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Abstract—Expertise matching, aiming to find the align-
ment between experts and queries, is a common problem
in many real applications such as conference paper-reviewer
assignment, product-reviewer alignment, and product-endorser
matching. Most of existing methods for this problem usually
find “relevant” experts for each query independently by using,
e.g., an information retrieval method. However, in real-world
systems, various domain-specific constraints must be consid-
ered. For example, to review a paper, it is desirable that there
is at least one senior reviewer to guide the reviewing process.
An important question is: “Can we design a framework to
efficiently find the optimal solution for expertise matching under
various constraints?” This paper explores such an approach by
formulating the expertise matching problem in a constraint-
based optimization framework. Interestingly, the problem can
be linked to a convex cost flow problem, which guarantees
an optimal solution under given constraints. We also present
an online matching algorithm to support incorporating user
feedbacks in real time. The proposed approach has been eval-
uated on two different genres of expertise matching problems.
Experimental results validate the effectiveness of the proposed
approach.

Keywords-Expertise matching; Constrained optimization;
Paper-reviewer assignment

I. INTRODUCTION

The fusion of computer technology and human collective

intelligence has recently emerged as a popular way for users

to find and share information on the internet. For example,

ChaCha.com, one of the largest mobile search engines, has

already attracted users to answer over 300 million questions;

Epinions.com has collected millions of reviews for various

products. The human-based computation offers a new direc-

tion in search with its unique use of human intelligence;

however, it also poses some brand new challenges. One key

problem, referred to as expertise matching, is how to align

human experts with questions (queries)? Straightforward, we

hope that the human experts who are assigned to answer a

question have the specific expertise related to the question.

But it is obviously insufficient. An ideal matching system

should also consider various constraints in the real world,

for example, an expert can only answer a certain number

of questions (load balance); as the authoritative degree of

different experts may vary largely, it is desirable that each

question can be answered/reviewed by at least one senior

expert (authority balance); a question may be relevant to

multiple different aspects (topics), thus it is expected that

the combined expertise of all assigned experts could cover

all aspects of questions (topic coverage).

The problem has attracted considerable interest from

different domains. For example, several works have been

made for conference paper-reviewer assignment by using

methods such as mining the web [10], latent semantic

indexing [6], probabilistic topic modeling [14][16], integer

linear programming [13], minimum cost flow [9] and hybrid

approach of domain knowledge and matching model[18].

A few systems [11][5][15] have also developed to help

proposal-reviewer and paper-reviewer assignment. However,

most existing methods mainly focus on the matching al-

gorithm, i.e., how to accurately find (or rank) the experts

for each query, but ignore the different constraints or tackle

the constraints with heuristics, which obviously results in

an approximate (or even inaccurate) solution. Moreover,

these methods usually do not consider user feedbacks. On

the other hand, there are some methods focusing on expert

finding. For example, Fang et al. [7] proposed a probabilistic

model for expert finding, and Petkova et al. [17] employed

a hierarchical language model in enterprise corpora. Balog

et al. [2] employ probabilistic models to study the problem

of expert finding, which tries to identify a list of experts

for a query. However, these methods retrieve experts for

each query independently, and cannot be directly adapted to

deal with the expertise matching problem. Thus, several key

questions arise for expertise matching, i.e., how to design a

framework for expertise matching to guarantee an optimal

solution under various constraints? how to develop an online

algorithm so that it can incorporate user feedbacks in real

time?

Problem Formulation We first formulate our problem

precisely. Given a set of experts V = {vi}, each expert has

different expertise over all topics. Formally, we assume that

there are in total T aspects of expertise (called topics) and

one’s expertise degree on topic z ∈ {1 · · ·T} is represented

as a probability θviz with
∑

z θviz = 1. Further, given a set

of queries Q = {qj}, each query is also related to multiple

topics, also represented as a T -dimensional topic distribution∑
z θqjz = 1, where θqjz is the probability of query qj on

topic z. Notations are summarized in Table I.

Given this, our objective is to assign m experts to each

query by satisfying certain constraints. For a concrete ex-

ample, an university department has five teaching staffs and
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Table I
NOTATIONS.

