Review

- Features learned: functions, tuples, lists, let expressions, options, records, datatypes, case expressions, type synonyms, pattern matching, exceptions, type variables, higher-order and anonymous functions, infix operators, type constructors, currying, lexical scope, closures

- Today:
 - Type inference

Kinds of typing

- Static vs. dynamic:
 - **Static**: type checking done by analysis of program
 - Compiler/interpreter verifies that type errors cannot occur
 - e.g., C, C++, FF, Haskell, Java, SML
 - **Dynamic**: type checking done by run-time
 - Run-time detects type errors and reports them. Usually requires keeping extra tag information for each value in memory.
 - e.g., JavaScript, LISP, Matlab, PHP, Python, Ruby
 - In practice, this can be a spectrum
 - e.g., `instanceof` in Java: some checking done at compile time, rest of checking done at run time

Kinds of typing

- Strong vs. weak:
 - **Strong**: type of a value is independent of how it’s used
 - Can’t pass a `string` where an `int` expected, etc.
 - e.g., SML, Haskell, Python, Java, Ruby
 - **Weak**: type of value is dependent on how it’s used
 - If a `string` is used where an `int` expected, it gets converted automatically to an `int`
 - e.g., C, C++, Perl, Python
 - Again, this can become a spectrum
 - e.g., Java + `operator converts objects to strings`
 - Troll alert: strong vs. weak is debated a lot; probably not helpful to degenerate into such debates

Typing quadrant

<table>
<thead>
<tr>
<th></th>
<th>Weak</th>
<th>Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>C, C++</td>
<td>SML, Java, Haskell</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Perl, Assembly</td>
<td>Ruby, Python, Scheme</td>
</tr>
</tbody>
</table>

Kinds of typing

- Manifest vs. implicit:
 - **Manifest**: type information supplied in source code
 - e.g., C, C++, Java
 - **Implicit**: type information not supplied in source code
 - Implementation 1: Dynamic typing
 - e.g., LISP, Python, Ruby, PHP
 - Implementation 2: Type inference
 - e.g., Haskell, SML
 - Tradeoff: ease of implementation vs. run-time performance
 - Again, in practice this becomes a spectrum
 - e.g., SML sometimes needs type annotations for records
 - e.g., no reasonable language requires you to write to provide the type of `5` in `x:int = 5`
Type inference

- Goal is to reconstruct types of expressions based on known types of some symbols that occur in expressions
 - Type checkers have to do some of this anyway
 - Difference between inference and checking is really a matter of degree
- Best known in functional languages
 - Especially useful in managing the types of higher-order functions
 - But starting to appear in mainstream languages
 - e.g., C++11:
 - `auto x = e;` declares variable `x`, initialized with expression `e`, and type of `x` is automatically inferred
- Invented by Robin Milner for SML (though other people also deserve credit; see the notes)

Is type inference hard?

- The algorithm used in ML is quite clever yet
 - relatively easy to implement and
 - relatively easy to explain
- Difficulty of doing type inference for any particular language is often hard to determine
 - Not particularly related to strong vs. weak or how permissive type system is
 - Type system that accepts everything is easy to infer types for
 - Type system that accepts nothing is easy to infer types for
 - Designing type inference for a particular language can be quite hard
 - Difficult to balance:
 - expressivity of type system
 - possibility of inferring all types without requiring annotations

HM type inference

- Overview:
 - Determine types of bindings in order
 - Use types of earlier binding to infer later
 - (which is why you can’t use later bindings in file)
 - For each binding, solve constraints to determine type
 - e.g., if inferencer sees `x+1`, concludes `x` must have type `int`
 - First step is to assign preliminary types to all subexpressions in binding
 - Second step is to generate constraints from those preliminary types
 - Third step is to solve system of constraints for type of binding
- Let’s do examples before seeing precise description of algorithm…

Example 1

Recall: `5+x` is really syntactic sugar for `+(5,x)`, because `+` is infix

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>R</td>
</tr>
<tr>
<td>+(5,x)</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>int</td>
</tr>
<tr>
<td>x</td>
<td>U</td>
</tr>
</tbody>
</table>

R,S,T,U are type variables used during inference
Example 1

- fun g(x) = 5 + x;
val g = fn : int -> int

Step 2: Generate constraints

Function binding constraint: in binding fun \(f \) \(x = e \), if the type of \(f \) is \(A \), the type of \(x \) is \(B \), and the type of \(e \) is \(C \), then \(A = B \rightarrow C \)

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>(R)</td>
</tr>
<tr>
<td>(x)</td>
<td>(U)</td>
</tr>
</tbody>
</table>

Constraint: \(R = U \rightarrow S \)

Step 3: Solve constraints

- \(R = U \rightarrow S \)
- \(int \times int \rightarrow int = T \rightarrow S \)
- \(T = int \times U \)

Example 1

- fun g(x) = 5 + x;
val g = fn : int -> int

Step 2: Generate constraints

Function application constraint: if the type of \(f \) is \(A \), the type of \(e \) is \(B \), and the type of \(f(e) \) is \(C \), then \(A = B \rightarrow C \)

