Hyperproperties

Michael Clarkson and Fred B. Schneider
Cornell University

IEEE Symposium on Computer Security Foundations
June 23, 2008
Security Policies Today

- Confidentiality
- Integrity
- Availability

Formalize and verify any security policy? ✗
Program Correctness ca. 1970s

- Partial correctness
- Total correctness
- Mutual exclusion
- Deadlock freedom
- Starvation freedom

???
Safety and Liveness

Intuition [Lamport 1977]:

- **Safety**: “Nothing bad happens”
 - Partial correctness, mutual exclusion, access control
- **Liveness**: “Something good happens”
 - Termination, guaranteed service
Safety and Liveness

Formalization:

- **Property**: Set of (infinite) execution traces
 - Trace \(t \) satisfies property \(P \) iff \(t \in P \)
 - Satisfaction depends on the trace alone
 - System modeled as set of traces

- **Safety property** [Lamport 1985]:
 - Bad thing = trace prefix

- **Liveness property** [Alpern and Schneider 1985]:
 - Good thing = trace suffix
Alpern and Schneider (1985, 1987):

- **Theorem.** \((\forall P: P = \text{Safe}(P) \cap \text{Live}(P))\)
- **Theorem.** Safety proved by invariance.
- **Theorem.** Liveness proved by well-foundedness.
- **Theorem.** Topological characterization:

 Safety = closed sets

 Liveness = dense sets

Formalize and verify any property?
Back to Security Policies

Formalize and verify any property? ✓
Formalize and verify any security policy? ✗

Security policy ≠ Property
Security Policies are not Properties

Noninterference: Commands of high users have no effect on observations of low users
- Satisfaction depends on *pairs* of traces
 ⇒ not a property

Average response time: Average time, over all executions, to respond to request has given bound
- Satisfaction depends on *all* traces of system
 ⇒ not a property

Any policy that stipulates relations among traces is not a property

⇒ Need satisfaction to depend on *sets* of traces
Hyperproperties

A hyperproperty is a set of properties

A system S satisfies a hyperproperty H iff $S \in H$

- A hyperproperty specifies exactly the allowed sets of traces
Hyperproperties

Security policies are hyperproperties!

- **Information flow**: Noninterference, relational noninterference, generalized noninterference, observational determinism, self-bisimilarity, probabilistic noninterference, quantitative leakage
- **Service-level agreements**: Average response time, time service factor, percentage uptime
- ...
Hyperproperties

- Safety and liveness?
- Verification?
Safety

Safety proscribes “bad things”

- A bad thing is **finitely observable** and **irremediable**
- S is a safety property [L85] iff
 \[
 (\forall t \notin S : (\exists b \leq t : (\forall u \geq b : u \notin S)))
 \]
 b is a finite trace

- S is a **safety hyperproperty** (“hypersafety”) iff
 \[
 (\forall T \notin S : (\exists B \leq T : (\forall U \geq B : U \notin S)))
 \]
 B is a finite set of finite traces
Prefix Ordering

An **observation** is a finite set of finite traces

Intuition: Observer sees a set of partial executions

\[M \leq T \text{ (is a **prefix** of) iff:} \]

- \(M \) is an observation, and
- \(\forall m \in M : (\exists t \in T : (m \leq t)) \)

Intuition: If observer watched longer, \(M \) could become \(T \)
Safety Hyperproperties

- **Noninterference** [Goguen and Meseguer 1982]
 - Bad thing is a pair of traces where removing high commands does change low observations

- **Observational determinism** [Roscoe 1995]
 - Bad thing is a pair of traces that cause system to look nondeterministic to low observer
Liveness

Liveness prescribes “good things”

- A good thing is always possible and possibly infinite
- \(L \) is a liveness property [AS85] iff
 \[
 (\forall t : (\exists g \geq t : g \in L))
 \]
 \(t \) is a finite trace

- \(L \) is a **liveness hyperproperty** (“hyperliveness”) iff
 \[
 (\forall T : (\exists G \geq T : G \in L))
 \]
 \(T \) is a finite set of finite traces
Liveness Hyperproperties

- **Average response time**
 - Good thing is that average time is low enough

- **Generalized noninterference** [McCullough 1987]
 - Good thing is additional interleavings of traces
Possibilistic Information Flow

PIF policies can be expressed with closure operators [Mantel 2000]

Theorem. *All PIF policies are hyperliveness.*
Relating Properties and Hyperproperties

Can **lift** property T to hyperproperty $[T]$

- Satisfaction is equivalent iff $[T] = P(T)$

- **Theorem.** S is safety $\Rightarrow [S]$ is hypersafety.
- **Theorem.** L is liveness $\Rightarrow [L]$ is hyperliveness.
- **Theorem.** Hypersafety = closed sets.
- **Theorem.** Hyperliveness = dense sets.
Safety and Liveness is a Basis

Theorem. \(\forall H : H = \text{Safe}(H) \cap \text{Live}(H) \)
Probabilistic Hyperproperties

To incorporate probability:

- Assume probability on state transitions
- Construct probability measure on traces [Halpern 2003]
- Use measure to express hyperproperties

We’ve expressed:

- Probabilistic noninterference
- Quantitative leakage
- Channel capacity
Beyond Hyperproperties?

Add another level of sets?