SYMBOL DESCRIPTION
M number of experts
N number of queries
T number of topics
V the set of candidate experts
Q the set of queries
vi one expert
qj one query
θviz the probability of topic z given expert vi
θqjz the probability of topic z given query qj

ten courses to teach. The topics corresponding to the courses

(also expertise of the teachers) can be “machine learning”,

“data mining”, “computational theory”, etc. Each teacher vi
has different expertise degrees on the topics, characterized

by θvi and each course qj also has a relevance distribution

on different topics, characterized by θqj . To assign teachers

to courses, ideally the assigned teachers’ expertise to each

course should cover the topic of the course, and all the

teachers should have a load balance with each other as well.

Contributions In this paper, we formally define the prob-

lem of expertise matching and propose a constraint-based

optimization framework to solve the problem. Specifically,

the expertise matching problem is transformed to a convex

cost flow problem and the objective is then to find a feasible

flow with minimum cost under certain constraints. We theo-

retically prove that the proposed framework can achieve an

optimal solution and develop an efficient algorithm to solve

it. We conduct experiments on two different genres of tasks:

conference paper-reviewer assignment and course-teacher

assignment. Experimental results validate the effectiveness

and efficiency of the proposed approach. We have applied

the proposed method to help assign reviewers to papers for

a top conference. Feedbacks from the conference organizers

confirm the usefulness of the proposed approach.

II. THE CONSTRAINT-BASED OPTIMIZATION

FRAMEWORK

A. Basic Idea

The main idea of our approach is to formulate this prob-

lem in a constraint-based optimization framework. Different

constraints can be formalized as penalty in the objective

function or be directly taken as the constraints in the

optimization solving process. For solving the optimization

framework, we transform the problem to a convex cost

network flow problem, and present an efficient algorithm

which guarantees the optimal solution.

B. The Framework

Now, we explain the proposed approach in detail. In

general, our objective can be viewed from two perspectives.

On the one hand, we try to maximize the relevance between

experts and queries; on the other hand, we try to satisfy the

given constraints. Formally, we denote the set of experts to

answer query qj as V (qj) , and the set of queries assigned

to expert vi as as Q(vi) . Further, we denote the matching

score (relevance) between expert vi and query qj as Rij .

Therefore, a basic objective function can be defined as

follows

Max
∑
vi∈V

∑
qj∈Q(vi)

Rij (1)

The objective function can be equivalently written as∑
qj∈Q

∑
vi∈V (qj)

Rij . In different applications, the con-

straints can be defined in different ways. Here we use several

general constraints to explain how the proposed framework

can incorporate the different constraints.

The first constraint is that each query should be assigned

to exactly m experts. For example, in the paper-reviewer

assignment task, each paper should be assigned to 3 or 5

reviewers. This constraint can be directly added into the

optimization problem. Formally, we have:

ST1 : ∀qj ∈ Q, |V (qj)| = m (2)

The second constraint is called as expert load balance,

indicating that each expert can only answer a limited number

of queries. There are two ways to achieve this purpose:

define a strict constraint or add a soft penalty to the objective

function. For strict, we add a constraint indicating that the

number of assigned queries to every expert vi should be

equal or larger than a minimum number n1, but be equal or

smaller than a maximum number n2. The strict constraint

can be written as:

ST2 (strict): ∀vi ∈ V, n1 ≤ |Q(vi)| ≤ n2 (3)

The other way is to add a soft penalty to the objective

function (Eq. 1). For example, we can define a square

penalty as |Q(vi)|2. By minimizing the sum of the penalty∑
i |Q(vi)|2, we can achieve a soft load balance among all

experts, i.e.:

soft penalty: Min
∑
vi∈V

|Q(vi)|2 (4)

These two constraints can be also used together. Actually,

in our experiments, soft penalty method gives better results

than strict constraint. Combining them together can always

yield a further improvement.