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f) (e)</td>
<td>(T)</td>
</tr>
<tr>
<td>(5)</td>
<td>(S)</td>
</tr>
<tr>
<td>(x)</td>
<td>(U)</td>
</tr>
</tbody>
</table>

Constraint: \(int \times int \rightarrow int = T \rightarrow S \)

Example 1

- fun g(x) = 5 + x;
val g = fn : int -> int

Step 2: Generate constraints

All constraints:

- \(R = int \times int \rightarrow int = T \rightarrow S \)
- \(T = int \times U \)

Example 1

- fun g(x) = 5 + x;
val g = fn : int -> int

Step 3: Solve constraints

- \(R = U \rightarrow S \)
- \(int \times int \rightarrow int = int \times U \rightarrow S \)
- \(T = int \times U \)
Example 1

Step 3: Solve constraints

\[-\text{fun } g(x) = 5 + x;\]
\[-\text{val } g = \text{fn } : \text{int} \rightarrow \text{int}\]

\[
R = U \rightarrow S
\]
\[
\text{int} \times \text{int} \rightarrow \text{int} = \text{int} \times U \rightarrow S
\]
\[
\text{int} = U
\]
\[
\text{int} = S
\]
Example 1

```plaintext
- fun g(x) = 5 + x;
val g = fn : int -> int
```

Step 3: Solve constraints

<table>
<thead>
<tr>
<th>Subexpression</th>
<th>Preliminary type</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>R</td>
</tr>
</tbody>
</table>

Done: type of g is int -> int

Example 2

```plaintext
- fun apply(f,x) = f x;
val apply = fn : ('a -> 'b) * 'a -> 'b
```

Step 1: Assign preliminary types to all subexpressions

Step 2: Generate constraints

- Function binding constraint: in binding `fun f x = a`, if the type of `f` is `A`, the type of `x` is `B`, and the type of `a` is `C`, then `A = B --> C`
- Function application constraint: if the type of `f` is `A`, the type of `a` is `B`, and the type of `(f a)` is `C`, then `A = B --> C`

Example 3

```plaintext
- apply(g,3);
val it = 8 : int
```

Step 1: Assign preliminary types to all subexpressions

Step 2: Generate constraints

- Type of `apply` is polymorphic
- So essentially the same as Example 3

Example 4

```plaintext
- apply(not,false);
val it = true : bool
```

Algorithm for constraint generation

- Let’s make the algorithm for generating constraints precise
- Formalize and generalize what we just did in the examples
- HM does type checking and constraint generation at the same time
 - We’ll decouple and just look at constraint generation
 - Not hard to mix the two since you understand them independently
 - Either way, you end up with the same types
- For simplicity, we’ll focus on just a very small subset of SML...
Lambda calculus

• The lambda calculus is a subset of ML that contains only three kinds of expressions:

 - No integers, no pattern matching, etc.
 - The “assembly language” of functional programming
 - Doing type inference for all of ML is conceptually no different than doing it for the lambda calculus

<table>
<thead>
<tr>
<th>x</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1 e2</td>
<td>Function application</td>
</tr>
<tr>
<td>fn x => e</td>
<td>Anonymous functions</td>
</tr>
</tbody>
</table>

Constraint generation

Step 1:

- Assign a unique type variable (e.g., R, S, T, …)
 - one to each variable \(x \) bound by a function in \(e \)
 - one to every subexpression \(e' \) in \(e \)
- Define two functions that return type variables
 - \(D(x) \) returns the type variable assigned to variable \(x \) bound by a function in \(e \)
 - \(U(e') \) returns the type variable assigned to subexpression \(e' \)

Step 2: Generate constraints:

- \(U(x) = D(x) \) for each occurrence of a variable \(x \) as a subexpression
- \(U(e1) \cdot U(e2) \rightarrow U(e1 \cdot e2) \) for each occurrence of a subexpression \(e1 \cdot e2 \)
 - This is really just the “function application constraint” we saw earlier
- \(U(fn x => e) = D(x) \rightarrow U(e) \) for each occurrence of a subexpression \(fn x => e \)
 - This is really just the “function binding constraint” we saw earlier

Return those constraints as output of algorithm

Constraint generation

Step 1:

Example:

- Input: \(fn x => (fn y => x) \)
- Type variables:
 - \(R = D(x) \) for binding \(x \) in \(fn x \)
 - \(S = D(y) \) for binding \(y \) in \(fn y \)
 - \(T \rightarrow U(fn x => (fn y => x)) \) for occurrence of \(fn x \) in \(fn y \)
 - \(X \rightarrow U(fn y => x) \) for occurrence of \(fn y \) in \(x \)
 - \(Y \rightarrow U(x) \) for occurrence of \(x \)

Step 2:

Example (continued):

- \(fn y => x \) occurs as subexpression, so generate constraint \(U(fn y \rightarrow x) = D(x) \)
 - From step 1, have \(U(x) = Y \) and \(D(x) = R \)
 - So constraint is \(Y \rightarrow R \)
- \(fn y \rightarrow x \) occurs as subexpression, so generate constraint \(U(fn y \rightarrow x) = D(x) \rightarrow U(fn y \rightarrow x) \)
 - From step 1, have \(U(x) = Y \), and \(U(fn y \rightarrow x) \rightarrow X \) and \(D(y) = S \)

Constraint generation