Appending Two Lists

Recall that s_1 has size m and s_2 has size n. We assume that ArrayList is never full. Otherwise, we can use amortized analysis to derive the following running time; instead of the worst-case running time it will be amortized running time.

Approach 1

```java
public static <E> List<E> append1(List<E> s1, List<E> s2) {
    List<E> l = new ArrayList(); // or new LinkedList();
    for (int i=0; i<s1.size(); i++)
        l.add(l.size(), s1.get(i)); // copy s1 into l
    for (int i=0; i<s2.size(); i++)
        l.add(l.size(), s2.get(i)); // copy s2 into l
    return l;
}
```

First we analyze line 6. There are three operations done in this line:

- **l.size()**: [1] This operation takes $O(1)$ in all implementations.
- **s1.get(i)**: [2] This operation takes $O(1)$ in ArrayList implementation and $O(i)$ in LinkedList implementation.
- **l.add(l.size(), o)**: [3] This operation takes $O(1)$ in ArrayList implementation, $O(1)$ in LinkedList implementation with a link to the last element, and $O(i)$ in LinkedList implementation without the link.

So, the for loop in lines 5-6 runs m times, each time it takes $[1] + [2] + [3]$, total of $O(m)$ in ArrayList, $O(m^2)$ in LinkedList with the link, and $O(m^2)$ in LinkedList without the link.

Now we analyze line 9. First of all note that l has size m before entering the loop in line 8. There are three operations done in this line:

- **l.size()**: [1] This operation takes $O(1)$ in all implementations.
- **s2.get(i)**: [2] This operation takes $O(1)$ in ArrayList implementation and $O(i)$ in LinkedList implementation.
- **l.add(l.size(), o)**: [3] This operation takes $O(1)$ in ArrayList implementation, $O(1)$ in LinkedList implementation with a link to the last element, and $O(m + i)$ in LinkedList implementation without the link.
So, the for loop in lines 8-9 runs \(n \) times, each time it takes \([1] + [2] + [3] \), total of \(O(n) \) in ArrayList, \(O(n^2) \) in LinkedList with the link, and \(O(mn+n^2) \) in LinkedList without the link.

Summarizing,

- **append1()** runs in \(O(m + n) \) in ArrayList implementation.
- **append1()** runs in \(O(m^2+n^2) \) in LinkedList implementation with a link to the last element.
- **append1()** runs in \(O(m^2+mn+n^2) = O(m^2+n^2) \) (why?) in LinkedList implementation without a link to the last element.

Approach 2

```java
public static <E> List<E> append2(List<E> s1, List<E> s2) {
    if (s2.size() == 0) // test if second list is empty
        return s1;
    else {
        E o = s2.remove(s2.size()-1); // last of s2
        List<E> l = append2(s1, s2); // recursive call with smaller s2
        l.add(l.size(), o); // last of s2 is added after the recursive call
        return l;
    }
}
```

Let \(T(i, j) \) be the time to append \(s1 \) of size \(i \) and \(s2 \) of size \(j \). We want to calculate \(T(m, n) \). First of all, note that \(T(i, 0) = O(1) \) for all \(i \). Otherwise, we have

\[
T(i, j) = [6] + T(i, j - 1) + [8],
\]

where

- [6] is the running time of line 6, which is \(O(1) \) for ArrayList, \(O(1) \) for LinkedList with a link to the last element, and \(O(j) \) for LinkedList without the link.
- [8] is the running time of line 8, which is \(O(1) \) for ArrayList, \(O(1) \) for LinkedList with a link to the last element, and \(O(i + j - 1) = O(i + j) \) for LinkedList without the link.

Hence,

- For ArrayList implementation,
 \[
 T(m, n) = T(m, n - 1) + O(1) \\
 T(m, n - 1) = T(m, n - 2) + O(1) \\
 \vdots \\
 T(m, 1) = T(m, 0) + O(1) = O(1).
 \]

Hence, \(T(m, n) = O(n) \).
For **LinkedList** implementation with a link to the last element,

\[T(m, n) = T(m, n - 1) + O(1). \]

Hence, \(T(m, n) = O(n). \)

For **LinkedList** implementation without a link to the last element,

\[
\begin{align*}
T(m, n) &= T(m, n - 1) + O(n + (m + n)) = T(m, n - 1) + O(m + n) \\
T(m, n - 1) &= T(m, n - 2) + O(m + n - 1) \\
T(m, n - 2) &= T(m, n - 3) + O(m + n - 2) \\
&\vdots \\
T(m, 1) &= T(m, 0) + O(m + 1) = O(m + 1).
\end{align*}
\]

Hence, \(T(m, n) = O(mn + n^2) = O(m^2 + n^2) \) (why?).