The third constraint is called authority balance. In real

application, experts have different expertise level (authori-

tative level). Take the paper-reviewer assignment problem

as an example. Reviewers may be divided into 2 levels:

senior reviewers and average reviewers. Intuitively, we do

not expect that all assigned reviewers to a paper are average

reviewers. It is desirable that the senior reviewers can cover

all papers to guide (or supervise) the review process. Without
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loss of generality, we divide all experts into K levels, i.e.,

V 1∪V 2∪· · ·∪V k = V , with V 1 representing experts of the

highest authoritative level. Similar to expert load balance,

we can define a strict constraint like |V 1 ∩ V (qj)| ≥ 1, and

also add a penalty function to each query qj over the k-level

experts. Following, we give a simple method to instantiate

the penalty function:

Min

K∑
k=1

N∑
j=1

|V k ∩ V (qj)|2 (5)

The fourth constraint is called topic coverage. Also in

the paper-reviewer assignment example, typically, we hope

that the expertise of assigned reviewers to a paper can cover

all topics of the paper. Our idea here is to define a reward

function to capture the coverage degree. Specifically, the

reward score is quantified by the number of times that an

expert vi has the expertise to answer a query qj on a major

topic z of this query, i.e.,

Max
T∑

z=1

∑
vi∈V (qj)

I(θqjz > τ1)I(θviz > τ2) (6)

where I(θqjz > τ1) is an indicator function, taking 1 when

the condition is true or 0 when the condition is false. τ1 and

τ2 are two thresholds, indicating that we only consider the

major topics of query qj and expert vi. Intuitively, if every

aspect of the query is covered by all assigned experts, we

will have a maximum reward score.
The last constraint is called COI avoidance. In many

cases, we need to consider the conflict-of-interest (COI)

problem. For example, an author, of course, should not

review his own or his coauthors’ paper. This can be ac-

complished through employing a binary M ×N matrix U .

An element with value of 0, i.e., Uij = 0, represents expert

vi has the conflict-of-interest with query qj . A simple way

is to multiply the matrix U with the matching score R in

(Eq.1).
Finally, by incorporating Eq. 4-6 and the COI matrix U

into the basic objective function (Eq. 1), we can result in

the following constrained optimization framework:

Max
∑

vi∈V

∑

qj∈Q(vi)

UijRij −
K∑

k=1

(μk

N∑

j=1

|V k ∩ V (qj)|2)

−β
∑

vi∈V

|Q(vi)|2 + λ
∑

qj∈Q

T∑

z=1

∑

vi∈V (qj)

I(θqjz > τ1)I(θviz > τ2)

s.t. ∀qj ∈ Q, |V (qj)| = m

∀vi ∈ V, n1 ≤ |Q(vi)| ≤ n2 (7)

where λ, β and μk are lagrangian multipliers, used to trade

off the importance of different components in the objective

function.
Now the problem is how to define the topic distribution θ,

how to calculate the pairwise matching score Rij , and how

to optimize the framework.

C. Modeling Multiple Topics

The goal of topic modeling is to associate each expert vi
with a vector θvi ∈ R

T of T -dimensional topic distribution,

and to associate each query qj with a vector θqj ∈ R
T .

The topic distribution can be obtained in many different

ways. For example, in the paper-reviewer assignment prob-

lem, each reviewer can select their expertise topics from

a predefined categories. In addition, we can use statistical

topic modeling [4][12] to automatically extract topics from

the input data. In this paper, we use the topic modeling

approach to initialize the topic distribution of each expert

and each query.

To extract the topic distribution, we can consider that

we have a set of M expert documents and N query

documents (each representing an expert or a query). An

expert’s document can be obtained by accumulating the

content information related to the expert. For example, we

can combine all publication papers as the expert document of

a reviewer, thus expert vi’s document can be represented as

di = {wij}. Each query can also be viewed as a document.

Then we can learn these T topic aspects from the collection

of expert documents and query documents using a topic

model such as LDA [4]. We use the Gibbs sampling

algorithm [8] to learn the topic distribution θvi for each

expert and each query.

