
Efficient Document Clustering via Online Nonnegative Matrix

Factorizations

Fei Wang
Dept. of Statistical Science

Cornell University
Ithaca, NY 14853, USA

fw83@cornell.edu

Chenhao Tan
Dept. of Computer Science

Cornell University
Ithaca, NY 14853, USA
chenhao@cs.cornell.edu

Arnd Christian König
Microsoft Research

Microsoft Coopration
Redmond, WA 98052, USA

chrisko@microsoft.com

Ping Li
Department of Statistical Science

Cornell University
Ithaca, NY 14853, USA

pingli@cornell.edu

Abstract

In recent years, Nonnegative Matrix Factorization
(NMF) has received considerable interest from the data
mining and information retrieval fields. NMF has been
successfully applied in document clustering, image rep-
resentation, and other domains. This study proposes
an online NMF (ONMF) algorithm to efficiently handle
very large-scale and/or streaming datasets. Unlike con-
ventional NMF solutions which require the entire data
matrix to reside in the memory, our ONMF algorithm
proceeds with one data point or one chunk of data points
at a time. Experiments with one-pass and multi-pass
ONMF on real datasets are presented.

1 Introduction

The recent years have witnessed a surge of interest
on document clustering in information retrieval (IR)
field [6, 41], since document clustering can serve as
an important and fundamental technique for automatic
topic extraction [34], content summarization [35] and
cluster-based information retrieval [31]. Effective doc-
ument clustering can help automatically organize the
document corpus into a meaningful cluster hierarchy for
efficient browsing and navigation.

As pointed out by [10], the area of information
retrieval spans a wide spectrum ranging from narrow
keyword-matching based search to broad information
browsing, e.g., to discover the major recent international
events. Conventional document retrieval engines tend
to fit well with the search end of the spectrum, in that
they can provide documents relevant to users’ query.

However, they often do not perform well in scenarios
where, for example, it is either difficult to formulate
a request as a search query or the user is not looking
for a specific page but rather wants to obtain a more
general overview over (parts of) a text corpus. In
such cases, efficient browsing through a good cluster
hierarchy would often be helpful. For this reason,
there exist a large number of so-called web clustering
engines which organize search results by topics, offering
a complementary view to the flat-ranked lists returned
by conventional search engines [8].

Many document clustering methods have been pro-
posed. For example, hierarchical agglomerative cluster-
ing [16] iteratively builds a bottom-up hierarchy of clus-
tering structures. [12] adapts the traditional K-means
algorithm to efficiently handle high-dimensional sparse
text data. [18] models documents as vertices and the re-
lationship among documents by hyper-edges and formu-
lates the document clustering problem as a partitioning
problem on the hyper-graph. Recently, [38] proposed
to first transform the data similarity matrix into a bi-
stochastic matrix before applying clustering algorithms;
and they reported encouraging results.

As an algorithmic tool, Nonnegative Matrix Factor-
ization (NMF) [23] has received considerable interest
from the data mining and information retrieval fields
in recent years. NMF has been applied to document
clustering and shows superior results over traditional
methods [41, 33]. Moreover, it has been shown that
NMF is a relaxed K-means clustering [14], and it also
has a close relationship with spectral clustering [13] and
probabilistic latent semantic analysis [17].

Well-known NMF solutions such as the multiplica-
tive updates [24] or the projected gradients [29] require
to hold the entire data matrix in the memory through-
out the solution process. For very large datasets, the
resulting space requirement can be prohibitive. More-
over, in modern applications, the data often arrive in a
streaming fashion and may not be stored on disk [42].

For very large-scale and/or streaming datasets,
similarity-based clustering can often be efficiently
solved by random projections [25, 26], or by various
sketch/sampling algorithms, e.g., [27]. In fact, recent
papers [37, 36] already applied random projections for
efficiently computing NMF and Sparse Coding.

The scalability issue can also by addressed by
parallelization [30, 39], i.e., by either implementing the
clustering technique in a shared-memory multi-node
environment or by distributing the computation across
large numbers of machines using MapReduce [9].

In this paper, we tackle the scalability and data
streaming issue of NMF by developing efficient online al-
gorithms based on stochastic approximations [21], which
process one chunk of data points at a time. Our ap-
proach aims to reduce the computational overhead and
memory requirements of the clustering algorithm itself,
thereby potentially resulting in significant savings in
the required hardware and machine-time. For example,
utilizing parallelization by distributing the data across
machines necessarily means a significant slow-down in
processing speed. Instead, if cluster computation can
be kept local via a reduction in memory footprint, this
may result in very noticeable speed-up.

The ability to incrementally update clusters as new
data points arrive is also crucial in the context of mod-
ern IR and browsing. Consider a real-life scenario
of computing personalized news recommendations [11].
Here, the recommendations are computed using clus-
tering of the news items and users, for very large sets
of news documents and users (both on the order of
millions) and constant churn of news and new click-
information (as news articles are crawled and accessed
continuously). In scenarios such as this, an efficient in-
cremental clustering method would certainly be helpful.

Organization Section 2 briefly reviews existing NMF
algorithms. Our online NMF algorithm is elaborated in
Section 3. Section 4 and Section 5 present the experi-
mental results. Section 6 is devoted to comparing our
method with another online NMF algorithm proposed
in [7]. Finally Section 7 concludes the paper.

2 A Brief Review of NMF

This section briefly reviews some existing NMF algo-
rithms. We first introduce some basic notations.

Consider a data matrix X = [x1,x2, · · · ,xn] ∈
Rd×n, where xi ∈ Rd is the i-th data point, d is the data
dimensionality, n is the number of data points. The goal
of NMF is to factorize X into two low-rank nonnegative
matrices F ∈ Rd×r and G ∈ Rn×r by solving

(2.1) min
F∈Rd×r

+ ,G∈Rn×r
+

L(F,G)

where Rd×r
+ and Rn×r

+ denote the sets of nonnegative
matrices of sizes d× r and n× r, respectively. L(F,G)
is some matrix loss function. This paper concentrates
on the Frobenius loss:

(2.2) L(F,G) =
∥∥∥X− FG>

∥∥∥
2

F

where ‖ · ‖F is the matrix Frobenius norm.
In general, solving (2.1) is difficult as the objective

L(X,F,G) is not convex with F and G jointly. A
general solution is to adopt the following alternative
block coordinate descent rules [3]:

• Initialize F, G with nonnegative F(0), G(0); t ← 0

• Repeat until a stopping criterion is satisfied:
Find F(t+1): L(F(t+1),G(t)) 6 L(F(t),G(t)),
Find G(t+1): L(F(t+1),G(t+1)) 6 L(F(t+1),G(t)).

