Toward mobile behavioral biomarkers

Deborah Estrin and many collaborators
UCLA, openmhealth.org, iSTC, ...
destrin@cs.ucla.edu

Biomarker:
A specific physical trait used to measure or indicate the effects or progress of a disease, illness, or condition.
Goal: optimize treatment using mobile behavioral biomarkers

Participant self-care
How is this new medication working for me?

Clinical care
How is the patient responding to new care plan?

open mHealth

patient apps: personal-evidence and clinically-informed tools to engage and support healthy behaviors

‘relevant-time’ clinical dashboards: summarizing and correlating symptoms, side effects, meds, and health behaviors

Research evidence
What works best in different contexts?

mhealth-enabled n-of-1 studies: systematic, individualized studies of treatment alternatives

mHealth evidence-base: which mHealth techniques are effective, and for whom

w/ Ida Sim, Open mHealth
mHealth applications as source of data

Patient/Participant

Self Report
- symptoms
- side effects
- behaviors

Internet

End-User Dashboards

Passive Monitoring
- GPS, Wifi, Accel
- sms, calls, calendar, social media
- actigraphy, mobility, comm

Apps/activities
- interventions
- games, tools, assessments
Transform continuous passive traces into behavioral biomarkers

Low-level state classification: create time series of states after data cleaning
- sedentary/ambulatory
- at home/work
- interacting with app, people...
- ‘standard’ ML techniques

Passive Monitoring
- GPS, Wifi, Accel
- sms, calls, calendar, social media
- actigraphy, mobility, comm

w/ Ramanathan, Longstaff, Alquaddoomi, et al
Transform continuous passive traces into behavioral biomarkers

Low-level state classification:
create time series of states after data cleaning
• sedentary/ambulatory
• at home/work
• interacting with app, people...
• ‘standard’ ML techniques

Mid-level semantic features:
calculate domain-specific features
• daily minutes ambulatory, sedentary durations, walking speed
• sleep times, social interactions
• time spent before leaving house, “diameter of day”...

Passive Monitoring
GPS, Wifi, Accel
sms, calls, calendar, social media
actigraphy, mobility, comm

w/ Ramanathan, Longstaff, Alquaddoomi, et al
Transform continuous passive traces into behavioral biomarkers

- **Low-level state classification:**
 - create time series of states after data cleaning
 - sedentary/ambulatory
 - at home/work
 - interacting with app, people...
 - ‘standard’ ML techniques

- **Mid-level semantic features:**
 - calculate domain-specific features
 - daily minutes ambulatory, sedentary durations, walking speed
 - sleep times, social interactions
 - time spent before leaving house, “diameter of day”...

- **Higher level individual markers:**
 - fuse features, metrics into ‘marker’
 - assessing persons state, variations
 - fatigue, pain, depression, insomnia, cognitive function...
 - in-person variance, patterns, correlations

- **Passive Monitoring**
 - GPS, Wifi, Accel
 - sms, calls, calendar, social media
 - actigraphy, mobility, comm

w/ Ramanathan, Longstaff, Alquaddoomi, et al
Transform continuous passive traces into behavioral biomarkers

Low-level state classification:
create time series of states after data cleaning
- sedentary/ambulatory
- at home/work
- interacting with app, people...
- ‘standard’ ML techniques

Mid-level semantic features:
calculate domain-specific features
- daily minutes ambulatory,
sedentary durations, walking speed
- sleep times, social interactions
- time spent before leaving house,
“diameter of day”...

Higher level individual markers:
fuse features, metrics into ‘marker’
assessing persons state, variations
- fatigue, pain, depression,
insomnia, cognitive function...
- in-person variance, patterns,
correlations

Estimate personally- and clinically-useful information:
- modular layered processing
- ranging from simple functions to machine learning classifiers

w/ Ramanathan, Longstaff, Alquaddoomi, et al

Passive Monitoring

GPS, Wifi, Accel
sms, calls, calendar, social media

actigraphy, mobility, comm
Transform continuous passive traces into behavioral biomarkers

Low-level state classification: create time series of states after data cleaning
- sedentary/ambulatory
- at home/work
- interacting with app, people...
- ‘standard’ ML techniques

Mid-level semantic features: calculate domain-specific features
- daily minutes ambulatory, sedentary durations, walking speed
- sleep times, social interactions
- time spent before leaving house, “diameter of day”...

Higher level individual markers: fuse features, metrics into ‘marker’ assessing persons state, variations
- fatigue, pain, depression, insomnia, cognitive function...
- in-person variance, patterns, correlations

Estimate personally- and clinically-useful information:
- modular layered processing
- ranging from simple functions to machine learning classifiers

from phones to fitbits...
from chronic pain to depression...
from mobility to text...

w/ Ramanathan, Longstaff, Alquaddoomi, et al
Example biomarkers for chronic pain medication management

Minutes ambulatory per day

![Graph showing minutes ambulatory per day](image)

Walking periods > 6 minutes per day

![Graph showing walking periods > 6 minutes per day](image)

Hours spent at home per day

![Graph showing hours spent at home per day](image)

Time left home (AM)

![Graph showing time left home (AM)](image)
rephrasing ‘does it work?’

(Complexes of) Exposures
sertraline

strength of association?
individual

Outcome
depression

population
rephrasing ‘does it work?’

(Complexes of)
Exposures
sertraline

strength of association?
individual

Outcome
depression

population

‘does it work on average?’ (RCT)

sertraline

Depression (PHQ-9)

100

50

venlafaxine

Depression (PHQ-9)

population

50
rephrasing ‘does it work?’