D. Pairwise Matching Score

We employ language model to calculate the pairwise

matching score. With language model, the matching score

Rij between expert vi and query qj is interpreted as a

probability RLM
ij = p(qj |di) =

∏
w∈qj p(w|di), with

P (w|di) =
Ndi

Ndi
+ λD

· tf(w, di)

Ndi

+ (1− Ndi

Ndi
+ λD

) · tf(w,D)

ND
(8)

where Ndi is the number of word tokens in document di,
tf(w, di) is the number of occurring times of word w in di,
ND is the number of word tokens in the entire collection,

and tf(w,D) is the number of occurring times of word w in

the collection D. λD is the Dirichlet smoothing factor and

is commonly set according to the average document length

in the collection [21].

Our previous work extended LDA and proposed the ACT

model [19] to generate a topic distribution. By considering

the learned topic model, we can define another matching

score as

RACT
ij = p(qj |di) =

∏
w∈qj

T∑
z=1

P (w|z, φz)P (z|d, θdi
) (9)

Further, we define a hybrid matching score by combining

the two probabilities together

RH
ij = RLM

ij ×RACT
ij (10)
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E. Optimization Solving

To solve the objective function (Eq. 7), we construct a

convex cost network with lower and upper bounds imposed

on the arc flows. Figure 1 illustrates the constructing process,

as described in algorithm 1. Qj indicates a query node and

Vi indicates an expert node. Qjk indicates query qj being

assigned to an expert of expertise level k. S and T are two

virtual nodes(source and sink of the network flow). The edge

in the constructed network corresponds to the constraints

we want to impose. Therefore, the problem of finding the

optimal match between experts and queries becomes how to

find a feasible configuration to minimize the cost of flow

in the network. The problem (also referred to as the convex

cost flow problem) can be solved by transforming it to an

equivalent minimum cost flow problem [1]. We claim that

the minimum cost flow of the network gives an optimal

assignment with respect to (Eq. 7).
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Figure 1. The construction of convex-cost network flow according to
objective function (Eq. 7). Every arc in the network is associated with
lower and upper bound [l, u] and a convex function of the arc flow f .

Theorem 1. Algorithm 1 gives an optimal assignment.

Proof: First, the minimum convex cost flow problem

(MCCF) can be formulate as an optimization problem:

Min
∑

(a,b)∈E(G) Cab

(
f(a, b)

)

s.t. ∀a ∈ V (G),
∑

b:(a,b)∈E(G) f(a, b) =
∑

b:(b,a)∈E(G) f(b, a)

∀(a, b) ∈ E(G), lab ≤ f(a, b) ≤ uab (11)

The model is defined on directed network G =
(V (G), E(G)) with lower bound lab, upper bound uab and

a convex cost function Cab

(
f(a, b)

)
associated with every

arc (a, b).
Now we prove that minimizing (Eq. 11) on the graph

G constructed in algorithm 1 is equivalent to maximizing

Algorithm 1: Optimization solving algorithm.

Input: The set of experts V ; the set of queries Q; the
matching score matrix RM×N ; the COI matrix
UM×N ; Number of expertise level K; m, n1, n2

as described above.
Output: An assignment of experts to queries maximizing

objective function 7.

1.1 Create a network G with source node S and sink node T ;
1.2 foreach qj ∈ Q do
1.3 Create K + 1 nodes, denoted as Qj , Qj1, . . . , QjK

respectively;
1.4 Add an arc from source node S to node Qj , with

zero cost and flow constraint [m,m];
1.5 Add an arc from node Qj to Qjk, with square cost

function μkf
2 and flow constraint [0,m];

1.6 end
1.7 foreach vi ∈ V do
1.8 Create a node Vi;
1.9 Add an arc from Vi to sink node T , with square cost

function βf2 and flow constraint [n1, n2];
1.10 end
1.11 foreach vi ∈ V, qj ∈ Q, s.t. Uij = 1 do
1.12 k = expert level of vi;
1.13 Add an arc from Qjk to Vi, with linear cost function

−(Rij − λIij)f and flow constraint [0, 1];
1.14 end
1.15 Compute the minimum cost flow on G;
1.16 foreach vi ∈ V, qj ∈ Q, s.t. Uij = 1 do
1.17 k = expert level of vi;
1.18 if flow f(Qjk, Vi) = 1 then Assign query qj to

expert vi;
1.19 end

(Eq. 7). For simplicity, we use Iij to denote
∑T

z=1 I(θqjz >
τ1)I(θviz > τ2). For the constructing process, we see a

feasible flow on G is mapping to a query-expert assignment.