One of the most well-known algorithms for imple-
menting the above rules is Lee and Seung’s multiplica-
tive update approach [24], which updates F and G by

Fij ←− Fij

(XG)ij

(FGT G)ij

(2.3)

Gij ←− Gij

(
XT F

)
ij

(GFT F)ij

(2.4)

Assuming r ¿ min(d, n), the cost of one-round
updating of F is O(dnr). Similarly, the computational
complexity of one-round updating of G is also O(dnr).
Hence the total computational complexity of Lee
and Seung’s algorithm would be O(Tndr), where T
is the number of iterations. At each iteration, Lee
and Seung’s method needs to hold the data matrix
X ∈ Rd×n in the memory, at a storage cost of O(nd).

Another algorithm that solves the NMF problem
with Frobenius loss (2.2) is Projected Gradient method
(PGD) [29], which also follows the alternative block
coordinate descent rules. Specifically, when we have
F(t) and G(t), PGD finds F(t+1) by solving the following
nonnegative least square problem

(2.5) minF∈Rd×r
+

∥∥∥∥X− F
(
G(t)

)>∥∥∥∥
2

F

which can be efficiently solved via the projected gradient
iterations, starting a feasible initialization [3]:

(2.6) Fk+1 = P
[
Fk − αk∇L

(
Fk,G(t)

)]

where ∇L (
Fk,G(t)

)
is the gradient of L defined in

Eq. (2.2) with respect to F evaluated on Fk, G(t).
P [ui] is the gradient projection onto the nonnegative
constraint set with

(2.7) P [ui] =
{

ui, if ui > 0
0, otherwise

k is the index of the projected gradient iterations, and
αk > 0 is the step size determined by the Armijo rule [3].

Similarly, we can apply PGD to update G with
F fixed. According to [29], the total computational
complexity of PGD is O(Tndr + TKJr2(d + n)),
where T is the number of iterations, K is the average
number of PGD iterations for updating F or G in one
round, and J is the average number of trials needed for
implementing the Armijo rule. Thus, even with small
K and J , the time complexity of PGD is still O(Tndr),
which is the same as Lee and Seung’s approach. Again,
in each step, PGD needs to hold X in the memory and
therefore requires a storage cost of O(nd).

For real-world applications with large-scale high-
dimension data, where nd is extremely large, it would
be difficult to apply a conventional NMF algorithm
directly. For example, in Web scale data mining,
one may commonly encounter datasets of size n =
O

(
1010

)
(or even more) Web pages and each page

may be represented using a vector with d = O
(
106

)
dimensions (using single words) or 264 dimensions (using
shingles [6, 15, 28]). Then n × d will become O

(
1016

)
(single words) or even O

(
1029

)
(shingles), which clearly

will not fit in the memory of a single machine, even with
sparse representations. In fact, even a small corpus like
Wikipedia has around 107 pages and 107 distinct terms.

In comparison, our online approach will process one
chunk of data points (e.g., one chunk of Web pages) at
a time, incurring much lower memory/IO costs.

3 Online NMF (ONMF)

Our online NMF (ONMF) algorithm processes the data
in a streaming fashion with low computational and
storage complexity. We first describe some insights.

3.1 The Insight Note that the Frobenius
loss (2.2) can be decomposed as

L(F,G) =
∥∥∥X− FG>

∥∥∥
2

F
=

∑n

i=1
‖xi − Fgi‖2F

where gi ∈ Rr is the i-th column of GT. Consider
a problem of clustering the data set into r clusters.
We can view F = [f1, · · · , fr] as the cluster repre-
sentatives (e.g., they can be cluster centers as in K-
means clustering, or cluster concepts as in [40]), and
gi = [gi1 · · · , gir]T as the reconstruction weights of xi

from those representatives.
Clearly, when F is fixed, the minimum value of

L(F,G) can be reached if and only if

(3.8) L(F,gi) = ‖xi − Fgi‖2F
is minimized for all i. Thus, we can solve n independent
Nonnegative Least Square (NLS) problems

(3.9) mingi>0 ‖xi − Fgi‖2F i = 1, 2, · · · , n

and aggregate the solution as G = [g1,g2, · · · ,gn]T.
Intuitively, gij can be used to measure the possi-

bility that xi belongs to cluster j (not probability, as∑
j gij 6= 1). Consider an extreme case where fk = xi,

i.e., the representative of cluster k is xi itself, then

(3.10) gij =
{

1, if j = k
0, otherwise

would be an optimal solution for minimizing L(F,gi).
In this sense, computing NMF corresponds to finding
the optimal cluster representatives F and the optimal
possibilities that each data point belongs to each cluster.

Based on this observation, we propose the following
online NMF (ONMF) framework:

• Initialize the cluster representatives F.

• Repeat until running out data points. At time t

– Input a data point (or a chunk of data points)
x(t)

– Compute the optimal g(t) by ming>0 L(F,g)

– Update F

Thus, there are two sub-problems in ONMF: (1)
how to solve problem (3.9); (2) how to update F.

3.2 Computing Cluster Possibilities G
In this step, we assume the cluster representatives

F is fixed. According to Eq. (3.9), we can solve the
following optimization problem for the optimal g(t)

(3.11) ming(t)>0

∥∥∥x(t) − Fg(t)
∥∥∥

2

F

which is a typical nonnegative least square (NLS) prob-
lem. Many algorithms have been proposed to solve the
NLS problem. For example, the active set method [22]

searches for the optimal active and passive sets by ex-
changing a variable between the two sets. A drawback
of active set methods is that typically only one variable
is exchanged between active and passive sets per iter-
ation, making the algorithm slow when the number of
variables becomes large [20]. There are other iterative
methods such as projected gradient descent [29] as re-
viewed in Section 2, the quasi-Newton approach [19] and
the block principal block pivoting (BPB) algorithm [20].

As an option, one can also add constraints to further
restrict g(t). For example, we can constrain

∑
j g

(t)
j = 1.

In this way, g
(t)
j will become to the probability that x(t)

belongs to cluster j. One can also constrain the sparsity
of g(t) as in [32] to reduce the cluster ambiguity.