(Complexes of) Exposures

sertraline

strength of association?

individual

Outcome

depression

population

‘does it work on average?’ (RCT)

sertraline

Depression (PHQ-9)

100

50

venlafaxine

Depression (PHQ-9)

50

population

N-of-1 study design: ‘does it work for Mr. Jones?’

Effexor

PHQ-9

Zoloft

Effexor

Zoloft

Effexor

Sim, Kravitz

Broad potential use of activity based behavioral biomarkers
Broad potential use of activity based behavioral biomarkers

By patient

• to inform behavior change apps/social media
• in quantified self/PEA exercises around “what causes this change”, is this helping, self-administered medication dosage
• to drive just in time tool apps like PTSD coach
• as context stream for adaptive UI
Broad potential use of activity based behavioral biomarkers

By the clinician
- to inform treatment progress
- detect relapse/recovery, etc;
- clinical research evidence (trials, outcomes, ...)

By patient
- to inform behavior change apps/social media
- in quantified self/PEA exercises around “what causes this change”, is this helping, self-administered medication dosage
- to drive just in time tool apps like PTSD coach
- as context stream for adaptive UI
Broad potential use of activity based behavioral biomarkers

By the clinician
- to inform treatment progress
- detect relapse/recovery, etc;
- clinical research evidence (trials, outcomes, ...)

By patient
- to inform behavior change apps/social media
- in quantified self/PEA exercises around “what causes this change”, is this helping, self-administered medication dosage
- to drive just in time tool apps like PTSD coach
- as context stream for adaptive UI

Across a range of use cases
- depression, adhd, insomnia, trauma
- chronic pain, IBD, asthma, migraines
- integrative medicine effectiveness
- behavior change for physical activity, substance use
Role in personalized medicine?

discovery (phenotype data) and delivery (data for patient and clinician)
Role in personalized medicine?
discovery (phenotype data) and delivery (data for patient and clinician)

Technology side is ready to start

• Hardware is available and already in peoples hands and budgets.
• Software has been prototyped, and its not *rocket science*.
• Algorithms can iteratively (and rapidly) improve with use
Role in personalized medicine?
discovery (phenotype data) and delivery (data for patient and clinician)

Technology side is ready to start
- Hardware is available and already in peoples hands and budgets.
- Software has been prototyped, and its not *rocket science*.
- Algorithms can iteratively (and rapidly) improve with use

Methodology is nascent at best
Role in personalized medicine?
discovery (phenotype data) and delivery (data for patient and clinician)

Technology side is ready to start

• Hardware is available and already in peoples hands and budgets.
• Software has been prototyped, and its not rocket science.
• Algorithms can iteratively (and rapidly) improve with use

Methodology is nascent at best

• what to measure and when
 - symptoms, side effects, factors, triggers
 - indicators of disease state, adherence, health behaviors…
 - map to available on-phone and off-phone devices/streams
Role in personalized medicine?
discovery (phenotype data) and delivery (data for patient and clinician)

Technology side is ready to start
- Hardware is available and already in peoples hands and budgets.
- Software has been prototyped, and its not *rocket science*.
- Algorithms can iteratively (and rapidly) improve with use

Methodology is nascent at best
- what to measure and when
 - symptoms, side effects, factors, triggers
 - indicators of disease state, adherence, health behaviors...
 - map to available on-phone and off-phone devices/streams
- how to make sense of the data
 - extract relevant features from noisy bursty time series full of biases
 - fuse different features into health markers
Role in personalized medicine?
discovery (phenotype data) and delivery (data for patient and clinician)

Technology side is ready to start

- Hardware is available and already in peoples hands and budgets.
- Software has been prototyped, and its not *rocket science*.
- Algorithms can iteratively (and rapidly) improve with use

Methodology is nascent at best

- what to measure and when
 - symptoms, side effects, factors, triggers
 - indicators of disease state, adherence, health behaviors...
 - map to available on-phone and off-phone devices/streams
- how to make sense of the data
 - extract relevant features from noisy bursty time series full of biases
 - fuse different features into health markers
- how to use the data
 - look for each individuals relevant patterns/correlations/etc)
 - collect evidence on effectiveness (clinical-outcomes and behavior)
Open architecture and community modularity, shared architecture, analytics-driven iterative design

non-profit with seed funding from RWJF (project of Tides center, incubator)

Estrin, Sim, et al

http://openmhealth.org
Open architecture and community modularity, shared architecture, analytics-driven iterative design

- Development of behavioral biomarkers requires co-innovation by health and technology experts

non-profit with seed funding from RWJF (project of Tides center, incubator)

Estrin, Sim, et al

http://openmhealth.org
Open architecture and community modularity, shared architecture, analytics-driven iterative design

- Development of behavioral biomarkers requires co-innovation by health and technology experts

- Open, modular architecture allows innovators to focus on market offerings while increasing the validity, robustness and efficiency of shared components and methods

Estrin, Sim, et al

http://openmhealth.org

non-profit with seed funding from RWJF (project of Tides center, incubator)
Open architecture and community modularity, shared architecture, analytics-driven iterative design

- Development of behavioral biomarkers requires co-innovation by health and technology experts

- Open, modular architecture allows innovators to focus on market offerings while increasing the validity, robustness and efficiency of shared components and methods

- no one (group/research or commercial entity) can do it all well, now and over time

Estrin, Sim, et al

http://openmhealth.org

non-profit with seed funding from RWJF (project of Tides center, incubator)