The flow from S to Qj indicates the number of experts

assigned with query qj , and the flow from Vi to T indicates

the number of queries assigned to expert vi. And the cost

between Vi and T is corresponding to the load balance soft

penalty function (Eq. 4). The meaning of the flow from Qj

to Qjk is the number of kth-level experts assigned to qj ,

thus we impose a square cost function μk · f2 on the arcs

which is equivalent to the negative of the authority balance
penalty. The flow from Qjk to Vi means we assign query qj
to expert vi, it is easy to find that no query will be assigned

to the same expert twice since we give an upper bound of

1 on the arc, while the cost is equivalent to the negative

of matching score and topic coverage score. Therefore, our

problem can be reduced to a equivalent MCCF problem,

where the objective function of MCCF problem (Eq. 11) is

the negative form of (Eq. 7).

In practice, it is not necessary to add all (Qjk, Vi) arcs.

To reduce the complexity of the algorithm, we first greedily

generate an assignment and preserve corresponding arcs,

then keep only c ·m arcs for Qjk and c ·n2 arcs for Vi which

have highest matching score (c is a fixed constant). We call
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this process Arc-Reduction, which will reduce the number

of arcs in the network without influencing the performance

too much. To process large scale data, we can also leverage

the parallel implementation of convex cost flow [3].

F. Online Matching

After an automatic expertise matching process, the user

may provide feedbacks. Typically, there are two types of user

feedbacks: (1) pointing out a mistake match; (2) specifying

a new match. Online matching aims to adjust the match-

ing result according to the user feedback. One important

requirement is how to perform the adjustment in real time.

In our framework, we provide online interactive adjustment

without recalculating the whole cost flow. For both types

of feedbacks, we can accomplish online adjustment by

canceling some flows and augmenting new assignments in

our framework. We give algorithm 2 to consider the first

type of feedback, which still produces an optimal solution.

Algorithm 2: Online matching algorithm.

Input: A minimum cost network flow f on G
corresponding to the current assignment; an
inappropriate match (vi,qj) to be removed.

Output: A new assignment.

2.1 k = expert level of vi;
2.2 if f(Qjk, Vi) = 1 then
2.3 Construct the residual network G(f);
2.4 Compute the shortest path Pback from T to S on

G(f) which contains backward arc (Vi, Qjk);
2.5 Cancel(roll back) 1 unit of flow along Pback and

update G(f);
2.6 Remove arc (Qjk, Vi) from G and update G(f);
2.7 Compute shortest augmenting path path Paug from S

to T ;
2.8 Augment 1 unit of flow along Paug;
2.9 end

Lemma 1 (Negative Cycle Optimality Conditions). [1] A
feasible solution f∗ is an optimal solution of the minimum
cost flow problem if and only if it satisfies the negative cycle
optimality conditions: namely, the residual network G(f∗)
contains no negative cost cycle.

Theorem 2. Algorithm 2 produces an optimal solution in
the network without assignment (qj , vi).

Proof: According to Lemma 1, the residual network

G(f) contains no negative cost cycle since the given flow

f has the minimum cost. In algorithm 2, we remove the

inappropriate match (vi,qj) and adjust the network flow in

line 2.3-2.5. Denote the feasible flow in the network after

line 2.5 as f ′. According to the SAP (Short Augmenting

Path) algorithm of cost flow, if f ′ has the minimum cost(i.e.,

G(f ′) contains no negative cycle), the algorithm will give

the optimal solution. We show the optimality of f ′ by

contradiction. Assume G(f ′) contains a negative cycle C,

C must intersect with the shortest path Pback computed on

line 2.3, since the original G(f) contains no negative cycle.