3.3 Updating the Cluster Representatives F
At time t, as x(t) arrives, ONMF first solves for g(t)

using F(t−1), and then updates F by minimizing the
following loss function:

L(t)
(
F(t)

)
=

t∑
s=1

∥∥∥x(s) − F(t)g(s)
∥∥∥

2

F
=

t∑
s=1

tr

[(
x(s)

)>
x(s)−2

(
x(s)

)>
F(t)g(s)+

(
F(t)g(s)

)>
F(t)g(s)

]

Clearly, we can apply the projected gradient descent
(PGD) [29] introduced in Section 2 for the optimal F(t).

The gradient of L(t) with respect to F(t) is
(3.12)

∇F(t)L(t)
(
F(t)

)
=−2

t∑
s=1

[
x(s)

(
g(s)

)>
−F(t)g(s)

(
g(s)

)>]

The Hessian matrix of L(t)(F(t)) with respect to F(t) is

(3.13) H
[
L(t)

(
F(t)

)]
= 2

t∑
s=1

g(s)
(
g(s)

)>

For convenience, the following two terms represent the
first- and second-order information at time t:

V(t) =
t∑

s=1

x(s)
(
g(s)

)>
(3.14)

H(t)=
t∑

s=1

g(s)
(
g(s)

)>
(3.15)

which can be computed incrementally with low storage.

3.3.1 First-Order PGD
The first-order PGD method updates F(t) by the

following rule starting with some initial F(t)
0 .

(3.16) F(t)
k+1 = P

[
F(t)

k − αk∇F(t)L(t)
(
F(t)

k

)]

where αk is the step size and P [·] is the projection onto
the nonnegative constraint set in Eq. (2.7). Bringing
Eq. (3.12) into Eq. (3.16) yields

(3.17)

F(t)
k+1 =P

[
F(t)

k +2αk

t∑
s=1

[
x(s)

(
g(s)

)>
−F(t)

k g(s)
(
g(s)

)>]]

There are multiple ways to select the step size αk [3].
We can use a constant step size α, which has to be small
enough to guarantee convergence and often results in
very inefficient algorithms.

The Armijo rule is popular, which chooses αk = αtk ,
where tk is the first nonnegative integer satisfying

L(t)(F(t)
k+1)− L(t)(F(t)

k)(3.18)

≥ λ
[
∇F(t)L(t)

(
F(t)

k

)]>
(F(t)

k+1 − F(t)
k)

where λ ∈ (0, 1) is some constant. Armijo-rule based
step size can guarantee objective descent at each itera-
tion. Note that the PGD NMF method [29] reviewed in
Section 2 adopted the Armijo rule, which also discussed
how to choose α and λ.

We implemented the first-order PGD and found the
performance is clearly not as good as the second-order
PGD methods.

3.3.2 Second-Order PGD
One disadvantage of the first-order PGD is that we

need to carefully choose the step size and its convergence
could be quite slow. To make the PGD algorithm
parameter free with faster convergence, we can make
use of the second-order information [2] by utilizing the
Hessian (3.13) with the following updating rule:

(3.19)
F(t)

k+1 =P
[
F(t)

k −∇
F

(t)
k

L(t)
(
F(t)

k

)
H−1

[
L(t)

(
F(t)

k

)]]

where H−1
[L(t)

(
F(t)

)]
is the inverse of the Hessian

matrix. Note that the exact calculation of the inverse
of the Hessian matrix becomes time-consuming when
the number of clusters (r) becomes large. There are
two common strategies for approximating the Hessian
inverse:

• Diagonal Approximation (DA) [4]. It only
uses the diagonal line of the Hessian matrix to
approximate the whole matrix.

• Conjugate Gradient (CG) [1]. This method
exploits the fact that what we really need is the
product of a matrix and the inverse of the Hessian.

Algorithm 1 summarizes the detailed procedure of
second-order PGD for updating F(t), where three meth-
ods, exact computation, DA and CG, are integrated.

Algorithm 1Second-order PGD for updatingF(t)

Require: K, F
(t)
0 ,V(t),H(t)

for k = 1 : K do
Compute the gradient ∆k = V(t) − F(t)

k−1H
(t);

if Diagonal Approximation (DA) then
U = ∆kdiag−1

(
H(t)

)
+ F(t)

k−1;

F(t)
k = max(0,U);

else if Conjugate Gradient (CG) then
Solve Q s.t. QH(t) = ∆k with CG;
F(t)

k = max(0,Q + F(t)
k−1);

else
F(t)

k = max
(
0,∆k

(
H(t)

)−1
+ F(t)

k−1

)
;

end if
end for

3.4 One-Pass ONMF The complete (one-pass)
algorithm procedure is shown in Algorithm 2. Several
implementation issues should be highlighted:

• At each time t, we do not need to recompute
new V(t) and H(t). We only need to compute
x(t)

(
g(t)

)>
and g(t)

(
g(t)

)>
, and add them to the

old V(t−1) and H(t−1) respectively.

• Our algorithm is very close to the spirit of Stochas-
tic Gradient Descent (SGD) style methods [5].
There is a compromise model between SGD and
traditional batch gradient descent algorithms called
mini-batch implementation [5], which imports m
data points at each step. In this way, the conver-
gence speed of ONMF can be expected to improve
considerably. Consequently the updating rules of
V(t) and H(t) can be given by

V(t) = V(t−1) +
∑m

i=1
x(t,i)

(
g(t,i)

)>

H(t) = H(t−1) +
∑m

i=1
g(t,i)

(
g(t,i)

)>

3.5 Multi-Pass ONMF In data stream applica-
tions, often only a single pass over the data is feasi-
ble. Nevertheless, many applications still allow multiple
passes. The data size may be too large for the memory,
but in many cases, the data can be stored on the disk
and passed to the memory (in chunks).

In the one-pass ONMF, the clustering possibility
matrix G = [g1,g2, ...,gn] is computed in a sequential
greedy fashion. It is expected that at the beginning, the

Algorithm 2 One-pass ONMF with the mini-batch
mode. n is the total number of data points.
Require: X, F(0),m, S = dn/me

V(0) = 0, H(0) = 0
for t = 1 : S do

Draw x(t) (i.e., m data points) from X
Compute g(t) by solving Problem (3.11).
Update V(t) and H(t).
Update F(t) by Algorithm 1

end for

errors would be high, but the one-pass algorithm has no
easy way to correct them later on.

