1) \)

for \(t \in \{1, n\} \)

\[v_t \sim Q^{\pi}(s_t, a_t) \]

\[\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t \]

return \(\theta \)

content from David Silver
Summary

• SARSA and Q-Learning

• On vs Off policy. Epsilon greedy policy.

• Policy Gradient Methods
What we learned

Solving Reinforcement Learning

Dynamic Programming Soln.

Bellman Backup Operator

Iterative Solution

Temporal Difference Learning

SARSA Q-Learning

Policy Gradient Methods

Finite difference method Reinforce
What we did not cover

• Generalized policy iteration
• Simple monte carlo solution
• TD(\(\lambda\)) algorithm
• Convergence of Q-learning, SARSA
• Actor-critic method

...
Application
Playing Atari game with Deep RL

State is given by raw images.

Learn a good policy for a given game.
Playing Atari game with Deep RL

\[Q(s, a, \theta) \approx Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} P^a_{s,s'} \{ R^a_{s,s'} + \gamma \max_{a'} Q^*(s', a') \} \]

\[= R^a_{s,s'} + \gamma \max_{a'} Q^*(s', a') \]

Conv + ReLU

Conv + ReLU

FC + ReLU

FC + ReLU

FC

FC + ReLU

Conv + ReLU

Conv + ReLU
Playing Atari game with Deep RL

\[Q^*(s, a) = R_{s,s'}^a + \gamma \max_{a'} Q^*(s', a') \]

\[Q(s, a, \theta) \rightarrow R_{s,s'}^a + \gamma \max_{a'} Q(s', a', \theta) \]

\[\min(Q(s, a, \theta^t) - R_{s,s'}^a - \gamma \max_{a'} Q(s', a', \theta^{t-1}))^2 \]

nothing deep about their RL
Playing Atari game with Deep RL

Algorithm 1 Deep Q-learning with Experience Replay

- Initialize replay memory \(\mathcal{D} \) to capacity \(N \)
- Initialize action-value function \(Q \) with random weights
- \For{episode = 1, \(M \)}
 - Initialise sequence \(s_1 = \{x_1\} \) and preprocessed sequenced \(\phi_1 = \phi(s_1) \)
 - \For{\(t = 1, \ T \)}
 - With probability \(\epsilon \) select a random action \(a_t \)
 - otherwise select \(a_t = \max_a Q^*(\phi(s_t), a; \theta) \)
 - Execute action \(a_t \) in emulator and observe reward \(r_t \) and image \(x_{t+1} \)
 - Set \(s_{t+1} = s_t, a_t, x_{t+1} \) and preprocess \(\phi_{t+1} = \phi(s_{t+1}) \)
 - Store transition \((\phi_t, a_t, r_t, \phi_{t+1}) \) in \(\mathcal{D} \)
 - Sample random minibatch of transitions \((\phi_j, a_j, r_j, \phi_{j+1}) \) from \(\mathcal{D} \)
 - Set \(y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases} \)
 - Perform a gradient descent step on \((y_j - Q(\phi_j, a_j; \theta))^2 \) according to equation 3
 - end \For{\(t \)}
 - end \For{episode}

Playing Atari game with Deep RL

Algorithm 1 Deep Q-learning with Experience Replay

- Initialize replay memory \mathcal{D} to capacity N
- Initialize action-value function Q with random weights

for episode = 1, M do

 Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$

for $t = 1, T$ do

 With probability ϵ select a random action a_t
 otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$

 Execute action a_t in emulator and observe reward r_t and image x_{t+1}

 Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

 Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}

 Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}

 Set $y_j = \begin{cases}
 r_j & \text{for terminal } \phi_{j+1} \\
 r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1}
 \end{cases}$

 Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

end for

why replay memory?
break correlation between consecutive datapoints
Playing Atari game with Deep RL

Figure 2: The two plots on the left show average reward per episode on Breakout and Seaquest respectively during training. The statistics were computed by running an ϵ-greedy policy with $\epsilon = 0.05$ for 10000 steps. The two plots on the right show the average maximum predicted action-value of a held out set of states on Breakout and Seaquest respectively. One epoch corresponds to 50000 minibatch weight updates or roughly 30 minutes of training time.
Why Deep RL is hard

\[Q^*(s, a) = \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma \max_{a'} Q^*(s', a') \} \]

- Recursive equation blows as difference between \(s, s' \) is small
- Too many iterations required for convergence. 10 million frames for Atari game.
- It may take too long to see a high reward action.
Learning to Search

• It may take too long to see a high reward.
• Ease the learning using a reference policy
• Exploiting a reference policy to search space better
Summary

• SARSA and Q-Learning

• On vs Off policy. Epsilon greedy policy.

• Policy Gradient Methods

• Playing Atari game using deep reinforcement learning

• Why deep RL is hard. Learning to search.