Thus merging C into path Pback will generate a shorter

path, which contradicts with the assumption that Pback is

shortest. Therefore, f ′ has the minimum cost. Accordingly,

algorithm 2 gives the optimal solution after augmenting a

new assignment.

III. EXPERIMENTAL RESULTS

The proposed approach for expertise matching is very

general and can be applied to many application to align

experts and queries. We evaluate the proposed framework on

two different genres of expertise matching problems: paper-

reviewer assignment and course-teacher assignment. All data

sets, code, and detailed results are publicly available.1

A. Experimental Setting

Data Sets The paper-reviewer data set consists of 338

papers and 354 reviewers. The reviewers are program

committee members of KDD’09 and the 338 papers are

those published on KDD’08, KDD’09, and ICDM’09. For

each reviewer, we collect his/her all publications from an

academic search system Arnetminer2[20] to generate the

expertise document. As for the COI problem, we generate

the COI matrix U according to the coauthor relationship

in the last five years and the organization they belong to.

Finally, we set that a paper should be reviewed by m = 5
experts, and an expert at most reviews n2 = 10 papers.

In the course-teacher assignment, we manually crawled

graduate courses from the department of Computer Science

(CS) of four top universities, namely CMU, UIUC, Stanford,

and MIT. In total, there are 609 graduate courses from the

fall semester in 2008 to 2010 spring, and each course is

instructed by 1 to 3 teachers. Our intuition is that teachers’

research interest often match the graduate courses he/she is

teaching. Thus we still use the teachers’ recent (five years)

publications as their expertise documents, while the course

description and course name are taken as the query.

On both data sets, we employ topic model [4] to extract

the topic distribution of each expert and each query. We

performed topic model learning with the same setting, topic

number T = 50, α = 50/T , and β = 0.01. The code for

learning the topic model is also online available.1

Baseline Methods and Evaluation Metrics We em-

ploy a greedy algorithm as the baseline. The greedy algo-

rithm assigns experts with highest matching score to each

query, while keeping the load balance for each expert (i.e.,

|Q(vi)| ≤ n2) and avoiding the conflict of interest.

In the paper-reviewer problem, as there are no standard

answers, in order to quantitatively evaluate our method, we

define the following metrics:

1http://www.arnetminer.org/expertisematching/
2http://arnetminer.org
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Matching Score (MS): It is defined as the accumulative

matching score.

MS =
∑
vi∈V

∑
qj∈Q(vi)

UijRij

Load Variance (LV): It is defined as the variance of the

number of papers assigned to different reviewers.

LV =
M∑
i=1

(
|Q(vi)| −

∑M
i=1 |Q(vi)|

M

)2

Expertise Variance (EV): It is defined as the variance of the

number of top level reviewers assigned to different papers.

EV =
N∑
j=1

(
|V (qj) ∩ V 1| −

∑N
j=1 |V (qj) ∩ V 1|

N

)2

In the course-teacher assignment experiment, we extract

the real assignment as the ground-truth, thus we perform the

evaluation in terms of Precision.

Experiment Setting We tune the different parameters

to analyze the influence on the accumulative matching

score. We also evaluate the efficiency performance of our

proposed approach. All the experiments are carried out on

a PC running Windows XP with Intel Core2 Quad CPU

Q9550(2.83GHz), 3.2G RAM.

B. Experiment Results

Paper-reviewer Assignment Experiment In the experi-

ment, we first set μ = 0 and tune the parameter β to find out

the effects of soft penalty function. Figure 2 (a) illustrates

how soft penalty function influences the matching score

with different β. We see that the matching score decreases

slightly with β increasing. Figure 2 (b) shows the effects of

load variance with β varied. We see that the load variance

changes very fast toward balance.

In figure 2 (c), we compare the two different methods

to achieve load balance, namely, strict constraint and soft

penalty. The two LV-MS curves are respectively gener-

ated by setting different minimum numbers n1 for strict

constraint and varying the weight parameter β for soft

load balance penalty. The curves show that soft penalty

outperforms strict constraint towards load balance.

Then we set β to 0 to test the effects of authority balance.