With the multi-pass ONMF, G can be updated
using the F in the previous pass. In addition, the first-
and second-order information V and H (which are small
enough to be stored) in the previous pass can be utilized
and updated. Therefore, it is expected that, if multiple
passes are feasible, we can achieve (often) considerably
more accurate results than one-pass ONMF.

3.6 Computational Savings of ONMF It is
clear that, after completing one pass over the entire
data matrix, ONMF will incur a computational cost
of roughly O(ndr), which is on the same order as the
cost of executing one iteration of the Lee and Seung’s
multiplicative update algorithm (if the data can fit in
memory). As verified by our experiments, after one
pass over the data, the Frobenius loss of ONMF is
often very close to the Frobenius loss of the Lee and
Seung’s algorithm after T iterations. This would be a
considerable computational saving if T is large, even if
the data can fit in memory.

When the data size is large, the IO cost can be a
significant (sometimes dominating) portion of the total
cost. Our one-pass ONMF only loads the data matrix
once and hence incurs low IO cost. Our experiment
results will verify that we often do not need many passes
to achieve very accurate results.

4 Experiments on Small Data Sets (WebKB)

This section presents experiments on 4 small WebKB
datasets [43], as described in Table 1.

Table 1: Information of the 4 WebKB data sets
Dataset # points (n) # dim. (d) # clusters (r)

Cornell 827 4134 7
Texas 814 4029 7

Washington 1166 4165 7
Wisconsin 1210 4189 6

We let the dimensionality of the NMF output (r)
equal the number of clusters.

4.1 Results of Lee and Seung’s Algorithm
Figure 1 presents the averaged Frobenius loss

(4.20) L =
1
n

n∑

i=1

‖xi − Fgi‖2F

for T = 500 iterations and 100 different initializations.
The losses are fairly insensitive to the initializations.

1 100 200 300 400 500
71

73

75

77

79

81

Number of iterations

A
ve

ra
ge

 F
ro

 L
os

s

CORNELL

1 100 200 300 400 500
56

58

60

62

64

66

68

Number of iterations

A
ve

ra
ge

 F
ro

 L
os

s

TEXAS

1 100 200 300 400 500
64

66

68

70

72

74

Number of iterations

A
ve

ra
ge

 F
ro

 L
os

s

WASHINGTON

1 100 200 300 400 500
68

70

72

74

76

78

Number of iterations

A
ve

ra
ge

 F
ro

 L
os

s

WISCONSIN

Figure 1: The averaged Frobenius losses (4.20) on the
four WebKB datasets, using Lee and Seung’s (L-S)
algorithm. Each panel plots the results for one dataset
and 100 different initializations, with the (red) dashed
curve representing the average over 100 initializations.

1 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

Number of iterations

C
lu

st
er

in
g

ac
cu

ra
cy

CORNELL

1 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

Number of iterations

C
lu

st
er

in
g

ac
cu

ra
cy

TEXAS

1 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

Number of iterations

C
lu

st
er

in
g

ac
cu

ra
cy

WASHINGTON

1 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

Number of iterations

C
lu

st
er

in
g

ac
cu

ra
cy

WISCONSIN

Figure 2: The clustering accuracies on the four WebKB
datasets, using Lee and Seung’s (L-S) algorithm. Each
panel plots the results for 100 different initializations,
with the (red) dashed curve representing the average.

Figure 2 presents the clustering accuracies. Here,
we simply predict the cluster membership of xi by

π(xi) = arg max
j

gi(j)(4.21)

In other words, we cluster xi according to the highest
possibility represented by G. Since we obtain 100 differ-
ent cluster accuracy results (using the last iterations) for
each dataset (from 100 initializations), we can compute
useful summary statistics (mean, minimum, maximum,
and standard deviation) as in Table 2.

Table 2: NMF clustering accuracy
Mean Min Max Std

Cornell 0.525 0.453 0.545 0.013
Texas 0.507 0.489 0.521 0.007

Washington 0.489 0.464 0.510 0.010
Wisconsin 0.369 0.342 0.469 0.026

For comparisons, we also run the standard K-means
(using the Matlab build-in implementation) algorithms
on the original datasets with 100 random initializations
and present the summary statistics in Table 3.

Table 3: K-means clustering accuracy
Mean Min Max Std

Cornell 0.345 0.282 0.414 0.030
Texas 0.369 0.322 0.410 0.022

Washington 0.358 0.289 0.458 0.049
Wisconsin 0.372 0.306 0.410 0.027

The results on clustering accuracies suggest that,
as far as these four datasets are concerned, NMF
does have noticeable advantages in producing better
(and somewhat more stable) clustering results than the
traditional K-means algorithm. Here, we should state
that it is not our intention to make a general statement
for comparing NMF with K-means.

4.2 ONMF with Diagonal Approximation (DA)
We mainly focus on ONMF with second-order methods
using diagonal approximation (DA, in this sub-section)
and conjugate gradient methods (CG, in the next sub-
section). We noticed that the performance of ONMF
using first-order PGD is not satisfactory and hence we
did not present the results (due to the space constraint).

In the experiments, we let m (i.e., size of the mini-
batch) be m = 5, 10, 50. Figure 3 presents the results
of Frobenius losses on the Cornell dataset for m = 10,
using 4 different initializations and two passes.

For the second and later passes, we always compute
the (averaged) Frobenius loss using (4.20) (i.e., averaged

1 20 40 60 80
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

CORNELL: Init 1, m = 10

Pass 1

Pass 2

L−S

1 20 40 60 80
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

CORNELL: Init 2, m = 10

L−S

Pass 1

Pass 2

1 20 40 60 80
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

L−S

Pass 1

Pass 2

CORNELL: Init 3, m = 10

1 20 40 60 80
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s
Pass 1

Pass 2

L−S

CORNELL: Init 4, m = 10

Figure 3: Averaged Frobenius loss of ONMF using
diagonal approximation (DA) on the Cornell dataset,
for four different initializations, two passes, and m =
10. At each time, m data points are drawn from the
dataset. The x-axis represents the number of draws.
The Cornell dataset has n = 827 data points. With
m = 10, one-pass of the data needs 83 draws. In each
panel, the dashed horizontal line (labeled by “L-S”) is
the result of the Lee and Seung’s algorithm at the last
(i.e., T = 500) iteration.

over all n data points). However, for the first pass, it
is more reasonable to compute the loss using only the
data points seen so far at time t, i.e.,

L(t) =
1

min{m× t, n}
t∑

s=1

∥∥∥x(s)
i − F(t)g(s)

i

∥∥∥
2

F
(4.22)

The x-axis of Figure 3 (and other figures), i.e., “number
of data chunks,” denotes the parameter “t” in the
formula above.

