(i) If rate is multiplied by 1.5, then the sound will be played in time $T/1.5$, where T is the duration of the original sound. It will also have a higher pitch when listening (like a girl talking). Similarly, if rate is divided by 1.5, then the sound will be played in time $T \times 1.5$, and it will also have a lower pitch when listening (like an old man talking).

(ii) Since the user indicates the locations of the end of the chimes and the beginning of the gong, we can simply zero this part of the vector to obtain silence.

(iii) To reverse the sound, simply play it from the end to the beginning. That is, reverse the sound vector so that the last component becomes first, and the first becomes last. This can be done using a for loop or a vectorized code.

(iv) Since the user indicates the location of the beginning of the gong, and we can assume that the end of the sound file is the end of the gong, we can determine the length of the gong. The halfway point of the gong is exactly half the length. Let BG be the beginning of the gong and M be the halfway point of the gong. Then the first half of the gong is $\text{OneOClock}(BG:M)$. We just have to play this three times by calling sound three times.

(v) Once the user indicates the end of each four notes (there are three of them (the last one is the end of the gong the user indicated earlier); let these locations be e_1, e_2, e_3), we just have to play the sound from the beginning to each of these locations. For example, at the half hour, we play $\text{OneOClock}(1:e_2)$. We pause using the pause function.

(vi) To make a vector of continuous and repetitive sound, we first need to determine the length of the final output. Since the duration is two minutes, i.e., 120 seconds, and for each second, rate values are played, we need to set up a vector of length

$$rate \times 120 + 1$$

(we add one to obtain the precise duration). Then, we fill in the vector, one gong at a time. If there is enough space to fill in, then simply use vectorized code to assign the values. For the ith iteration of filling in, the starting location is $(i - 1) \times \text{lenGong} + 1$, where lenGong is the length of the gong vector. We repeat this

$$\text{numReps} = \left\lfloor \frac{\text{round}(rate \times 120) + 1}{\text{lenGong}} \right\rfloor$$

times, which is the number of iterations we can fill in the whole gong completely.

Now, we have to fill in the last part of the sound vector, which will be a partial gong. Since we have filled in numReps iterations, each with lenGong locations, we have filled in $\text{numReps} \times \text{lenGong}$ locations. Now we still have

$$(\text{rate} \times 120 + 1) - \text{numReps} \times \text{lenGong}$$
locations left. We simply extract the first \((rate \times 120 + 1) - numReps \times lenGong\) locations of the gong and pad it to the resulting vector, starting at location \(numReps \times lenGong + 1\). We can verify that the lengths of these two vectors are the same.

The code from the above procedure is given below:

```matlab
lenTwo = rate*120+1;
TwoMinuteGong = zeros(lenTwo,1);
numReps = floor(lenTwo/lenGong);
for i = 1:numReps
    TwoMinuteGong((i-1)*lenGong+1:i*lenGong) = Gong;
end

TwoMinuteGong(numReps*lenGong+1:lenTwo) = Gong(1:lenTwo-(numReps*lenGong));
```