Experts are divided into 2 levels base on their H-index, and

we set μ2 = 0 to consider the balance of the senior reviewers

only. Figure 3 presents the accumulative matching score (a)

and expertise variance (b) with μ1 varied.

Further, we analyze the effects of different constraints.

Specifically, we first remove all constraints (using Eq. (1)

only), and then add the constraints one by one in the order

(Load balance, Authority balance, Topic coverage, and COI).

In each step, we perform expertise matching using our

approach. Table II lists the accumulative matching score

0 0.005 0.01 0.015 0.02
0

100

200

300

400

500

600

700

β

M
at

ch
in

g 
S

co
re

Soft Penalty
Basic Network Flow
Greedy Basline

0 0.005 0.01 0.015 0.02
0

5

10

15

20

β

Lo
ad

 V
ar

ia
nc

e

Soft Penalty
Basic Network Flow
Greedy Baseline

0 5 10 15 20 25
520

540

560

580

600

620

640

Load Variance

M
at

ch
in

g 
S

co
re

Soft Penalty
Strict Constraint

(a) (b) (c)

Figure 2. Figure (a) and (b) illustrate how soft penalty function influences
the matching score(MS) and load variance with different β respectively.
Figure (c) gives a comparison between soft penalty function and strict
constraint methods towards load balance.
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Figure 3. Matching score (MS) and expertise variance (EV) with μ1

varied.

obtained in each step. We see that the load balance constraint

will reduce the expertise matching score, while the other

constraints have little negative effect. This is because senior

experts are often good at many aspects, thus assigned with

heavy load in traditional matching. In out approach the

decrease of matching score in the load balance constraint

is to balance the work load of senior experts.

Table II
EFFECTS OF DIFFERENT CONSTRAINTS ON MATCHING SCORE.

Constraint Matching Score
Basic objective function (Eq. 1) 635.51

+ Load Balance soft penalty with β = 0.02 592.83

+ Authority Balance with μ = (0.02, 0)T 599.37
+ Topic Coverage with τ1 = τ2 = 0.08, λ = 0.1 599.37

+ COI 590.14

Finally, we evaluate the efficiency performance of the pro-

posed algorithm. We compare the CPU time of the original

optimal algorithm and the version with Arc-Reduction. As

shown in Figure 4, the Arc-Reduction process can signif-

icantly reduce the time consumption. For example, when

setting c = 12 in this problem, we can achieve a > 3×
speedup without any loss in matching score.

We further use a case study (as shown in table III and IV)

to demonstrate the effectiveness of our approach. We see that

the result is reasonable. For example, Lise Getoor, whose

research interests include relational learning, is assigned

with a lot of papers about social network.

Course-Teacher Assignment Experiment Figure 5 (a)

shows the assignment precision in the course-teacher assign-

ment task by our approach and the baseline method, and
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Table IV
LIST OF REVIEWERS FOR 5 RANDOM PAPERS.

Paper Assigned reviewers
Audience selection for on-line brand advertising: privacy-friendly social network targeting C. Lee Giles, Jie Tang, Matthew Richardson, Hady Wirawan Lauw, Elena Zheleva

Partitioned Logistic Regression for Spam Filtering Rong Jin, Chengxiang Zhai, Saharon Rosset, Masashi Sugiyama, Annalisa Appice

Structured Learning for Non-Smooth Ranking Losses Xian-sheng Hua, Tie-yan Liu, Hang Li, Yunbo Cao, Lorenza Saitta

Unsupervised deduplication using cross-field dependencies Chengxiang Zhai, Deepak Agarwal, Max Welling, Donald Metzler, Oren Kurland

The structure of information pathways in a social communication network C. Lee Giles, Wolfgang Nejdl, Melanie Gnasa, Michalis Faloutsos,Cameron Marlow

Table V
CASE STUDY: PROFESSORS WITH MANY COURSES ASSIGNED IN UIUC(2008, FALL - 2010, SPRING)

Professor Pub Papers Courses assigned(baseline) Courses assigned(our approach)

Jose Meseguer 237

23 courses 7 courses
Database Systems (2008,spring) Programming Languages and Compilers (2008,spring)