Figure 4 presents similar results for the Texas,
Washington, and Wisconsin datasets. Figures 3 and
4 suggest that the performance of our ONMF with DA
is not sensitive to the initializations. Figure 5 presents
the losses for m = 5 and 50 and only one initialization.

From Figures 3, 4, and 5, we can see our ONMF
with DA works well even in the first pass, because
at the end of the data input, the Frobenius loss of
ONMF is already very close to the Frobenius loss of Lee
and Seung’s algorithm after T = 500 iterations. The
second pass further improves (and stabilizes) the results.

More experiment results with m = 1 on these
datasets are available in Section 6 where we compare
our ONMF with the related work [7].

1 20 40 60 80
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

TEXAS: Init 1, m = 10

Pass 1

Pass 2

L−S

1 20 40 60 80
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

TEXAS: Init 2, m = 10

Pass 1

Pass 2

L−S

1 20 40 60 80
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

Pass 1

Pass 2

L−S

TEXAS: Init 3, m = 10

1 20 40 60 80
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

TEXAS: Init 4, m = 10

Pass 1

Pass 2

L−S

1 20 40 60 80 100 120
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WASHINGTON: Init 1, m = 10

Pass 1

Pass 2

L−S

1 20 40 60 80 100 120
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WASHINGTON: Init 2, m = 10

Pass 1

Pass 2

L−S

1 20 40 60 80 100 120
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

Pass 1

Pass 2

WASHINGTON: Init 3, m = 10

L−S

1 20 40 60 80 100 120
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

Pass 1

Pass 2

L−S

WASHINGTON: Init 4, m = 10

1 20 40 60 80 100 120
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WISCONSIN: Init 1, m = 10

Pass 2

Pass 1

L−S

1 20 40 60 80 100 120
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WISCONSIN: Init 2, m = 10

Pass 1

Pass 2

L−S

1 20 40 60 80 100 120
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WISCONSIN: Init 3, m = 10

Pass 1

Pass 2
L−S

1 20 40 60 80 100 120
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

Pass 2

Pass 1

L−S

WISCONSIN: Init 4, m = 10

Figure 4: Averaged Frobenius loss of ONMF using diag-
onal approximation (DA) on the Texas, Washington,
and Wisconsin datasets, for four different initializa-
tions, two passes, and m = 10.

1 50 100 150
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

Pass 1

Pass 2

L−S

CORNELL: Init 1, m = 5

1 5 10 15 20
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

CORNELL: Init 1, m = 50

L−S

Pass 2

Pass 1

1 50 100 150
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

Pass 1

Pass 2

L−S

TEXAS: Init 1, m = 5

1 5 10 15 20
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s
Pass 1

Pass 2

L−S

TEXAS: Init 1, m = 50

1 50 100 150 200 250
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WASHINGTON: Init 1, m = 5

Pass 1

Pass 2

L−S

1 5 10 15 20 25
30

40

50

60

70

80

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

Pass 1

Pass 2

L−S

WASHINGTON: Init 1, m = 50

1 50 100 150 200 250
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s Pass 1

Pass 2
L−S

WISCONSIN: Init 1, m = 5

1 5 10 15 20 25
40

50

60

70

80

90

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WISCONSIN: Init 1, m = 50

L−S

Pass 2

Pass 1

Figure 5: Averaged Frobenius loss of ONMF using
diagonal approximation (DA) on the 4 WebKB datasets,
for only one initialization, two passes, and m = 5, 50.

The left panels of Figure 6 demonstrate that the
Frobenius loss continues to decrease as we increase the
number of passes, with a diminishing return. The right
panels of Figure 6 reveal some interesting phenomena
of the clustering accuracies. It is not necessarily true
that lower Frobenius losses always correspond to higher
clustering accuracies. This may be partially due to the
simple clustering assignment algorithm, i.e., Eq. (4.21).

4.3 ONMF with Conjugate Gradient (CG)
We also implement ONMF using conjugate gradient
(CG) and present the Frobenius loss in Figure 7. In
the first pass, the losses of CG are considerably higher
than the losses of DA. The differences between CG and
DA become much smaller in the second and later passes.

1 5 10 15 20 25 30
71

73

75

77

79

81

Number of passes

A
ve

ra
ge

 F
ro

 L
os

s

CORNELL: Init 1, m = 10

L−S

1 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

Number of passes

C
lu

st
er

in
g

ac
cu

ra
cy

CORNELL: Init 1, m = 10

L−S

1 5 10 15 20 25 30
56

58

60

62

64

66

68

Number of passes

A
ve

ra
ge

 F
ro

 L
os

s

TEXAS: Init 1, m = 10

L−S
1 5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

0.6

Number of passes

C
lu

st
er

in
g

ac
cu

ra
cy

L−S

TEXAS: Init 1, m = 10

1 5 10 15 20 25 30
64

66

68

70

72

74

Number of passes

A
ve

ra
ge

 F
ro

 L
os

s

L−S

WASHINGTON: Init 1, m = 10

1 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

Number of passes

C
lu

st
er

in
g

ac
cu

ra
cy

WASHINGTON: Init 1, m = 10

L−S

1 5 10 15 20 25 30
68

70

72

74

76

78

Number of passes

A
ve

ra
ge

 F
ro

 L
os

s

WISCONSIN: Init 1, m = 10

L−S

1 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

Number of passes
C

lu
st

er
in

g
ac

cu
ra

cy

WISCONSIN: Init 1, m = 10

L−S

Figure 6: Left panels: averaged Frobenius loss measured
at the end of each pass, for 30 passes, m = 10, and only
one initialization. Right panels: clustering accuracy
measured at the end of each pass. Note that the plots
are scaled identically as Figure 1 and Figure 2. In each
panel, the dashed horizontal line (labeled by “L-S”) is
the result of the Lee and Seung’s algorithm at the last
(i.e., T = 500) iteration.

5 Experiment on a Larger Dataset: NYTimes

The experiments based on these small WebKB datasets
are valuable because they are easy to reproduce, suitable
for verifying the correctness of the proposed algorithms.