Theorem. *Set of hyperproperties ≡ hyperproperty*

→ Hyperproperties are expressively complete

 (for systems and trace semantics)

By analogy to logic:

- Adding levels of sets = increasing the order of logic
 - Properties = first-order predicates on traces
 - Hyperproperties = second-order
- Higher-order logic reducible to second-order
Stepping Back…

- Safety and liveness? ✓
- Verification?
Verification of Information Flow

- Barthe, D’Argenio, and Rezk (2004):
 - Reduce noninterference to a property with *self-composition*

- Terauchi and Aiken (2005):
 - Generalize to verify any *2-safety property*
 - “Property that can be refuted by observing two finite traces”

Methodology:
- Transform system to reduce 2-safety to safety property
- Verify safety property
k-Safety Hyperproperties

A k-safety hyperproperty is a safety hyperproperty in which the bad thing never has more than k traces

$$(\forall T \notin S : (\exists B \leq T : |B| \leq k \land (\forall U \geq B : B \notin S)))$$

Examples:

- **1-hypersafety**: the lifted safety properties
- **2-hypersafety**: Terauchi and Aiken’s 2-safety properties
- **k-hypersafety**: $SEC(k) = \text{“System can’t, across all runs, output all shares of a } k\text{-secret sharing”}$
- **Not k-hypersafety for any k**: $SEC = \bigcup_k SEC(k)$
Verifying κ-Hypersafety

Theorem. Any k-safety hyperproperty of S is equivalent to a safety property of S^k.

⇒ Yields methodology for k-hypersafety
 ● Incomplete for hypersafety
Logic and Verification

Full second-order logic cannot be effectively and completely axiomatized

But fragments can be...
- Might suffice for security policies
Refinement Revisited

Stepwise refinement:
- Development methodology for properties
- Uses refinement of nondeterminism
 - Satisfaction of properties is refinement-closed
 - But not of hyperproperties, in general

Theorem. All safety hyperproperties are refinement-closed.

- Refinement applicable to hypersafety
 - But not all hyperproperties (necessarily)
Summary

We developed a theory of hyperproperties

- Parallels theory of properties
 - Safety, liveness (basis)
 - Verification (for k-hypersafety)
 - Refinement (hypersafety)

- Expressive completeness

Currently verifying proofs using Isabelle/HOL with Denis Bueno (Cornell, Sandia)

Enables classification of security policies...
Charting the landscape…
All hyperproperties (HP)
Safety hyperproperties (SHP)
Liveness hyperproperties (LHP)
Lifted safety properties [SP]
Lifted liveness properties [LP]
Access control (\(AC\)) is safety
Guaranteed service (\(GS\)) is liveness
Goguen and Meseguer’s noninterference (GMNI) is 2-hypersafety
2-safety hyperproperties (2SHP)
Secret sharing (SEC) is not k-hypersafety for any k
Observational determinism (\(OD\)) is 2-hypersafety.
Generalized noninterference (\(GNI\)) is hyperliveness.
Probabilistic noninterference (\(PNI\)) is neither.
Possibilistic information flow (PIF) is hyperliveness
Revisiting the CIA Landscape

○ **Confidentiality**
 - Information flow is not a property
 - Is a hyperproperty (HS: OD; HL: GNI)

○ **Integrity**
 - Safety property?
 - Dual to confidentiality, thus hyperproperty?

○ **Availability**
 - Sometimes a property (max. response time)
 - Sometimes a hyperproperty (HS: % uptime, HL: avg. resp. time)

→ CIA seems orthogonal to hyperproperties
Hyperproperties

Michael Clarkson and Fred B. Schneider
Cornell University

IEEE Symposium on Computer Security Foundations
June 23, 2008
Extra Slides
Noninterference is not a Property

- Suppose NI is a property
 - System T (for true) should satisfy NI
 - $L := H$ refines T
 - And shouldn’t satisfy NI
 - But since satisfaction closed under refinement,
 - $L := H$ should satisfy NI

- Contradiction!

- Therefore, NI is not a property
Information Flow Hyperproperties

- **Noninterference**: The set of all properties T where for each trace $t \in T$, there exists another trace $u \in T$, such that u contains no high commands, but yields the same low observation as t.

- **Generalized noninterference**: The set of all properties T where for any traces t and $u \in T$, there exists a trace $v \in T$, such that v is an interleaving of the high inputs from t and the low events from u.

- **Observational determinism**: The set of all properties T where for all traces t and $u \in T$, and for all $j \in \mathbb{N}$, if t and u have the same first $j-1$ low events, then they have equivalent jth low events.

- **Self-bisimilarity**: The set of all properties T where T represents a labeled transition system S, and for all low-equivalent initial memories m_1 and m_2, the execution of S starting from m_1 is bisimilar to the execution of S starting from m_2.
Topological Characterization

Theorem. Our topology is equivalent to the lower Vietoris construction applied to the Plotkin topology.
Powerdomains

- We use the *lower (Hoare) powerdomain*
 - Our \leq is the Hoare order
 - Lower Vietoris = lower powerdomain [Smyth 1983]

- Other powerdomains?
 - Change the notion of “observable”
 - Upper: Observations can disappear
 - Convex: Can observe impossibility of production of state
 - But might be useful on other semantic domains
Future Work

- Verification methodology
 - Hyperliveness?
 - Axiomatizable fragments of second order logic?
- CIA: Express with hyperproperties?
- Hyperproperties in other semantic domains