Programming Languages and Compilers (2008,spring) Programming Language Semantics (2008,spring)
Iterative and Multigrid Methods (2009,spring) Programming Languages and Compilers (2008,fall)

Programming Languages and Compilers (2009,spring) Programming Languages and Compilers (2009,spring)

ChengXiang Zhai 117

18 courses 7 courses
Computer Vision (2009,spring) Text Information Systems (2008,spring)

Text Information Systems (2009,spring) Stochastic Processes and Applic (2008,fall)
Stochastic Processes and Applic (2009,fall) Text Information Systems (2009,spring)

Computer Vision (2008,spring) Stochastic Processes and Applic (2009,fall)
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Figure 4. Efficiency performance (s).

Table III
EXAMPLE ASSIGNED PAPERS TO THREE REVIEWERS.

Reviewer Assigned papers

Lise Getoor

Evaluating Statistical Tests for Within-Network Classifiers of ...
Discovering Organizational Structure in Dynamic Social Network

Connections between the lines: augmenting social networks with text
MetaFac: community discovery via relational hypergraph factorization

Relational learning via latent social dimensions
Influence and Correlation in Social Networks

Wei Fan

Mining Data Streams with Labeled and Unlabeled Training Examples
Vague One-Class Learning for Data Streams

Active Selection of Sensor Sites in Remote Sensing Applications
Name-ethnicity classification from open sources

Consensus group stable feature selection
Categorizing and mining concept drifting data streams

Jie Tang

Co-evolution of social and affiliation networks
Influence and Correlation in Social Networks

Feedback Effects between Similarity and Social Influence ...
Mobile call graphs : beyond power-law and lognormal distributions
Audience selection for on-line brand advertising: privacy-friendly ...

(b) shows the effects of the parameter β on the precision

on UIUC data. The precision is defined as the ratio of the

number of correct assignments(consistent with the ground

truth data) over total number of assignments. As Figure 5 (a)

shows, in all the data sets we collect from top universities,

our algorithm outperforms the greedy method greatly. And

in Figure 5 (b), as the β increases, the precision of our

approach increases in general and decreases slowly after it

exceeds the peak value. The peak value is more than 50

percents larger than the initial precision, which validates the

effectiveness of the soft penalty approach.
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Figure 5. Course-Teacher Assignment performance(%).

We conduct a further analysis on the UIUC data set. As

Table V shows, some professors with publications in various

domains, are likely to be assigned with many courses in the

baseline algorithm. But in real situation, most professors,

though with various background, want to focus on several

directions. Thus some courses should be assigned to younger

teachers. While in our algorithm, the situation is much

better. And we can see that each teacher is assigned with

a reasonable load as well as a centralized interest.

C. Online System

Based on the proposed method, we have developed an

online system for paper-reviewer suggestions, which is avail-

able at 3. Figure 6 shows an screenshot of the system. The

input is a list of papers (with titles, abstracts, authors, and

organization of each author) and a list of conference program

3http:/review.arnetminer.org/
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Figure 6. Screenshot of the online system.

committee (PC) members. We use the academic information

stored in ArnetMtiner to find the topic distribution for each

paper and each PC member [20]. With the two input lists

and the topic distribution, the system automatically finds the

match between papers and authors. As shown in Figure 6,

there are 5-7 papers assigned to each PC member and the

number of reviewers for each paper is set as 3. The system

will also avoid the conflict-of-interest (COI) according to

the coauthorship and co-organization relationship. In addi-

tion, users can provide feedbacks for online adjustment, by

removing or confirm (fix) an assignment.

IV. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of expertise match-

ing in a constraint-based framework. We formalized the

problem as a minimum convex cost flow problem. We

theoretically proved that the proposed approach can achieve

an optimal solution and developed an efficient algorithm to

solve it. Experimental results on two different types of data

sets demonstrate that the proposed approach can effectively

and efficiently match experts with the queries. Also we

present an algorithm to optimize the framework according

to user feedbacks in real time. We are also going to apply

the proposed method to several real-world applications.
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