This section presents more experimental results on
(UCI) NYTimes, a much larger text data set with
n = 300000 documents and d = 102660 dimensions.
Because the class labels are not available, we fix r = 5
in our experiments.

Figure 8 presents the experimental results. The
result of the (averaged) Frobenius loss using Lee and

1 5 10 15 20 25 30
71

73

75

77

79

81

Number of passes

A
ve

ra
ge

 F
ro

 L
os

s

CORNELL: Init 1, m = 10

L−S

CG

1 5 10 15 20 25 30
56

58

60

62

64

66

68

Number of passes

A
ve

ra
ge

 F
ro

 L
os

s

TEXAS: Init 1, m = 10

L−S

CG

1 5 10 15 20 25 30
64

66

68

70

72

74

Number of passes

A
ve

ra
ge

 F
ro

 L
os

s

WASHINGTON: Init 1, m = 10

CG

L−S

1 5 10 15 20 25 30
68

70

72

74

76

78

Number of passes

A
ve

ra
ge

 F
ro

 L
os

s

L−S

WISCONSIN: Init 1, m = 10

CG

Figure 7: Averaged Frobenius loss using ONMF with
conjugate gradient (CG) measured at the end of each
pass, for 30 passes, m = 10, and one initialization.
Note that the plots are scaled identically as Figure 1
and Figure 6 for easy comparisons.

Seung’s algorithm is shown on the left top panel. The
other five panels plot the Frobenius loss using our
ONMF with m = 100, 200, 500, 1000, 2000, respectively.
Note that even m = 2000 is still relatively very small
compared to n = 300000 for this dataset.

These plots demonstrate that our ONMF works
well for this large-scale dataset. One pass of the data
already leads to comparable results as Lee and Seung’s
algorithm. The second pass further improves and
stabilizes the accuracies.

Before concluding the presentation of the experi-
ments, we should re-iterate that our ONMF is mostly
advantageous when the datasets do not fit in the mem-
ory. Publicly available datasets usually do not reach
such a scale. In fact, the UCI NYTimes dataset is one
of the largest collections available in the public domains.
On the other hand, if the dataset did not fit in the mem-
ory, then we would not be able to run Lee and Sung’s
method to verify our algorithms.

6 Comparison with A Prior Online Algorithm

A related1 work in IJCAI 2007 [7] also proposed an
online NMF algorithm, from an interesting perspective.
Here, we first try to explain their algorithm, to the best
of our understanding.2

1The Reviewers suggested us to add this section for a direct
comparison with [7]. We appreciate their constructive comments.

2We are grateful to Cao, Author of [7], for his explanation.

1 100 200 300 400 500
880

890

900

910

920

930

Number of iterations

A
ve

ra
ge

 F
ro

 L
os

s

NYTIMES: L−S

1 500 1000 1500 2000 2500 3000
800

820

840

860

880

900

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

NYTIMES: m = 100

Pass 1

L−S

Pass 2

1 500 1000 1500
800

820

840

860

880

900

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

NYTIMES: m = 200

Pass 2

Pass 1

L−S

1 100 200 300 400 500 600
800

820

840

860

880

900

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

NYTIMES: m = 500

Pass 1

L−S

Pass 2

1 50 100 150 200 250 300
800

820

840

860

880

900

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

NYTIMES: m = 1000

Pass 2

L−S

Pass 1

1 50 100 150
800

820

840

860

880

900

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

NYTIMES: m = 2000

Pass 1

Pass 2

L−S

Figure 8: NYTimes. Left top panel: Averaged
Frobenius loss of NMF using Lee and Seung’s algorithm,
for T = 500 iterations. Other panels: Averaged
Frobenius losses of ONMF with diagonal approximation
(DA) for two passes and m = 100, 200, 500, 1000, 2000.

[7] viewed the NMF solution as3

(6.23) X ≈ FGT = (FΛ)(GΛ−T)T

where Λ is an invertible matrix.
Suppose we have already computed NMF using the

old data, i.e.,

Xold ≈ FoldGT
old(6.24)

When additional data points, denoted by Xnew, arrive,
the ultimate goal is to find F and G by NMF

[Xold Xnew] ≈ FnewGT
new.(6.25)

which, however, is not possible because Xold is not
stored, according to our basic assumption.

Their paper [7] suggested an interesting solution
by concatenating Xnew with Fold to form a new data
matrix and then applying ordinary NMF on the new
matrix. Instead of simply using [Fold Xnew] as the new

3Their paper [7] used (e.g.,) X = FGT to represent the NMF
approximation. We change their “=” to “≈”.

data matrix, they actually used [FoldΛ Xnew] where Λ
was chosen to be diagonal. By private communication,
the Author of [7] suggested to use the l2 norms of the
columns of Gold for the diagonals of Λ, i.e.,

Λjj = ‖ [Gold]j ‖2, j = 1, 2, ..., r(6.26)

Therefore, the key step is to apply NMF to obtain4

Ftemp and Gtemp:
(6.27)

[FoldΛ Xnew] ≈ FtempGT
temp = Ftemp

[
WT

1 WT
2

]

which implies:

Fold ≈ FtempWT
1 Λ−1 Xnew ≈ FtempWT

2

(6.28)

Note that

Xold ≈ FoldGT
old ≈ FtempWT

1 Λ−1GT
old(6.29)

Recall the ultimate goal is to compute the (approxi-
mate) NMF such that [Xold Xnew] ≈ FnewGT

new. By
combining

Xold ≈ Ftemp

[
WT

1 Λ−1GT
old

]

Xnew ≈ Ftemp

[
WT

2

]

we know that it is reasonable to use the following Fnew

and Gnew as the final output:

Fnew = Ftemp(6.30)

Gnew =
[

GoldΛ−1W1

W2

]
(6.31)

where Ftemp, W1 and W2 are computed from
Eq. (6.27), Λ is the diagonal matrix defined in
Eq. (6.26).

6.1 Experiments
Figure 9 compares, in terms of the averaged Frobe-

nius loss as defined in Eq. (4.22), our ONMF (using the
diagonal approximation) with the previous algorithm [7]
(labeled by “IJCAI” in the figures), on the four WebKB
datasets. We report the experiments for one initializa-
tion (for each dataset) and m = 1, 5, 10.