Summarizing,

- **append2()** runs in \(O(n) \) in **ArrayList** implementation.
- **append2()** runs in \(O(n) \) in **LinkedList** implementation with a link to the last element.
- **append2()** runs in \(O(m^2 + n^2) \) in **LinkedList** implementation without a link to the last element.

Approach 3

```java
01 public static <E> List<E> append3(List<E> s1, List<E> s2)
02 {
03     if (s2.size() == 0) // test if second list is empty
04         return s1;
05     else {
06         s1.add(s1.size(), s2.remove(0));
07         return append3(s1, s2); // recursive call with smaller s2
08     }
09 }
```

Let \(T(i, j) \) be the time to append \(s_1 \) of size \(i \) and \(s_2 \) of size \(j \). We want to calculate \(T(m, n) \). First of all, note that \(T(i, 0) = O(1) \) for all \(i \). Otherwise, we have

\[T(i, j) = [6] + T(i, j - 1), \]

where [6] is the running time of line 6, which contain three operations:

- **s1.size()**: [1] This operation takes \(O(1) \) in all implementations.
- **s2.remove(0)**: [2] This operation takes \(O(j) \) in **ArrayList** implementation and \(O(1) \) in **LinkedList** implementation.
• \texttt{s1.add(s1.size(),o)}: [3] This operation takes $O(1)$ in \texttt{ArrayList} implementation, $O(1)$ in \texttt{LinkedList} implementation with a link to the last element, and $O(i)$ in \texttt{LinkedList} implementation without the link.

Hence, $[6] = [1] + [2] + [3]$. Now,

• For \texttt{ArrayList} implementation,

\[
T(m,n) = T(m+1,n-1) + O(n) \\
T(m+1,n-1) = T(m+2,n-2) + O(n-1) \\
\vdots \\
T(m+n-1,1) = T(m+n,0) + O(1) = O(1).
\]

Hence, $T(m,n) = O(n^2)$.

• For \texttt{LinkedList} implementation with a link to the last element,

\[
T(m,n) = T(m+1,n-1) + O(1) \\
T(m+1,n-1) = T(m+2,n-2) + O(1) \\
\vdots \\
T(m+n-1,1) = T(m+n,0) + O(1) = O(1).
\]

Hence, $T(m,n) = O(n)$.

• For \texttt{LinkedList} implementation without a link to the last element,

\[
T(m,n) = T(m+1,n-1) + O(m) \\
T(m+1,n-1) = T(m+2,n-2) + O(m+1) \\
T(m+2,n-2) = T(m+3,n-3) + O(m+2) \\
\vdots \\
T(m+n-1,1) = T(m+n,0) + O(m+n+1) = O(m+n-1).
\]

Hence, $T(m,n) = O(mn + n^2) = O(m^2 + n^2)$ (why?).

Summarizing,

• \texttt{append3()} runs in $O(n^2)$ in \texttt{ArrayList} implementation.

• \texttt{append3()} runs in $O(n)$ in \texttt{LinkedList} implementation with a link to the last element.

• \texttt{append3()} runs in $O(m^2 + n^2)$ in \texttt{LinkedList} implementation without a link to the last element.
Some Things to Note

- For all the three approaches above, if \(s1==s2 \), no approaches give a correct result. Try examining the code and see what went wrong. What are the results of those erroneous executions.

- `append3()` can be implemented without recursion. How?

- Try implementing `append()` that works for two identical lists.

Implementing a Stack Using Queues

Yes, we can do that, but how? If you have a solution that you would like to discuss, feel free to come talk to me.

Implementing a Queue Using Stacks

Again, yes, but how? Again, feel free to discuss with me if you think you have a solution.