Figure 10 compares our ONMF with [7] on the
NYTimes dataset, for m = 100, 200, 500, 1000.

Note that, Figures 9 and 10 only report the perfor-
mance of one-pass ONMF, because it is not exactly clear
to us how to implement [7] as a multi-pass algorithm.

4Note that in the paper [7], the authors also added an
additional regularization term αΓFTF which resulted in an
additional term in the NMF multiplicative updating formula. The
chosen α was quite small (and appeared to be heuristic). We also
implemented this step but we found the impact of this additional
term was very minimal. Therefore, to simplify the presentation,
we let α = 0 in the formulation and presented the experimental
results with α = 0.

1 200 400 600 800
50

60

70

80

90

100

110

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

CORNELL: Init 1, m = 1

DA

L−S

IJCAI

1 200 400 600 800
50

60

70

80

90

100

110

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

TEXAS: Init 1, m = 1

L−S

DA

IJCAI

1 50 100 150
50

60

70

80

90

100

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

CORNELL: Init 1, m = 5

IJCAI

DA

L−S

1 50 100 150
50

60

70

80

90

100

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

TEXAS: Init 1, m = 5

IJCAI

DA

L−S

1 20 40 60 80
50

60

70

80

90

100

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

CORNELL: Init 1, m = 10

IJCAI

DA

L−S

1 20 40 60 80
50

60

70

80

90

100

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

TEXAS: Init 1, m = 10

IJCAI

DA

L−S

1 200 400 600 800 1000 1200
50

60

70

80

90

100

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WASHINGTON: Init 1, m = 1

L−S

DA

IJCAI

1 200 400 600 800 1000 1200
50

60

70

80

90

100

110

120

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WISCONSIN: Init 1, m = 1

IJCAI

DA

L−S

1 50 100 150 200 250
50

60

70

80

90

100

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WASHINGTON: Init 1, m = 5

IJCAI

DA

L−S

1 50 100 150 200 250
50

60

70

80

90

100

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WISCONSIN: Init 1, m = 5

IJCAI

DA

L−S

1 20 40 60 80 100 120
50

60

70

80

90

100

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

WASHINGTON: Init 1, m = 10

IJCAI

DA

L−S

1 20 40 60 80 100 120
50

60

70

80

90

100

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

L−S

WISCONSIN: Init 1, m = 10

DA

IJCAI

Figure 9: The averaged Frobenius losses (4.20) on
the four WebKB datasets, for comparing our ONMF
(using diagonal approximation, “DA”) with the prior
work in [7] (labeled by “IJCAI”), using m = 1, 5, 10.

1 500 1000 1500 2000 2500 3000
800

900

1000

1100

1200

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

NYTIMES: m = 100

IJCAI

DA

L−S

1 500 1000 1500
800

850

900

950

1000

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

L−S

IJCAI

DA

NYTIMES: m = 200

1 100 200 300 400 500 600
800

820

840

860

880

900

920

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

NYTIMES: m = 500

IJCAI

DA

L−S

1 50 100 150 200 250 300
800

820

840

860

880

900

920

Number of data chunks

A
ve

ra
ge

 F
ro

 L
os

s

L−S

DA

IJCAI

NYTIMES: m = 1000

Figure 10: The averaged Frobenius losses (4.20) on the
NYTimes dataset, for comparing our ONMF (using di-
agonal approximation, “DA”) with the prior work in [7]
(labeled by “IJCAI”), using m = 100, 200, 500, 1000.

7 Conclusions

The method of Nonnegative Matrix Factorization
(NMF) has been widely used in many data mining and
information retrieval applications. In particular, NMF
has been applied in various clustering tasks. Conven-
tional NMF algorithms require the data matrix to re-
side in the memory during the solution process, which is
problematic when the datasets are very large (e.g., they
may not even fit in the memory). Also, for modern data
stream applications, if the data are transient (e.g., not
even stored on disk) or the applications require real-time
updates, conventional NMF methods would not be able
to meet the requirement.

In this paper, we proposed an efficient online NMF
algorithm, which processes the incoming data incremen-
tally, one data point (or one chunk of data points) at
a time. Our method scales gracefully to very large
datasets. Our experiments demonstrate that even only
with one pass of the data, our ONMF algorithm can
achieve nearly the same performance as the conventional
NMF method. The accuracies continue to improve if
multiple passes of the data are allowed.

Finally, as suggested by the Reviewers, we imple-
mented a previously proposed online NMF algorithm
and compared its performance with ours.

8 Acknowledgement

Chenhao Tan and Ping Li are supported by NSF (DMS-
0808864), ONR (YIP-N000140910911), and a grant
from Microsoft. Fei Wang was supported by ONR (YIP-
N000140910911) and the grant from Microsoft.

References

[1] N. Andrei. Accelerated conjugate gradient algorithm
with finite difference hessian/vector product approx-
imation for unconstrained optimization. Journal of
Computational and Applied Mathematics, 230(2):570–
582, 2009.

[2] D. P. Bertsekas. Projected newton methods for opti-
mization problems with simple constraints. SIAM J.
Control and Optimization, 20:221–246, 1982.

[3] D. P. Bertsekas. Nonlinear Programming. Belmont,
MA, 1999.

[4] C. M. Bishop. Neural Networks for Pattern Recogni-
tion. Oxford University Press, 1995.

[5] L. Bottou. Stochastic learning. In O. Bousquet and
U. von Luxburg, editors, Advanced Lectures on Ma-
chine Learning, Lecture Notes in Artificial Intelligence,
LNAI 3176, pages 146–168. Springer Verlag, Berlin,
2004.

[6] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer
Networks, 29(8-13):1157–1166, 1997.

[7] B. Cao, D. Shen, J. Sun, X. Wang, Q. Yang, and
Z. Chen. Detect and track latent factors with online
nonnegative matrix factorization. In Proc. Interna-
tional Joint Conference on Artificial Intelligence, pages
2689–2694, 2007.

[8] C. Carpineto, S. Osiński, G. Romano, and D. Weiss. A
survey of web clustering engines. ACM Comput. Surv.,
41(3):1–38, 2009.

[9] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. Bradski,
A. Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 281–288, 2007.

[10] D. R. Cutting, D. R. Karger, J. O. Pederson, and J. W.
Tukey. Scatter/gather: A cluster-based approach to
browsing large document collections. In Proceedings of
the International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR),
pages 318–329, 1992.

[11] A. Das, M. Datar, A. Garg, and S. Rajaram. Google
news personalization: Scalable online collaborative
filtering. In Proceedings of the 16th International
Conference on World Wide Web (WWW), pages 271–
280, 2007.

[12] I. S. Dhillon and D. S. Modha. Concept decomposi-
tions for large sparse text data using clustering. Ma-
chine Learning, 42(1):143–175, 2001.

[13] C. Ding, X. He, and H. D. Simon. On the equivalence
of nonnegative matrix factorization and spectral clus-
tering. In Proceedings of the 5th SIAM Int’l Conf. Data
Mining (SDM), pages 606–610, 2005.

[14] C. Ding, T. Li, and M. I. Jordan. Convex and semi-
nonnegative matrix factorizations. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2010.

[15] D. Fetterly, M. Manasse, and M. Najork. On the
evolution of clusters of near-duplicate web pages. In

Proc. of the 12th International Conference on World
Wide Web (WWW), pages 37–45, 2003.

[16] B. C. M. Fung, K. Wang, C. M. Benjamin, F. Ke, and
M. Ester. Hierarchical document clustering using fre-
quent itemsets. In Proceedings of the 3rd SIAM Inter-
national Conference on Data Mining (SDM), 2003.

[17] E. Gaussier and C. Goutte. Relation between plsa
and nmf and implications. In Proceedings of the
28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), pages 601–602, 2005.

[18] T. Hu., H. Xiong, W. Zhou, S. Y. Sung, and H. Luo.
Hypergraph partitioning for document clustering: A
unified clique perspective. In Proceedings of the 31st
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SI-
GIR), pages 871–872, 2008.

[19] D. Kim, S. Sra, and I. Dhillon. Fast newton-type meth-
ods for the least squares nonnegative matrix approxi-
mation problem. In Proceedings of the SIAM Interna-
tional Conference on Data Mining (SDM), pages 343–
354, 2007.

[20] J. Kim and H. Park. Toward faster nonnegative matrix
factorization: A new algorithm and comparisons. In
Proceedings of the 8th International Conference on
Data Mining (ICDM), pages 353–362, 2008.

[21] H. J. Kushner and G. G. Yin. Stochastic Approx-
imation Algorithms and Applications. New York:
Springer-Verlag, 1997.

[22] C. L. Lawson and R. J. Hanson. Solving Least Squares
Problems. Society for Industrial Mathematics, 1995.

[23] D. D. Lee and H. S. Seung. Learning the parts of
objects with nonnegative matrix factorization. Nature,
401:788–791, 1999.

[24] D. D. Lee and H. S. Seung. Algorithms for non-
negative matrix factorization. In Advances in Neural
Information Processing System (NIPS), pages 556–562,
2000.

[25] P. Li. Very sparse stable random projections for dimen-
sion reduction in lα (0< α 62) norm. In Proocddings
of the ACM SIGKDD Conference (SIGKDD), pages
440–449, 2007.

[26] P. Li. Computationally efficient estimators for dimen-
sion reductions using stable random projections. In
Proceedings of the 8th IEEE International Conference
on Data Mining (ICDM), pages 403–412, 2008.

[27] P. Li, K. W. Church, and T. Hastie. One sketch for
all: Theory and application of conditional random sam-
pling. In Advances in Neural Information Processing
System (NIPS), pages 953–960, 2008.

[28] P. Li, A. C. König, and W. Gui. b-bit minwise hashing
for estimating three-way similarities. In Advances in
Neural Information Processing System (NIPS), 2010.

[29] C. J. Lin. Projected gradient methods for non-
negative matrix factorization. Neural Computation,
19(10):2756–2779.

[30] C. Liu, H. Yang, J. Fan, L. He, and Y. Wang. Dis-
tributed nonnegative matrix factorization for web-scale

dyadic data analysis on mapreduce. In Proceedings of
the 19th ACM International World Wide Web Confer-
ence (WWW), pages 681–690, 2010.

[31] X. Liu and W. B. Croft. Cluster-based retrieval using
language models. In Proceedings of the 27th annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages
186–193, 2004.

[32] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online
dictionary learning for sparse coding. In Proceedings of
The 26th International Conference on Machine Learn-
ing (ICML), pages 689–696, 2009.

[33] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plem-
mons. Document clustering using nonnegative ma-
trix factorization. Information Processing and Man-
agement, 42(2):373–386, 2006.

[34] J. Silva, J. Mexia, A. Coelho, and G. Lopes. Document
clustering and cluster topic extraction in multilingual
corpora. In Proceedings of the 1st IEEE International
Conference on Data Mining (ICDM), pages 513–520,
2001.

[35] X. Wan and J. Yang. Multi-document summarization
using cluster-based link analysis. In Proceedings of
the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval
(SIGIR), pages 299–306, 2007.

[36] F. Wang and P. Li. Compressed nonnegative sparse
coding. In Proceedings of the 10th IEEE International
Conference on Data Mining (ICDM), 2010.

[37] F. Wang and P. Li. Efficient non-negative matrix
factorization with random projections. In Proceedings
of the 10th SIAM International Conference on Data
Mining (SDM), pages 281–292, 2010.

[38] F. Wang, P. Li, and A. C. König. Learning a bi-
stochastic data similarity matrix. In Proceedings of the
10th IEEE International Conference on Data Mining
(ICDM), 2010.

[39] S. Xu and J. Zhang. A hybrid parallel web document
clustering algorithm performance study. Journal of
Supercomputing, 30(2):117–131, 2004.

[40] W. Xu and Y. Gong. Document clustering by concept
factorization. In Proceedings of the 27th Annual In-
ternational ACM SIGIR Conference on Research and
Development in Informaion Retrieval (SIGIR), pages
202–209, 2004.

[41] W. Xu, X. Liu, and Y. Gong. Document clustering
based on non-negative matrix factorization. In Pro-
ceedings of the 26th Annual International ACM SI-
GIR Conference on Research and Development in In-
formaion Retrieval (SIGIR), pages 267–273, 2003.

[42] S. Zhong. Efficient streaming text clustering. Neural
Networks, 18(5-6):790–798, 2005.

[43] S. Zhu, K. Yu, Y. Chi, and Y. Gong. Combining
content and link for classification using matrix factor-
ization. In Proceedings of the 30th Annual Interna-
tional ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR), pages 487–
494, 2007.

